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Generalized acoustic impedance metasurface
Yu-Ze Tian 1, Yan-Feng Wang 1✉, Vincent Laude 2 & Yue-Sheng Wang 1,3

Impedance theory has become a favorite method for metasurface design as it allows perfect

control of wave properties. However, its functionality is strongly limited by the condition of

strict continuity of normal power flow. In this paper, it is shown that acoustic impedance

theory can be generalized under the integral equivalence principle without imposing the

continuity of power flow. Equivalent non-local power flow transmission is instead realized

through local design of metasurface unit cells that are characterized by a passive, asymmetric

impedance matrix. Based on this strategy, a beam splitter loosely respecting local power flow

is designed and demonstrated experimentally. It is concluded that arbitrary wave fields can be

connected through arbitrarily shaped boundaries, i.e. transformed into one another. Gen-

eralized impedance metasurface theory is expected to extend the possible design of meta-

surfaces and the manipulation of acoustic waves.
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Over the past two decades, a lot of efforts have been
devoted to the control of acoustic fields1. A strong
expectation is that a wavefield should be manipulated

arbitrarily with maximum power transmission efficiency. The
proposal of acoustic metasurfaces has offered a feasible solution
with a compact design2. Efficient wave manipulation can now be
achieved passively at the sub-wavelength scale by precisely pro-
cessing a microstructure3. Innovative functions such as abnormal
reflection4 and refraction5, stealth6, focusing7, and acoustic
holography8 have been ingeniously brought into reality. So far,
various methods for metasurface design, including the general-
ized Snell’s law9, impedance matching techniques10–12, and dif-
fractive metagrating theory13,14, have been reported and widely
implemented. Nevertheless, they sometimes remain unsatisfac-
tory in terms of efficiency, since parasitic scattering is hardly
eliminated in a strict sense15.

Inspired by electromagnetism16, the recently proposed surface/
interface impedance theory17 suggests a new solution that goes
beyond the theoretical limit of the generalized Snell’s law. A
metasurface described by the pressure-velocity relationship on a
boundary or interface yields perfect control over power flow. It
was demonstrated that perfect abnormal reflection can be
achieved by non-local design17, while perfect abnormal refraction
can be achieved simply by quadruple Helmholtz units18.
Improvements were later proposed to expand both functionality
and feasibility. Transverse channels inside the metasurface can be
established for non-local power flow control so that the coupling
between units is controlled subjectively19–21. Alternatively, when
bent into the same shape as the power flow distribution, the
metasurface is no longer required to respect the non-local power
flow condition22,23. Another idea is to balance the power flow
with the passive introduction of evanescent waves along the
metasurface24. However, all those solutions have brought in dif-
ficulties, due to limitations on the boundary shape or to the
introduction of strict requirements25. The available range of wave
fields that can be contacted together under these different stra-
tegies is thus still very limited.

In this paper, a generalized acoustic impedance theory is
developed. Theoretically, it is argued that any pair of wave fields
at a given frequency can be contacted together through arbitrarily
shaped boundaries with an impedance metasurface. Power flow
conservation is no longer strictly imposed, but only loosely,
through the idea of integral equivalence. Generalized impedance
unit cells are then proposed. Those unit cells can be designed to
approach any impedance matrix. In order to illustrate the
resulting design of a metasurface, an example of beam-splitting
imposing loosely the conservation of power flow is given. The
results obtained in both simulation and experiment agree well
and suggest that the range of functions that can be implemented
is far larger than demonstrated to date.

Results
Generalized acoustic impedance theory. Consider the two dis-
joint regions of space A and B depicted in Fig. 1a. Inside them, we
consider two harmonic sound pressure fields pA(x, y, z) and
pB(x, y, z). One can obtain from them the local velocity
vA(x, y, z), vB(x, y, z), and power flow distributions
IA(x, y, z), IB(x, y, z), since they are non-singular exact solutions of
the Helmholtz equation. Two surfaces ΓAðx; y; zÞ and ΓBðx; y; zÞ
are introduced to limit the semi-infinite spaces A and B. Their
normal vectors nAðx; y; zÞ and nBðx; y; zÞ are defined as pointing
toward the interior of the regions. Multiple channels are estab-
lished between the two semi-infinite spaces. It should be
emphasized that the concepts of incident and transmitted fields
have not been imposed in this description. Furthermore, multiple

sound sources are allowed to exist simultaneously inside the two
spaces.

