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1 Some results regarding eigenvalue problems

Consider a square matrix M;; of size n xn, with real or complex values. An
eigenvalue problem, for eigenvalues A and eigenvectors wu;, is of the form

Mijuj :)\ui (1)

Eigenvalues are roots of the characteristics polynomial: |M;; —\d;;| =0.
There are exactly n eigenvalues A*) and at most n eigenvectors ugk) (a priori
complex valued). Eigenvectors are non vanishing and can be normalized

(ugk) ugk) =1); they can be arranged in a matrix X :uz(-k) such that (1) becomes

Minjk: :Xij Ajk: with Ajk: :)\(k) 5]’]@ (2)

If X is invertible, then M =XAX L

If M is real and symmetric, eigenvalues are real and eigenvectors are orthogonal:
X-1=X7.

In practice, there exist very efficient solvers to obtain eigenvalues and eigenvec-
tors.



2 Non piezoelectric anisotropic solid

2.1 Christoffel equation

2., ..
We neglect gravity in the elastodynamic equation, p % = %7;7 . Together with
J
Hooke’s law, T;; = c; jii %, we have the anisotropic wave equation:
82’&@' 82’&[
— =Gk —————— 3
Ptz ~ I n Oy (3)
For harmonic plane waves of the form w;(t,r) = 4; exp(iw(t—sn.r)), the

Christoffel equation is obtained
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P Ui = 8% Cj k1 T TUE Uy (4)

Slowness s(n) =k(n) /w (in s/m) is a function of the propagation direction as

measured by unit vector n. A quantity of the type \/c¢/p is homogeneous to a
velocity.

Introducing the symmetric Christoffel tensor, I, =c;k n; ng, an eigenvalue
problem is obtained:

pﬁizsz Filr&fl (5)

Warning: I; is a function of direction n.



2.2 Isotropic case

In the isotropic case, wave properties are invariant with the propagation direc-
tion. Consider for instance x; as the propagation direction:

/Cll 0 0 \ C11 —C
F:k 0 c44 O }WithC44= 112 12 (6)

0 0 C44

The matrix is diagonal; there is one simple eigenvalue and one double eigenvalue
(so there are 3 eigenvalues in total).

e The wave with velocity Vz = +/c11/p is a longitudinal wave, since the
eigenvector is 4= (1,0,0)7.

e Waves with velocity Vg = \/c44 /p are shear waves: two eigenvectors are
@ =(0,1,0)T and 4= (0,0,1)7.

e Since ¢12 >0, Vs <V, / /2. The longitudinal velocity is always larger than
the shear velocity.

e Those properties remain true for any solution to the wave equation (this
can be seen considering the plane wave spectrum).



2.3 Examples for a cubic crystal

Considering the shape of the elastic tensor for cubic crystals:

/ c11ng +C44(n% +n§) (12 +cC44) N1 N2 (c12+c44) N1 N3 \
I'= : C11 n% —|—044(n% -I-TL%) (C12 +C44) N2 N3
1113 +C44(n% —|—n%)

Propagation along [1,0,0] — I is diagonal, with one simple eigenvalue, ci1,
and one double eigenvalue, c44. There are thus one longitudinal wave with

velocity v/c11 /p and two shear waves with velocity \/cq44 / p.

Propagation along [1,1,0] — There are 3 distinct eigenvalues: cyq4,
% (c11 —c12) and % (c11 4+ c12) +ca4. There are thus one pure shear wave polarized
along w3, with velocity +/csa/p; one quasi-shear wave with velocity

\/ (c11—c12) /2 p; one quasi-longitudinal wave with velocity
\/(2644 +C11 —I—Clg) /2 p-




2.4 Slowness, phase velocity and energy (group) velocity

For harmonic plane waves:

.. . 1 AR
Kinetic energy density: e.= 5 pw? ;U

Potential energy density: e, = % Cijkl Sij Skl = % w? s? T 4; 4;. From
Cristoftel’s equation, it follows that e, =e.: kinetic and potential energies

are equal for harmonic plane waves.
Total energy density: e=e.+e,= pw? 1 ;.

Poynting’s vector

ou our Ouj A A
Pi:_ﬂj%:_cz’jklaig;:%zsw2 Cijkl Wj Uk T
Energy velocity is by definition V;*=PF; /e
An important relation linking phase velocity and energy velocity:
Vien;, =wv.

Furthermore, the equality of energy velocity and spatial group velocity
can be demonstrated.



3 Characteristic surfaces

3.1 Slowness surface

By definition, the slowness surface is the locus of vector s=sn as a function of
n (it is a spatial representation of the dispersion relation k(w,n) /w). The
energy velocity (or spatial group velocity is orthogonal to the slowness surface.

There always exist 3 slowness surfaces: one quasi-LL and 2 quasi-S. They are sym-
metric with respect to the origin (they are revolution surfaces).
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3.2 Wave surface

By definition, the wave surface is the locus of the energy vector V¢ as a function
of n. Physically, it is the surface reached after a unit time by the wave emitted
from a point source at frequency w.

