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Wave propagation in one-dimensional fluid-saturated porous metamaterials
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Fluid-saturated porous metamaterials described following Biot’s theory support two longitudinal elastic
waves. The phase velocity and attenuation of these waves depend nonlinearly on porosity and viscosity of the
fluid. Furthermore, when two fluid-saturated porous metamaterials are arranged to form a periodic composite,
different band gaps are opened for the two longitudinal waves and these couple to form anticrossings in the
dispersion relation. The complex band structure of one-dimensional composites is derived and compared with
numerical transmission through a finite sample obtained by the finite element method. It is found that the
anticrossings disappear rapidly as viscosity increases, while attenuation band gaps become dominated by the
fastest of the two longitudinal waves. Increasing porosity further leads to wider and lower-frequency band gaps.
These results are relevant to practical applications of fluid-saturated porous metamaterials, e.g., to engineered
soils.
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I. INTRODUCTION

Wave propagation in geological materials or ground [1] has
received considerable attention because of its practical impor-
tance in various fields such as earthquake engineering, soil
dynamics, geophysics, hydrology, etc. Most existing studies
deal with ground vibrations caused by mechanical operation
or seismic waves [2]. A great deal of research has already been
conducted on constructing wave barriers operating between
the vibration source and the protected structures [3]. More
recently, periodic wave barriers, inspired by the concept of
phononic crystals (PCs), have attracted more and more at-
tention [4]. PCs are spatially periodic composites composed
of different materials [5]. They can exhibit frequency band
gaps in their transmission spectrum, where the propagation of
acoustic or elastic waves is fully prohibited. The PC concept
was proposed in 1993, although there had been many works
about wave propagation in periodic media and structures
before [6]. In 2000, Liu et al. [7] further introduced the
concept of local resonance inducing complete band gaps at
low frequencies and providing a negative dynamic effective-
mass density inside resonant band gaps [8]. Locally reso-
nant PCs are also termed acoustic or elastic metamaterials
[9], since their band gaps are not significantly dependent
on periodicity. PCs and metamaterials provide new ways
to manipulate acoustic and elastic waves. The ambition of
band-gap engineering [10] is to control wave propagation.

A direct application of band-gap engineering is noise isola-
tion and vibration reduction. Niousha and Motosaka [4] inves-
tigated the effects of periodic wave barriers on the reduction
of ground vibration. Jia and Shi [11] studied the influence of
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physical and geometrical parameters of periodic foundation
on the band gaps. Malcolm and Nicholls [12] examined the
scattering of periodic multilayered media. Bao et al. [13]
discussed the dynamic response of a seven-storey frame struc-
ture with periodic foundations. Kim and Das [14] proposed
an earthquake-resistant design by constructing a shell-type
waveguide composed of many Helmholtz resonators. Shi
and Huang [15] described the feasibility of reducing seismic
waves by locally resonant metamaterials. Mitchell et al. [16]
proposed a metaconcrete composed of designed aggregates to
enhance dynamic performance. Colombi et al. [17] designed
a seismic metawedge to convert destructive Rayleigh seismic
waves into harmless bulk shear waves. Colquitt et al. [18]
carefully analyzed the canonical problem of an array of sub-
wavelength resonators placed on either a thin elastic plate or
an elastic half-space. On the experimental side, a full-scale
experiment aiming at researching the interaction of structured
soil with seismic waves was realized by Brûlé et al. [19]. Yan
et al. [20] conducted field experiments of a scaled periodic
foundation. Colombi et al. [21] demonstrated experimentally
that a Rayleigh wave experiences strong attenuation when
interacting with a forest acting as a locally resonant metama-
terial.

Although numerous theoretical studies have explored the
properties of PCs and metamaterials, they often consider soil
as an elastic constituent, within which waves furthermore
often propagate without attenuation. Some studies of PCs or
metamaterials composed of fluid-saturated porous (FSP) me-
dia have emphasized their specific acoustic properties [22–25]
and have also discussed wave attenuation in FSP media [26].
Actually, wave propagation in FSP media has attracted signif-
icant attention for a long time [27–30]. The related theory is
of great significance in the fields of geophysical exploration,
seismic engineering, or geodynamics. Biot [31,32] formulated
the basic equations for isotropic FSP media. It follows from
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this theory that two longitudinal and two transverse waves ex-
ist. Plona [33] and Dutta [34] later proved this fact: the speed
of the slow compressional wave is smaller than the speed of
sound in the fluid. Wave propagation in FSP media has since
then been investigated from different viewpoints and by using
different methods [35–39]. The effect on the propagation of
elastic waves of the material parameters of the fluid, the solid
skeleton, and of their combination was discussed. Slowness
surfaces [38] and wavefronts [40] were calculated by using
plane-wave theory or characteristic analysis. We note that
previous investigations of PCs involving FSP media [22–26]
have not specifically considered the possible interference of
the two longitudinal waves.

In this paper, we conduct a detailed analysis of the dy-
namical behavior of wave propagation in one-dimensional
fluid-saturated porous metamaterials (FSPMs). Of particular
interest is the mutual interaction of the two longitudinal acous-
tic waves in FSP media and how they attenuate differently in
FSPMs. The basic equations are first summarized in Sec. II.
Harmonic Bloch wave propagation and its finite element
implementation are discussed in Sec. III. These equations are
used in Sec. IV to obtain dispersion relations. To start with,
we study wave propagation in homogeneous FSP media. We
then consider the effect of viscosity and porosity on the com-
plex band structure and the frequency response function of
one-dimensional FSPMs. Only normal-incidence longitudinal
waves are considered in this paper. Extensions of our approach
to general incidence and more periodicities are suggested in
the conclusion.