In previous impedance metasurface theories, it is often
required that the two boundaries have the same shape
Γ0ðx; y; zÞ and normal vector n0ðx; y; zÞ, i.e., that they are parallel.
Continuity of normal power flow is then imposed strictly24. In
this paper, we consider a more general metasurface with
inhomogeneous thickness between the two surfaces ΓAðx; y; zÞ
and ΓBðx; y; zÞ. The conservation of power flow is hence imposed
only weakly. The passive and lossless connection between the two
spaces is writtenZ

ΓA
IA � nAdSþ

Z
ΓB
IB � nBdS ¼ 0; ð1Þ

which indicates that the structures placed between regions A and
B form a globally conservative system. It should be noted that
there are no restrictions on the respective areas of the two
surfaces, as they can be different. Then, segmentation of the two
surfaces ΓA and ΓB is operated according to the following
principles. First, the surfaces must be completely covered by sets
of patches DA

i and DB
i . Second, the maximum feature size ΦDα

i
for

each patch Dα
i should be deeply sub-wavelength (ΦDα

i
� λ0), with

α= A or B. Third, the variables pα, vα, and the normal vectors nα

within each patch should be slowly varying along the boundary
and assume an average value approximately equal to the value at
the midpoint of the patch. Fourth, for any patch Dα1

i1
, there is

always a corresponding patch Dα2
i2
, satisfyingZ

Dα1
i1

Iα1 � nα1dSþ
Z
Dα2
i2

Iα2 � nα2dS ¼ 0: ð2Þ

For the Cases 1 and 2 depicted in Fig. 1a, α1= A, α2= B, and
i1= i2; for Case 3, α1= α2=A or B, and i1 ≠ i2. The conservation
of power flow is now established in the framework of integral
equivalence. The distance between two patches is expected to
remain short for practical operation, although this requirement is
not essential. Then one can use a series of channels to connect
patches, as illustrated in Fig. 1a. As the conditions above actually
do not impose strong restrictions on the spatial location, the
layout of each channel can be flexible. Two patches can be
connected orderly, such as Channels 1 and 2 in Case 1. One can
further establish channels crosswise if necessary, as in Channels 3
and 4 in Case 2, though this possibility may only be offered by a
3-dimensional microstructure. Channels connecting two patches
of the same boundary are allowed as well, such as Channels 5 and
6 in Case 3. Such channels are termed generalized impedance
units in this paper and provide functionalities beyond those of
previous impedance metasurfaces. Finally, the j-th generalized
impedance unit is approximately characterized by the unique
impedance matrix

pjDα1
i1

pjDα2
i2

" #
¼ Zj

11 Zj
12

Zj
21 Zj

22

" # �nα1 � vð ÞjDα1
i1

�nα2 � vð ÞjDα2
i2

" #
: ð3Þ

It is worth noting that the above definition of the impedance
matrix is slightly different from the previous17, since the normal
vectors are now selected according to the boundary of definition
of the considered acoustic field.

Let us now examine what we get when the generalized
impedance units exactly satisfy the objective pressure and velocity
fields at the two ports. Both acoustic fields obey the governing
equations inside spaces A and B and their zero and first-order
boundary values are discretely related by the generalized
impedance elements of Eq. (3). Meanwhile, the conservation of
power flow is satisfied according to Eq. (2). The total field
composed of pA and pB thus forms a single proper global
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wavefield solution of the second-order partial differential
equation of acoustics. This result in fact indicates that two
arbitrary semi-infinite sound fields can be connected only by
designing generalized impedance units that meet the required
impedance characteristics.

Spaces A and B are allowed to be finite as well as to include
additional boundaries. Additional boundary conditions would not
cause trouble since they do not occur in the discussion.
Furthermore, the permissiveness of Case 2 compared to Case 1
is worthwhile for some three-dimensional scenarios. Such units
may achieve the negative coupling effect, similar to topological
phononic crystals26,27. They also have the potential for effective
impedance modulation for extraordinary acoustic transmission28

or generation of spiral impedance patterns for acoustic
vortices29,30. Along the same line, the connection of multiple
sound fields is allowed as well, including with different
background media, as the conclusions above would still hold.
Conversely, all three cases depicted in Fig. 1a would remain the
same if A and B were regarded as two different sections of the
same space. Hence, both transmissive and reflective metasurfaces,
and even metasurfaces with transverse channels19, can be
established within a unified framework.

