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1 Some results regarding eigenvalue problems

Consider a square matrix Mij of size n�n, with real or complex values. An
eigenvalue problem, for eigenvalues � and eigenvectors ui, is of the form

Mijuj=�ui (1)

Eigenvalues are roots of the characteristics polynomial: jMij¡��ij j=0.

There are exactly n eigenvalues �(k) and at most n eigenvectors ui
(k) (a priori

complex valued). Eigenvectors are non vanishing and can be normalized
(ui
(k)ui

(k)=1); they can be arranged in a matrix Xik=ui
(k) such that (1) becomes

MijXjk=Xij�jk with �jk=�(k) �jk (2)

If X is invertible, then M=X�X¡1.

If M is real and symmetric, eigenvalues are real and eigenvectors are orthogonal:
X¡1=XT .

In practice, there exist very efficient solvers to obtain eigenvalues and eigenvec-
tors.
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2 Non piezoelectric anisotropic solid

2.1 Christoffel equation
We neglect gravity in the elastodynamic equation, � @2ui

@t2
= @Tij

@xj
. Together with

Hooke's law, Tij=cijkl
@ul
@xk

, we have the anisotropic wave equation:

�
@2ui
@t2

=cijkl
@2ul

@xj @xk
(3)

For harmonic plane waves of the form ui(t;r) = ûi exp(i!(t¡ sn :r)), the
Christoffel equation is obtained

� ûi=s2 cijklnjnk ûl (4)

Slowness s(n) =k(n) /! (in s/m) is a function of the propagation direction as
measured by unit vector n. A quantity of the type c/�

p
is homogeneous to a

velocity.
Introducing the symmetric Christoffel tensor, ¡il = cijkl nj nk, an eigenvalue
problem is obtained:

� ûi=s2¡il ûl (5)

Warning: ¡il is a function of direction n.
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2.2 Isotropic case
In the isotropic case, wave properties are invariant with the propagation direc-
tion. Consider for instance x1 as the propagation direction:

¡=

0BB@ c11 0 0
0 c44 0
0 0 c44

1CCAwith c44=
c11¡c12

2
(6)

The matrix is diagonal; there is one simple eigenvalue and one double eigenvalue
(so there are 3 eigenvalues in total).

� The wave with velocity VL = c11 /�
p

is a longitudinal wave, since the
eigenvector is û=(1;0;0)T .

� Waves with velocity VS = c44 /�
p

are shear waves: two eigenvectors are
û=(0;1;0)T and û=(0;0;1)T .

� Since c12>0, VS <VL / 2
p

. The longitudinal velocity is always larger than
the shear velocity.

� Those properties remain true for any solution to the wave equation (this
can be seen considering the plane wave spectrum).

4



2.3 Examples for a cubic crystal

Considering the shape of the elastic tensor for cubic crystals:

¡=

0BB@ c11n1
2+c44(n22+n32) (c12+c44)n1n2 (c12+c44)n1n3

: c11n2
2+c44(n12+n32) (c12+c44)n2n3

: : c11n3
2+c44(n12+n22)

1CCA
Propagation along [1,0,0] ¡ ¡ is diagonal, with one simple eigenvalue, c11,
and one double eigenvalue, c44. There are thus one longitudinal wave with
velocity c11 /�

p
and two shear waves with velocity c44 /�

p
.

Propagation along [1,1,0] ¡ There are 3 distinct eigenvalues: c44,
1

2
(c11¡c12) and 1

2
(c11+c12) +c44. There are thus one pure shear wave polarized

along x3, with velocity c44 /�
p

; one quasi-shear wave with velocity
(c11¡c12) /2�

p
; one quasi-longitudinal wave with velocity

(2c44+c11+c12) /2�
p

.
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2.4 Slowness, phase velocity and energy (group) velocity

For harmonic plane waves:

� Kinetic energy density: ec=
1

2
�!2 ûi ûi.