It is also an equiphase surface: the phase of the wave is a constant at the surface.
n is orthogonal to the wave surface; phasefronts are tangent to the wave surface.
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3.3

Sy (10'4 s/m)

Example: silicon (Si, cubic m3m)
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3.4 Example: rutile (TiO,, tetragonal 4 /mmm)
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S3 (10‘4 s/m)

Example: sapphire (Al,03, trigonal 3m)
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3.6 Attenuation

Elastic wave losses in solids are due to thermal conduction, to interaction

[
with phonons (thermal fluctuations of the lattice), to diffusion on defects
of the crystal, and so on. They are approximately proportional to w?.
e Losses are larger in metals compared to insulators; in polycristals com-
pared to single crystals.
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4 Piezoelectric anisotropic solids

4.1 Stiffened elastic constants for harmonic plane waves

The elastodynamic equation and the Poisson equation
—iwsﬁjnj:—prm and ﬁjnj:O (7)

with the constitutive equations

Tij ——1ws (Cz'jk;l nig ﬁl +6k7;j ng §£> and lA)j ——1lws (ejkl ng ﬁl — &5k Nk (ﬁ) (8)
lead to
pt; =52 (T Gy + gg) and ; f&l:e:qg with v; =egijnjne and e=e;En;ng (9)

Eliminating the electric potential leads to Christoffel’s equation with stiffened
constants

pi; =s2Ty 4, with Ty =Ty + %’8 B (10)

This equation is a useful means to obtain the acoustic part of harmonic plane
waves in piezoelectric media.

13



4.2 Electromechanical coupling

Consider for instance propagation along [010] (axis x2) in lithium niobate
(LiNbOg, trigonal 3m)

/ C66 0 0 i1 —c
I'= . €11 —cC14 | with cgg= 1 5 12
. . Cq4

There is a shear wave with velocity /cgs / p and a QS wave and a QL wave with
velocities 2 pv? =Ty + 133+ \/(Fgg —T33)2 +4T%;.

Moreover, we find

71 =0;7v2=e22;7v3=€15;E=¢€11

with Tyq =T11; e =T +15 /e; Tas =T+ 7273 /e; 33 =T33 +73 / e.
Piezoelectricity leads to a variation of the QS and QL velocities only. By defini-
tion, the electromechanical coupling is defined by the dimensionless quotient

KQ:Z% (11)
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4.3 ZnO (hexagonal 6mm)
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4.4 Quartz (trigonal 32)
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4.5

S3 (10'4 s/m)

LiNbOQOj (trigonal 3m)
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5 Reflection and refraction

5.1 General properties

The polarization of waves in an ideal fluid medium has only an acoustic
longitudinal component.

The polarization of elastic waves in a solid has 3 acoustic components, 1
QL and 2 QS waves.

The polarization of elastic waves in piezoelectric media has 4 components,
the combination of 3 elastic degrees of freedom (u;) and 1 electrical degree

of freedom (¢). There are 1 QL, 2 QS, and 1 quasi-electrostatic (QE)
waves.

An incident wave with a pure polarization can give rise to 4 reflected
waves and 4 transmitted waves in a piezoelectric medium (1 and 1 in a
fluid; 3 and 3 in an elastic solid).

The frequency and the projection of the wavevector onto the interface are
conserved.
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5.2 Example: interface between silicon - silica
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5.3 Generalized displacements and constraints

We define generalized constraints by T;; =T;; for i=1,2,3 and Ty; = D; for i=4.
Similarly, we define generalized displacements by u; =u; for 1=1,2,3 and u4 = ¢.
We can thus write the constitutive relations as

= ou; . W E— _ _ _

1= Cijkl T with C;jk1 =¢Cijri, Cijka =+ €kij, Cajkl =€kl Cajka = —Ejk (12)

and the elastodynamic and the Poisson equations

aTz’j o 82’&]’ . _
aTj—PwW with p=p

(13)

S = O O
o O O O

o OO =
OO =, O

\ /

As a result, pseudo-mechanical equations similar to elastic solids are obtained. In
particular, the piezoelectric  Christoffel equation can be  written
Pij U — g2 (Cijk1 njng) ;, which has the form of a generalized eigenvalue problem
(of the type Ax=)\Bx).
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5.4 Eigenvalue equation

Let us consider a reflection-transmission problem on a plane interface normal to
x1. The slownesses so and s3 are conserved. What are the possible walues for s17
Relations (12) et (13) can be arranged as

gci12l32—ci13l33 04l ( i )281< Cil1l 0 )( i ) (14)
> k=2 CijkiSjSk+ pir 0O i1 Ci21182+ ;31183 i J\ Ti1

with Tij — ij/(—iW).

This is a generalized eigenvalue problem, of the form

in which matrices A and B depend on sy and s3 (and on the constants of the
medium). Vector h has 8 components, the 4 u; and the 4 7.

e There are 8 eigenvalues, corresponding to the 8 possible values of s;.
These eigenvalues belong in pairs to each of the 4 slowness surfaces (pos-
sibly to their imaginary branches). Those pairs are either real of opposite
signs or complex conjugate.

e The 8 eigenvectors are called partial waves. There are 4 reflected and 4
transmitted partial waves.
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5.5 Example: partial waves for rutile
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5.6 Example: partial waves of LiNbOQOg
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5.7 Numerical solution method

L.

Solve the eigenvalue equation (15) in each media 1 and 2, leading for each

to 8 eigenvalues (sﬁ) et sﬁ)) and 8 eigenvectors or polarizations (hfﬂl) and

]1(2)).

The general solution in each medium is a superposition of 8 partial waves

8
h(t,z) = Z a, B exp(iw (t— 8" 21 — s9 w0 — 53.23)) (16)

r=1

. Partial waves (PW) in incident medium 1 are separated into 4 incidents

PW (their amplitudes are supposedly known) and into 4 reflected PW.
Partial waves in medium 2 are separated into 4 transmitted PW and 4
incident PW (their amplitudes vanish).

The 8 components of h are continuous at the interface, leading to 8 linear
equations for 8 unknowns (the amplitudes of the reflected and trasnmitted
PW). The problem is thus completely determined.
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5.8 Example: interface silicon - silica, and reciprocally
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5.9 Example: interface duralumin - water, and recipro-

cally
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