Finally, the proposed generalized acoustic impedance theory is
naturally compatible with the conventional one. One may strictly
stipulate that ΓAðx; y; zÞ ¼ ΓBðx; y; zÞ þ C, where C is a constant.
Then, the designed metasurface would have a uniform thickness.
At this point, the generalized theory would degenerate into the
conventional theory if only channels of Case 1 are adopted with
DA
i ffi DB

i . As a result, a strict requirement on the power flow
would be back into consideration and functionality would be
greatly weakened.

Generalized acoustic impedance unit. It is essential to ensure
that any target impedance matrix can be approached by an
artificial unit. Generally speaking, the impedance characteristics
are hardly checked directly. The design and measurement method
for conventional impedance units18 is also generalized here
within the framework of generalized impedance theory.

Any of the impedance units of Fig. 1a can be represented by the
general geometry depicted in yellow in Fig. 1b. The impedance
unit generally includes some microstructures that are added to
meet the impedance requirements for actual operation; they are

not illustrated here for simplicity. The two terminal ports are not
required to be parallel or to connect two different spaces. The
pressure field inside the generalized unit under any excitation
should be unique and independent of the direction of power flow
since its characteristic size is deeply sub-wavelength. Despite
being possibly placed in different environments, the impedance
unit exhibits a unique impedance matrix. This allows one to
attach waveguides on both sides (shown as gray parts) to check its
impedance. Note that the waveguides should be perpendicular to
the ports of the unit but can have different cross-sectional areas as
the ports do. The contribution of the generalized impedance unit
to the global field is analyzed next under integral equivalence.

The impedance matrix can be examined by measuring a given
set of incident, reflected, and transmitted waves with a total
pressure field illustrated in Fig. 1c Still thanks to the deeply sub-
wavelength characteristic size, the pressure field can be described
by a one-dimensional curvilinear coordinate. This abstraction
works for all three cases, as the above process does not explicitly
specify the direction of power flow or of the incident wave.
Therefore, we can abstract it as an impedance interface without
thickness, placed at y= 0, as shown in Fig. 1d for an intuitive
illustration. One needs only to launch an incident plane wave
from one side to check impedance and scattering matrices, as the
generalized impedance unit is linear. Considering an incident
excitation pin(y) along the negative y-axis, the reflected wave
preðyÞ and the transmitted wave ptrðyÞ satisfy

pin þ pre

ptr

� �����
y¼0

¼ Zj
11 Zj

12

Zj
21 Zj

22

" #
� vin þ vre
� �

vtr

" #�����
y¼0

; ð4Þ

together with the conservation of power flow

1
2 Re pin þ pre

� �
vin þ vre
� ��� ���

y¼0
� A1

¼ 1
2 Re ptr vtrð Þ�� ���

y¼0
� A2;

ð5Þ

where A1 and A2 are the areas of the upper and the lower ports,
respectively; Z0= c0ρ0 is the characteristic impedance of the
background medium.

For a passive and lossless system, each component of the
impedance matrix Zj is imaginary (Zj

ik ¼ {Xj
ik, where ı2=− 1).

Case 1 Case 2 Case 3
(b)(a) (d)(c)

Generalized

Impedance Unit

Check with

Plane Wave Incidence

Described by

Interfaces Impedance

Channel 1

Channel 2

Channel 4

Channel 5

Channel 6

Channel 3

A

B

Fig. 1 Schematic diagram of generalized acoustic impedance theory. a Illustration of generalized impedance metasurface. Two pressure fields pA x; y; zð Þ
and pB x; y; zð Þ exist in the disjoint semi-infinite spaces A and B. Multiple channels are established between their boundaries ΓA x; y; zð Þ and ΓB x; y; zð Þ,
including orderly connected channels (Case 1), crosswise connected channels (Case 2) and self connected channels (Case 3). b–d Sketch of the design of a
generalized impedance unit. b An impedance unit with arbitrary shape and internal structures (yellow part) connected with waveguides (gray part) on both
sides. c An impedance unit with arbitrary shape and internal structures is checked by plane wave incidence with total pressure field described by one-
dimension curve coordinate. d An impedance interface abstracted from the physical structure.
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Solving (4) leads to

