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1 Acoustic waveguide

Consider a hollow tube filled with air, like an organ pipe for instance. We assume the tube is very rigid, so
that acoustic waves in air hit a hard wall that will not move, reflecting them completely. We want to obtain
the dispersion of the acoustic waves guided inside the tube and to look at the modal shapes.

1. Study and understand script acoustic wg.edp. What equation is implemented? What are the material
constants defining the air? What are the boundary conditions?

2. Run the script and plot the dispersion relation. An example wg.plt gnuplot script is given to plot Figure
1. Comment the different modes that are obtained; are some of them degenerate? How does the dispersion
depend on the diameter of the tube?

3. Modify the ff++ script in order to plot the modal shapes for kz equal one third of kmax. Can you comment
on the symmetries of the modes with respect to the symmetry of the waveguide?

4. (If you have ample time only) Modify script acoustic wg.edp in order to consider a different, arbitrary,
cross-section of the waveguide, for instance a triangle or a rectangle. Do all modes change? Why?

Figure 1: Dispersion relation of an acoustic waveguide.

2 Complex dispersion of the acoustic waveguide

We consider again the same waveguide as before. We now want to obtain the dispersion relation in the form
kz(ω), i.e. we fix the frequency and solve for the possible spatial wavenumbers.

1



Figure 2: Complex dispersion relation of an acoustic waveguide.

1. Study and understand script acoustic wg complex.edp. Which equation is now solved and how is it
different from the previous one?

2. Run the script and plot the complex dispersion relation. An example wg complex.plt gnuplot script is
given to plot Figure 2. Do you understand the physical meaning of the purely imaginary branches that
now appear? (Note: they are evanescent guided waves.)

3 Silica microwire

Maxwell’s equations in dielectric media lead to the following vector wave equation for the magnetic field vector
H
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with ε the relative dielectric constant and c the speed of light in a vacuum. Because of invariance of the structure
along axis x3, solutions can be written as H̄(x1, x2) exp(ı(ωt− kx3)). Hence the unknown becomes the modal
shape H̄(x1, x2) defined in two-dimensional transverse space. As a result, it is enough the represent the solution
on a two-dimensional mesh.

A weak form of the guided-wave optical equation is∫
Ω
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This expression is obtained by keeping as unknowns only the first two components of H, i.e. H = (H1, H2),
since the third component is set by the auxiliary Maxwell equation ∇ ·H = 0. Here we use the transverse
divergence div(H̄) = H̄1,1 + H̄2,2 and transverse rotational rot(H̄) = H̄2,1− H̄1,2, H̄ ′

n is the normal component
of H̄ ′ at the boundary δΩ, and
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]
denotes the jump of the permittivity. Note that the boundary integral

appears because of the non continuity of the electric field at the interface between different dielectric media.

1. We consider a silica microwire standing in air or in a vacuum, with a diameter of 1 µm. Study and
understand script fiber silica.edp. What is really different compared to the acoustic case, except for
the equations?

2. Run the script and plot the dispersion relation. An example fiber.plt gnuplot script is given to plot
Figure 3. What are the light and silica lines, and what are they useful for?

3. Repeat the same computation but for a silicon microwire. What changes?

4. Obtain the modal shapes for some value of k3 you can choose.
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Figure 3: Dispersion relation of a silica microwire.

4 Nanoscale planar waveguide [problem]

We want to obtain the dispersion of the nanoscale planar waveguide whose mesh is depicted in Figure 4. A thin
wire of silicon (width 800 nm, height 350 nm) sits on a silica substrate, and air is on top. Obtain the dispersion
relation, inspiring from the previous section.

Figure 4: Dispersion relation of a nanoscale planar waveguide.
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