Physical acoustics – Numerical examples with guided waves

Vincent Laude

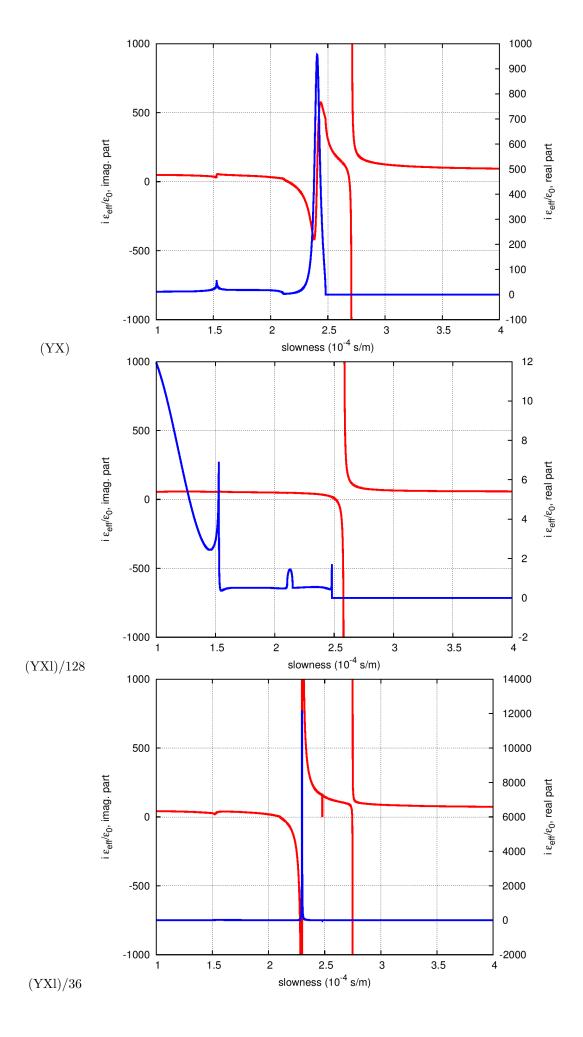
February 23, 2022

1 SlownessBuddy

SlownessBuddy is a Windows program that can only do one thing: compute slowness curves, for both bulk and surface acoustic (elastic) waves in (piezoelectric) solids. The program uses a plane wave formulation:

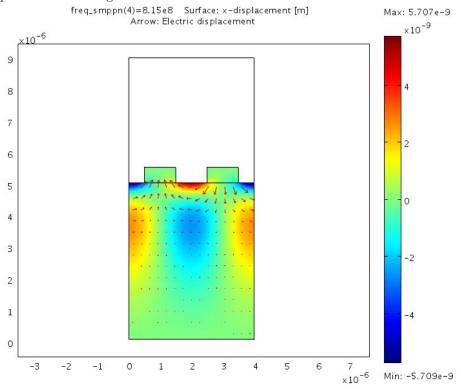
- Christofell's equation for bulk elastic waves,
- Surface boundary condition determinant minimization for SAW,
- Finite element method/boundary element method combination for thick SAW transducers.

🭷 💿 SlownessBuddy 1.4 © LPMX 2002 💿 🛞		
Substrate directory:	H:\src\programmes_win\SlownessBuddy\Const\	Min. angle (*) 0.000
Substrate file:	Ino-kov Browse	Max. angle (*) 360.000
IEEE standard cut: Preset cut:		Samples number: 3601
fp (E+4 m/s): 0.196000 a/p (%): 50.00 h/2p (%): 2.1900 fh (E+4 m/s): 0.015000		
Advanced settings		
Slowness curve to generate: Initial slowness:		
Bulk waves (substrate plane) 2.48090 E-4 s/m		
Output H:\src\programmes_win\SlownessBuddy\outp		
Change		
	Compute E>	kit About


2 ... and a Julia library for bulk and surface waves

Julia is a language similar to Python or Matlab, but more modern :-) Source code (under development) available upon request. It is used for Brillouin light scattering numerical simulation as well.

3 Effective surface permittivity


Consider the following 3 cuts of lithium niobate in IEEE notation: (YX), (YXl)/128, (YXl)/36. Can you understand from the effective permittivity plots which cut is (from the point of view of SAW technology):

- 1. Ideal for lossless SAW generation?
- 2. Not worth anything?
- 3. Quite interesting for leaky-SAW (PSAW) generation?

4 Brute force numerical simulation of a thick SAW periodic transducer

Let us consider a substrate of lithium niobate. An interdigital transducer with pitch $p = 2 \ \mu m$ is has a wavelength at resonance of $\lambda = 4 \ \mu m$. Can we perform a brute force finite element simulation to obtain the distribution of the displacements of the generated surface acoustic wave?

5 And Lord Rayleigh found the surface elastic wave in 1885...

Let us consider the surface of an isotropic solid with velocities c_L and c_S for longitudinal and shear waves. Propagation is along direction x_1 and x_2 is orthogonal to the surface (and pointing outward of the solid). We want to find an analytical formula for the slowness s_1 of the Rayleigh wave.

- 1. Justify that there are two partial waves in the solid, one purely longitudinal and one purely shear. Justify that the slowness vector for the L partial is $s_1(1,i\beta_L)^T$ with $\beta_L = \sqrt{1 c_L^{-2}/s_1^2}$. Justify that the slowness vector for the S partial is $s_1(1,i\beta_S)^T$ with $\beta_S = \sqrt{1 c_S^{-2}/s_1^2}$.
- 2. Justify that the polarization (displacement vector) for the L partial wave is proportional to $(1, i\beta_L)^T$. Justify that the polarization (displacement vector) for the S partial wave is proportional to $(-i\beta_S, 1)^T$.
- 3. Obtain the strains S_1 , S_2 , and S_6 at the surface. Observe that the other strains are zero. Nota: first express the total displacement in the solid as a surperposition of the two partial waves with amplitudes a_L and a_S .
- 4. Show that the boundary condition at the surface is $T_2 = 0$ and $T_6 = 0$. Then express this boundary condition as the matrix relation

$$\begin{pmatrix} i(1+\beta_S^2) & 2\beta_S \\ 2\beta_L & -i(1+\beta_S^2) \end{pmatrix} \begin{pmatrix} a_L \\ a_S \end{pmatrix} = 0$$
 (1)

5. Conclude that the secular equation for the Rayleigh SAW is

$$(1 + \beta_S^2)^2 - 4\beta_S\beta_L = 0 (2)$$