Xj
11 ¼ Z0

pi cosφt þ pr cos φr � φt

� �
pi sinφt þ pr sin φr � φt

� � ; ð6Þ

Xj
12 ¼ Z0

p2i � p2r
� �

=pt
pi sinφt þ pr sin φr � φt

� � ; ð7Þ

Xj
21 ¼ Z0

pt
pi sinφt þ pr sin φr � φt

� � ; ð8Þ

Xj
22 ¼ Z0

pi cosφt � pr cos φr � φt

� �
pi sinφt þ pr sin φr � φt

� � ; ð9Þ

where pi, pr, and pt are the amplitudes of incident, reflected, and
transmitted waves (positive and real numbers), φr, and φt are the
reflected and transmitted phases with respect to the incident
phase, respectively. Notice that Eq. (5) can be simplified to

p2i � p2r
� �

A1 ¼ p2t A2; ð10Þ
which implies

Xj
12

Xj
21

¼ p2i � p2r
p2t

¼ A2

A1
: ð11Þ

Xj
12 ¼ Xj

21 holds if and only if the areas of the two ports are equal
(A1=A2), in which case the generalized unit degenerates into the
conventional one. Besides, Eq. (11) indicates that Xj

12 and Xj
21 are

not independent for a given area ratio A2
A1
. Hence, there are only

three independent components in the impedance matrix: Xj
11;X

j
12

and Xj
22. Assuming pi= 1, pr and pt are covariant according to

Eq. (10). A complete mapping Xj
11;X

j
12;X

j
22

n o
! pt ;φr;φt

	 

is

hence established through Eqs. (6)–(9). There is always a unique
set pt ;φr;φt

	 

corresponding to any impedance matrix Zj. One

can construct a generalized impedance unit with a target
impedance matrix by simply adjusting the transmission ampli-
tude pt and the phase differences φr and φt. As a result, the design
of the impedance matrix simplifies to a manipulation of
transmission and reflection coefficients and any impedance
matrix is available through an artificial generalized
impedance unit.

It is generally considered that an asymmetric impedance
matrix signals an active device24. However, the generalized
impedance unit we just described represents a passive and lossless
system as no external source is included. Because Xj

12 ≠X
j
21 here

results from different port areas, one may normalize amplitudes
by the square root of the port area and the resulting impedance
matrix would again be symmetric. However, the boundary
conditions on both sides of the generalized impedance metasur-
face are still determined by the impedance matrices before
normalization. Hence, normalization is not obviously beneficial
overall. Though the impedance matrix is asymmetric, the
generalized impedance unit is still linear, passive, and lossless.
A detailed scattering analysis is proposed in the Supplementary
Note 1.

Design of generalized impedance metasurface. Although the
generalized impedance theory does not impose many restrictions
and applies in almost all circumstances, it may seem difficult to
apply in practice. It is indeed cumbersome to take into account
the shapes of the two interfaces ΓAðx; y; zÞ and ΓBðx; y; zÞ together
with the normal power flow distribution I

!A
� n!A

and I
!B

� n!B
,

especially for inverse design of generalized units. The practical
solution illustrated in Fig. 2a is suggested herewith to provide an

easier implementation of the design. A lattice with a regular shape
is added as a relay between the two surfaces. For independent
design of impedance units, each cell in the lattice is rigidly iso-
lated from its neighbors. The connection between the upper and
lower surfaces and the regular lattice can then be established
following the principles mentioned above. Note that all connec-
tions should be fabricated with a transmittance close to 1. Con-
sequently, the structure of the conventional impedance unit18 can
be directly applied here. Only the structures inside the lattice need
to be optimized to meet the target impedance requirements. The
definition of the generalized impedance metasurfaces is then
simplified into two independent steps: path planning and con-
ventional impedance unit design. In this section, a generalized
impedance metasurface for beam splitting is designed as a
demonstration of this design strategy.