� Potential energy density: ep =
1

2
cijkl Sij Skl =

1

2
!2 s2 ¡il ûi ûl. From

Cristoffel's equation, it follows that ep =ec: kinetic and potential energies
are equal for harmonic plane waves.

� Total energy density: e=ec+ep=�!2 ûi ûi.

� Poynting's vector

Pi=¡Tij @uj@t =¡cijkl
@uk
@xl

@uj
@t
=s!2 cijkl ûj ûknl

� Energy velocity is by definition Vie=Pi /e
An important relation linking phase velocity and energy velocity:
Vi
eni=v.

� Furthermore, the equality of energy velocity and spatial group velocity
can be demonstrated.
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3 Characteristic surfaces

3.1 Slowness surface

By definition, the slowness surface is the locus of vector s=sn as a function of
n (it is a spatial representation of the dispersion relation k(!;n) /!). The
energy velocity (or spatial group velocity is orthogonal to the slowness surface.

There always exist 3 slowness surfaces: one quasi-L and 2 quasi-S. They are sym-
metric with respect to the origin (they are revolution surfaces).
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3.2 Wave surface

By definition, the wave surface is the locus of the energy vector V e as a function
of n. Physically, it is the surface reached after a unit time by the wave emitted
from a point source at frequency !.

It is also an equiphase surface: the phase of the wave is a constant at the surface.
n is orthogonal to the wave surface; phasefronts are tangent to the wave surface.
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3.3 Example: silicon (Si, cubic m3m)
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3.4 Example: rutile (TiO2, tetragonal 4/mmm)
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3.5 Example: sapphire (Al2O3, trigonal 3�m)
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3.6 Attenuation
� Elastic wave losses in solids are due to thermal conduction, to interaction

with phonons (thermal fluctuations of the lattice), to diffusion on defects
of the crystal, and so on. They are approximately proportional to !2.

� Losses are larger in metals compared to insulators; in polycristals com-
pared to single crystals.
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4 Piezoelectric anisotropic solids

4.1 Stiffened elastic constants for harmonic plane waves
The elastodynamic equation and the Poisson equation

¡i!s T̂ijnj=¡�!2 ûi and D̂jnj=0 (7)

with the constitutive equations

T̂ij=¡i!s (cijklnk ûl+ekijnk �̂) and D̂j=¡i!s (ejklnk ûl¡"jknk �̂) (8)

lead to

� ûi=s2 (¡il ûl+i �̂) and l ûl=" �̂ with i=ekijnjnk and "="jknjnk (9)

Eliminating the electric potential leads to Christoffel's equation with stiffened
constants

� ûi=s2¡�il ûl with ¡�il=¡il+
i l
"

(10)

This equation is a useful means to obtain the acoustic part of harmonic plane
waves in piezoelectric media.
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4.2 Electromechanical coupling
Consider for instance propagation along [010] (axis x2) in lithium niobate
(LiNbO3, trigonal 3m)

¡=

0BB@ c66 0 0
: c11 ¡c14
: : c44

1CCA with c66=
c11¡c12

2

There is a shear wave with velocity c66 /�
p

and a QS wave and a QL wave with

velocities 2�v2=¡22+¡33� (¡22¡¡33)2+4¡232
q

.
Moreover, we find

1=0;2=e22 ;3=e15 ;"="11

with ¡�11=¡11 ; ¡�22=¡22+22 /"; ¡�23=¡23+2 3 /"; ¡�33=¡33+32 /".
Piezoelectricity leads to a variation of the QS and QL velocities only. By defini-
tion, the electromechanical coupling is defined by the dimensionless quotient

K2=2 �v
v

(11)
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4.3 ZnO (hexagonal 6mm)
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4.4 Quartz (trigonal 32)
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4.5 LiNbO3 (trigonal 3m)
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5 Reflection and refraction

5.1 General properties

� The polarization of waves in an ideal fluid medium has only an acoustic
longitudinal component.