A feasible scheme based on conventional impedance theory to
define an arbitrary beam splitter is to introduce evanescent waves
on the incident side to balance the power flow24. This solution,
however, implicitly restricts the output waves to be split at a large
angle. Small splitting angles may thus not be achieved by
conventional impedance theory. An explanation is provided in
the Supplementary Note 2. Although it may be implemented
using the generalized Snell’s law, parasitic scattering would
inevitably occur31, resulting in efficiency below 100%17. In
addition, it is almost impossible to apply if more than two plane
waves are expected on the transmission side. This illustrates the
restricted nature of scenarios to which conventional impedance
theory can be applied.

Generalized impedance theory is employed here to solve this
dilemma. The incident field pA is a plane wave with incident angle
θin= 0∘. The transmitted field pB is composed of a pair of
transmitted waves with transmission angles θt1=− θt2= 13. 5∘

and phase differences φt1= φt2= 60∘. An operating frequency of
f0= 3500 Hz is adopted. Such a configuration is not compatible
with conventional impedance theory as presented in Supplemen-
tary Note 2.

The channels of Case 1 in Fig. 1a are adopted as generalized
units. The length of the generalized units, i.e., the thickness of the
metasurface, is set to tm= 13.1 cm. The unit of metasurface is
composed of a trapezoidal entrance channel with a height ht= 3
cm and quadruple Helmholtz resonators with a height hh= 10.1
cm, as shown in Fig. 2b. The resonators and trapezoidal channel
correspond to the regular lattice in Fig. 2a and the high
transmittance connection to pA, respectively. The resonators are
directly connected to the transmitted field, thus another high
transmittance connection to pB is skipped. The width of the
lattice is set to wo= 1.4 cm. The width of the lower port wi of
each unit is then given by Eq. (11). It should be noted that there is
a gap width δ= 1 mm at each side of the entrance (wi), for
isolation between adjacent units.

Some walls with thickness δ= 1 mm are added to ensure intact
power flow transmittance through the trapezoidal channel. The
distances between the two walls on the right and the upper
boundary are h1r and h2r , and the wall lengths are l1r and l2r ,
respectively. The distance from the left wall is h1l and the wall
length is l1l . A waveguide with width wa= 1 mm is connected in
the middle of the upper boundary. The above six parameters
h1r ; h

2
r ; h

1
l ; l

1
r ; l

2
r ; l

1
l

	 

are used as optimization variables for a

genetic algorithm, so that the incident power from wi completely
enters the waveguide.

Four Helmholtz resonators are then connected to the
waveguide. The width and the height of the i-th resonator from
top to bottom are wi

r and hr= 2.4 cm, respectively. The neck
width is wi

n and the thickness δ= 1 mm. With the parameters of
the trapezoidal part fixed, wi

n and wi
r together with wa are further
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Regular Lattice with Artificial Structure

Connection with

100% Transmittance

Connection with

100% Transmittance

Incident Wave

Transmitted Wave(a) (b)

(c)

Normalized Pressure
+1.5-1.5 0

10 cm

(d) (e)

(f)

Fig. 2 Design and simulation verification of a generalized impedance metasurface. a Illustration of the definition of the generalized impedance
metasurface. Two pressure fields, pA x; y; zð Þ and pB x; y; zð Þ, are placed in the space regions A and B. A regular lattice with a particular internal structure is
positioned between them. Each cell in the lattice is rigidly isolated. The connection between the sound fields and the lattice is supposed to achieve 100%
transmittance to reduce the design complexity. A plane wave with an incident angle θin is split into two plane waves with transmission angles θt1 and θt2
after passing through the metasurface. b Schematic diagram of the generalized impedance unit. c Analytical determination of the required impedance
matrix described by the pseudo-real expression: R11 (gray curve), X11 (orange curve), X12 (green curve), X22 (blue curve). The target impedance
components (circular points) and impedance components of the practical structure are obtained through optimization (square points). d, e Verification of
beam splitting based on generalized impedance theory described with d the three-layer numerical model and e the practical structure. f Mode analysis of
the transmitted field for the three-layer numerical model (blue line) and the practical structure (green line).
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used as optimization variables in a genetic algorithm to search for
a structure with the target impedance characteristics. Detailed
information on parameters and the optimization algorithm are
presented in the Supplementary Note 3.

Validation via simulation and experiment. The three-layer
numerical model can be referred to for verification17 of con-
ventional impedance metasurfaces. Impedance units are
numerically described by using a sequence of three impedance
interfaces so as to predict the operating effect of the physical
structure. However, the impedance matrices obtained from Eq.
(3) are asymmetric, whereas the three-layer numerical model only
describes symmetrical matrices. Considering that the behavior of
generalized impedance units is similar to that of active devices, a
pseudo-real expression is proposed for numerical simulations (see
“Methods” section for details). The impedance matrix derived by
this method possesses symmetric components, as shown in
Fig. 2c. The design target and the optimization result for each
generalized impedance unit are indicated with circle and square
markers, respectively. The simulation of the target is then con-
ducted through the three-layer numerical model as shown in
Fig. 2d. Detailed information regarding the pseudo-real expres-
sion and the three-layer numerical model are given in the
Methods section. A simulation verification of the designed gen-
eralized impedance metasurface is illustrated in Fig. 2e. Beam
splitting consistent with the target design is observed, alongside
some spurious scattering.

A quantitative comparison through mode analysis of the
transmitted field is given in Fig. 2f. Each transmitted plane wave
should theoretically transport 50% of the transmitted intensity,
but for the practical structures, there is still 4% of the intensity
that leaks into other modes. The major reason causing this
phenomenon is the limited geometrical parameter. The 7− 9 and
22− 24 units are merged for the convenience of fabrication, but it
makes w0

o ¼ 3wo > λ0=3. Meanwhile, although the upper port
width is determined as wo < λ0/5, the maximum width of the
lower port is wi= 2wo > λ0/4. In a sense, they actually violate the
deep sub-wavelength requirement (ΦDi

� λ0). Their impedance
matrices may no longer be unique at an arbitrary incident angle.
Also, the tangential dimensions of the quadruple Helmholtz
resonators make it hard to refine the division of generalized
impedance units. More efforts need to be made to design more
efficient unit structures with thinner tangential dimensions, in
order to support the requirements of generalized impedance.

An experimental verification was carried out using 3D printing.
Detailed information on the construction of the experimental
platform shown in Fig. 3a is provided in the Methods Section. A
photograph of one period of the fabricated generalized impedance
metasurface is shown in Fig. 3b. The distributions of the real part
of the sound pressure field in both simulation and experiment are
shown in Fig. 3c–e. All fields have been normalized with reference
to the incident wave. An ideal result is presented in Fig. 3c
through simulation, for comparison purposes. The incident plane
wave is split into two main steered beams after passing through
the metasurface. Consistent with the expectation, the amplitudes
of the steered beams are both about 0.7 Pa and the transmission
angles are ± 13. 5∘. The region corresponding to the measurement
area (white dashed box) is extracted as shown in Fig. 3d for a
comparison with the experimental result of Fig. 3e. Good
consistency can be observed visually. Some parasitic scattering
can be noticed near the center of Fig. 3e. We attribute it to
unsatisfactory fabrication and viscous loss. Due to heating and
moisture deformation of photosensitive resins, the metasurface
does not work exactly as expected. Furthermore, the connection
between adjacent periodic structures is not strictly intact. The

impedance of the generalized units is also affected by viscosity,
resulting in a deviation from theoretical expectations regarding
the interface impedance. Distortion of the sound pressure field
occurs consequently. A detailed discussion of viscous loss,
together with a plot of the radiation pattern, is proposed in the
Supplementary Note 4. It is found that the transmitted field is
generally satisfactory with the formation of two main beams with
transmission angles of about+ 11. 8∘ and− 9. 3∘.

In summary, generalized impedance theory can theoretically
transform any acoustic field. For an illustration of its function-
ality, an additional example of a metasurface producing multiple
split beams is provided in Supplementary Note 5. The amplitude
of each beam can be customized arbitrarily, even with viscosity
considered. The practical design of generalized unit structures
might still become a limitation in the future. Subsequent work
should focus on obtaining solutions for more efficient structures
and miniaturized generalized units.