� The polarization of elastic waves in a solid has 3 acoustic components, 1
QL and 2 QS waves.

� The polarization of elastic waves in piezoelectric media has 4 components,
the combination of 3 elastic degrees of freedom (ui) and 1 electrical degree
of freedom (�). There are 1 QL, 2 QS, and 1 quasi-electrostatic (QE)
waves.

� An incident wave with a pure polarization can give rise to 4 reflected
waves and 4 transmitted waves in a piezoelectric medium (1 and 1 in a
fluid; 3 and 3 in an elastic solid).

� The frequency and the projection of the wavevector onto the interface are
conserved.
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5.2 Example: interface between silicon - silica
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5.3 Generalized displacements and constraints

We define generalized constraints by T�ij =Tij for i=1;2;3 and T�4j =Dj for i=4.
Similarly, we define generalized displacements by u�i=ui for i=1;2;3 and u�4=�.
We can thus write the constitutive relations as

T�ij= c�ijkl
@u�l
@xk

with c�ijkl=cijkl; c�ijk4=+ekij ; c�4jkl=ejkl; c�4jk4=¡"jk (12)

and the elastodynamic and the Poisson equations

@T�ij
@xj

= ��ij
@2u�j
@t2

with ��=�

0BBBBBB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1CCCCCCA (13)

As a result, pseudo-mechanical equations similar to elastic solids are obtained. In
particular, the piezoelectric Christoffel equation can be written
��ij u�j =s2 (c�ijkl nj nk) u�l, which has the form of a generalized eigenvalue problem
(of the type Ax=�Bx).

20



5.4 Eigenvalue equation
Let us consider a reflection-transmission problem on a plane interface normal to
x1. The slownesses s2 and s3 are conserved. What are the possible walues for s1?
Relations (12) et (13) can be arranged as 

¡ c�i12l s2¡ c�i13l s3 �ilP
j;k=2
3 c�ijkl sj sk+ ��il 0

!�
u�l
�l1

�
=s1

�
ci11l 0

c�i21l s2+ c�i31l s3 �il

��
u�l
�l1

�
(14)

with �ij=Tij /(¡i!).
This is a generalized eigenvalue problem, of the form

Ah=s1Bh (15)

in which matrices A and B depend on s2 and s3 (and on the constants of the
medium). Vector h has 8 components, the 4 u�l and the 4 �l1.

� There are 8 eigenvalues, corresponding to the 8 possible values of s1.
These eigenvalues belong in pairs to each of the 4 slowness surfaces (pos-
sibly to their imaginary branches). Those pairs are either real of opposite
signs or complex conjugate.

� The 8 eigenvectors are called partial waves. There are 4 reflected and 4
transmitted partial waves.
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5.5 Example: partial waves for rutile
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5.6 Example: partial waves of LiNbO3
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5.7 Numerical solution method

1. Solve the eigenvalue equation (15) in each media 1 and 2, leading for each
to 8 eigenvalues (s1r

(1) et s1r
(2)) and 8 eigenvectors or polarizations (hr

(1) and
hr
(2)).

2. The general solution in each medium is a superposition of 8 partial waves

h(t;x) =
X
r=1

8

arhr
(1ou2) exp(i! (t¡s1r

(1ou2)x1¡s2x2¡s3x3)) (16)

3. Partial waves (PW) in incident medium 1 are separated into 4 incidents
PW (their amplitudes are supposedly known) and into 4 reflected PW.
Partial waves in medium 2 are separated into 4 transmitted PW and 4
incident PW (their amplitudes vanish).

4. The 8 components of h are continuous at the interface, leading to 8 linear
equations for 8 unknowns (the amplitudes of the reflected and trasnmitted
PW). The problem is thus completely determined.
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5.8 Example: interface silicon - silica, and reciprocally

Pure shear incident wave (S)
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5.9 Example: interface duralumin - water, and recipro-
cally

L incident wave in duralumin Reflection coefficient rLL in water
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