Conclusions
In this paper, conventional acoustic impedance theory was
extended to a more general form named generalized impedance
theory. The conservation of power flow does not need to be
imposed strictly in the normal direction, but only integral
equivalent. A generalized impedance unit is then proposed that
provides great flexibility to fulfill arbitrary impedance require-
ments. Taking beam splitting as an example, the construction of a
generalized impedance metasurface and the design of the gen-
eralized units was demonstrated. Adopting a quadruple Helm-
holtz resonator together with a trapezoidal connection, the
generalized unit with target impedance matrix was approached by
a real model. The design based on the proposed generalized
impedance theory was validated by simulation and experiment.

The proposed theory has great potential for exploitation in
acoustics. Any number of acoustic fields with different signatures
can be connected, as long as a conservation condition and the
governing equations are obeyed. Generalized impedance theory
also has a wide range of application scenarios, as the shape of the
metasurface is not restricted. Sole limitations are brought about
because of the lateral size of the units. Units that cannot be
designed at the deep sub-wavelength scale weaken the applic-
ability of generalized impedance theory to some extent, although
this is not a drawback of the theory itself. Subsequent work will be
devoted to developing more compact structures for generalized
impedance units.

Methods
Pseudo-real expression for generalized impedance unit. Impe-
dance matrices obtained from Eq. (3) are asymmetric, whereas the
three-layer numerical model can only describe symmetrical
matrices. A pseudo-real expression with a symmetrical impedance
matrix for the generalized impedance unit is developed here.

A generalized impedance unit with A1
A2

> 1 visually resembles an
active device, though it is passive and lossless. Since active devices
encompass the passive and lossless case, the form of an active
impedance matrix can be emulated. It is assumed that there is a
virtual source in the channel, but that the impedance matrix
remains symmetrical. If the virtual source is placed at port 1, the
impedance matrix in Eq. (4) is modified to include a reactive real
term Rj

11:

pin þ pre

ptr

� �����
y¼0

¼ Rj
11 þ {Xj

11 {Xj
12

{Xj
12 {Xj

22

" #
� vin þ vre
� �

vtr

" #�����
y¼0

:

ð12Þ
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Solving for Eq. (12) taking account of Eq. (5) leads to

Rj
11 ¼ Z0

p2i � p2r
� �

1� A1
A2

� �
p2i � 2 cosφrpipr þ p2r

: ð13Þ

Hence the real part is negative (R11 < 0) and the generalized unit
is equivalent to a negative resistance.

For a symmetric impedance matrix, the order of the subscripts
of the impedance components can be directly reversed when
ports are exchanged. But things are different for Eq. (12) when
the generalized impedance unit is observed inversely. The port
area ratio becomes A1

A2
< 1 and the virtual source moves to port 2.

After exchanging subscripts 1 and 2 in Eq. (12), the real
component of Zj

22 becomes

Rj
22 ¼ Z0

p2i � p2r
� �

1� A1
A2

� �
p2t

: ð14Þ

The generalized unit now is resistive since R22 > 0. This means
that active units can emulate generalized units only under the
condition of one-way power flow transfer. The impedance matrix
of Eq. (12) is termed the pseudo-real impedance matrix in
this paper.

Theoretical requirements for beam splitting. For defining a
beam-splitting generalized impedance metasurface, we consider
the incident and transmission pressure fields

pA ¼ pie
�{ φiþk0 sin θinxþk0 cos θiyð Þ; ð15Þ

pB ¼ pt1e
�{ φt1þk0 sin θt1xþk0 cos θt1yð Þ

þ pt2e
�{ φt2þk0 sin θt2xþk0 cos θt2yð Þ;

ð16Þ

with the velocity fields

v!A ¼� pi
Z0

e�{ φinþk0 sin θinxþk0 cos θinyð Þ

´ � sin θinex � cos θiney
� �

;

ð17Þ

v!B ¼� pt1
Z0

e�{ φt1þk0 sin θt1xþk0 cos θt1yð Þ

´ � sin θt1ex � cos θt1ey
� �

� pt2
Z0

e�{ φt2þk0 sin θt2xþk0 cos θt2yð Þ

´ � sin θt2ex � cos θt2ey
� �

:

ð18Þ

For convenience, we still adopt ΓA/B: y= 0. Although ΓA and ΓB

are coincident at first, one of them can later be shifted alongside
the field pA/B, in order to add sufficient space to accommodate the
metasurface. Substituting Eqs. (15)–(18)) into Eq. (2), the power
flow conservation condition can be solved as

p2i
2Z0

cos θin ¼
p2t1
2Z0

cos θt1 þ
p2t2
2Z0

cos θt2: ð19Þ

Air is still adopted as the background medium. The incident angle
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Fig. 3 Experimental verification for generalized impedance metasurface. a Sample and experimental setup. b A period of the fabricated generalized
impedance metasurface. c Simulation results given by metasurface under excitation of finite width. The acoustic field in the measuring area is given through
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is set as θin= 0∘ for convenience. To ensure periodicity, trans-
mission angles are set to θt1=− θt2= 13. 5∘ with the phase dif-
ference φt1/t2− φi= 60∘. The periodicity of the metasurface is
then C ¼ λ0= sin θt1

� � ¼ 42 cm.

Numerical simulation. Numerical simulations were conducted
with the COMSOL Multiphysics Pressure Acoustics module. Air
is described as an inviscid fluid with a sound velocity of c0= 343
m/s and a mass density of ρ0= 1.18 kg/m3. In consideration that
beam splitting is a one-way power transfer, the pseudo-real
expression was adopted for the simulations reported in Fig. 2e.
The impedance relationship in Fig. 2d is given symmetrically as

pAjy¼0

pjDB
k

" #
¼ Rk

11 þ {Xk
11 {Xk

12

{Xk
12 {Xk

22

" #
� n!� v!Ajy¼0

� n!� v!jDB
k

2
4

3
5: ð20Þ

The metasurface is divided equally into 30 three-layer units
whose impedance components are marked as circular points.
Each unit is composed of two waveguides with a length l0= tm/
2= 6.55 cm and three interior impedance boundaries determined
by

Z1 ¼ R11 þ {X11 þ {X12 þ {Z0 cot k0l0
� �

; ð21Þ

Z2 ¼ 2{Z0 cot k0l0
� �� Z2

0

{X12
sin�2 k0l0

� �
; ð22Þ

Z3 ¼ {X22 þ {X12 þ {Z0 cot k0l0
� �

: ð23Þ
An interior sound hard boundary is set between adjacent units for
isolation. The transmitted and incident fields above and below the
metasurface are of equal width to the metasurface period, with a
height of 2.5λ0. The left and right edges of the model are set as
periodic conditions with Floquet periodicity. The k-vector for
Floquet periodicity is set as kF ¼ 0; 0ð Þ Two perfectly matched
layers with a thickness of λ0/2 are connected to the upper and
lower boundaries of the model to avoid reflection. The scaling
factor of perfectly matched layers is set as 2 and the scaling
curvature parameter is set as 1. The mesh is set with a maximum
size of λ0/10 and a minimum size of λ0/40 for convergence and
the discretization is set as Quadratic Lagrange. Additional
refinement of the mesh is performed near the impedance
boundaries. The background pressure field is set as a plane wave
with unit amplitude pi= 1 Pa. The simulation in Fig. 2f uses the
same simulation settings but replaces the three-layer numerical
model with the practical structures.

The simulation in Fig. 3c is set according to the experimental
environment in Fig. 3a. Four periods of the metasurface are
included. A line source with a length of 90 cm, unit amplitude,
and an operating frequency of 3500 Hz is placed in the incident
field at a distance of 15 cm from the metasurface. The transmitted
and incident fields above and below the metasurface are set with a
width of 2 m, and a height of 0.3 m and 5 m, respectively. The
other settings are the same as in Fig. 2.

Experimental apparatus. The signals generated and collected in
the experiment are controlled by a B&K 3160-A-042 control
module connected to a computer. The solid part is composed of a
photosensitive resin which can be regarded as rigid in air. The
experimental setup and fabricated sample are shown in Fig. 3a, b.
Four periods of the metasurface are included and placed in a 2D
single-mode waveguide with a thickness of 2 cm. A line source
with a length of 90 cm and an operating frequency of 3500 Hz is
placed at a distance of 15 cm from the metasurface. The whole
experimental environment is surrounded by foam wedges to
avoid reflection. A rectangular area with a length of 63 cm and a

width of 30 cm, placed 10 cm away from the metasurface, is
selected as the measuring area. There are 63 × 30 evenly dis-
tributed points with a sampling spacing of 1 cm.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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