II. BASIC EQUATIONS

Following Biot [31,32], the constitutive equations for wave
propagation in an isotropic FSP media can be written

τxx = (2B1 + B2)exx + B2eyy + B2ezz + B3ξ,

τyy = B2exx + (2B1 + B2)eyy + B2ezz + B3ξ,

τzz = B2exx + B2eyy + (2B1 + B2)ezz + B3ξ,

τyz = 2B1eyz,

τzx = 2B1ezx,

τxy = 2B1exy,

p = B3exx + B3eyy + B3ezz + B4ξ . (1)

In these expressions, τi j and ei j (i, j = x, y, z) are the stress
and strain tensors of the solid skeleton, p is the pore fluid
pressure, and ξ is the increment of the fluid content per
unit volume. The displacement components of the skeleton
and of the fluid are ui and Ui. All these quantities are func-
tions of position. The strain ei j and the increment ξ can be
expressed as

ei j = 1
2 (ui, j + u j,i ), ξ = −wi,i, (2)

where wi = φ(Ui − ui ) and φ is the porosity of the medium
(a number between 0 and 1). The notation ui, j = ∂ui

∂x j
is used

for brevity where applicable. The material coefficients B1 to
B4 are spatially periodic functions determined by the material

FIG. 1. Sketch of the 1D fluid-saturated porous metamaterial
with a periodic alternation of two layers. The lattice constant is
�. Periodicity is along the x direction; the other two directions are
infinite.

properties of the solid skeleton and fluid [41]:

B1 = C44, B2 = C12 + B2
3/B4,

B3 = −
[

1 − 1

3Ks
(C11 + 2C12)

]
B4,

B4 =
[

1 − φ

Ks
+ φ

Kf
− 1

3K2
s

(C11 + 2C12)

]−1

,

where the Ci j are the elastic constants of the solid skeleton,
and Ks and Kf are the bulk modulus of the solid skeleton and
the pore fluid, respectively.

The equations of motion can be written in Cartesian coor-
dinates as

τi j, j = ρüi + ρ f ẅi, −p,i = ρ f üi + miiẅi + riiẇi, (3)

where ρ = (1 − φ)ρs + φρ f , ρ f , and ρs are the mass densities
of the FSP media, the solid skeleton, and the pore fluid,
respectively. mii and rii are coefficients introduced by Biot.
For isotropic FSP materials, we have m11 = m22 = m33 = m
and r11 = r22 = r33 = r.

Without loss of generality, we limit our discussion to longi-
tudinal motion restricted to the x direction. For illustration, we
consider an inhomogeneous FSPM with a periodic alternation
of layers, as shown in Fig. 1. Combining the above equations,
we have

∂

∂x

[
(2B1 + B2)

∂ux

∂x

]
− ∂

∂x

(
B3

∂wx

∂x

)
= ρüx + ρ f ẅx,

− ∂

∂x

(
B3

∂ux

∂x

)
+ ∂

∂x

(
B4

∂wx

∂x

)
= ρ f üx + mẅx + rẇx

(4)

for longitudinal wave motion. Thus, the two independent
variables are chosen as (ux,wx ). If at the interface between
two FSP media longitudinal displacements are considered
continuous, the open pore condition, then the natural bound-
ary condition is the continuity of both normal stresses (2B1 +
B2)ux,x − B3wx,x and −B3ux,x + B4wx,x.
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III. HARMONIC WAVE PROPAGATION

A. Harmonic waves

For harmonic waves at angular frequency ω, longitudinal
displacements can be written

[ux,wx] = [ūx, w̄x]e−iωt , (5)

where t is the time variable, and where ūx and w̄x are functions
of position x otherwise independent of time. Here, we note
U = (ūx, w̄x ). Substituting Eq. (5) into Eq. (4), we get

∂

∂x

(
A0

∂

∂x
U

)
= −ρω2M0U, (6)

with

A0 =
[

(2B1 + B2) −B3

−B3 B4

]
, M0 =

[
ρ ρ f

ρ f m1

]
,

and m1 = m + ir/ω.
The Biot coefficients m and r can be written as [28,36]

m = Re[α(ω)]ρ f /φ, r = Re[η/K (ω)], (7)

where η is the viscosity of the fluid, and α and K are the
dynamic tortuosity and permeability, respectively, with the
relation

α(ω) = iηφ/[K (ω)ωρ f ]. (8)

For porous media with pores of simple form, the dynamic
permeability can be expressed approximately as [42]

K (ω) = K (0)

([
1 − 4iα2(∞)K2(0)ωρ f

ηd2φ2

]1/2

− iα(∞)K (0)ωρ f

ηφ

)−1

, (9)

where d is the characteristic length of the pores. When the
pores are a set of nonintersecting tubes, we further have

8α(∞)K (0)/(φd2) = 1. (10)

B. Bloch waves

According to Bloch’s theorem, the displacement field for
propagation eigenmodes of a periodic medium is the product
of a periodic function times a plane-wave term. It thus can be
written

U(x) = u(x)eikx, (11)

where u = (ax, bx ), with ax and bx being the periodic am-
plitudes as a function of position, and k being the Bloch
wave number whose real part can be restricted to the first
Brillouin zone of the reciprocal lattice. Substituting Eq. (11)
into Eq. (6), we get

∂

∂x

(
A0

∂

∂x
u
)

+ 2ikA0
∂

∂x
u + (−k2A0 + ω2M0)u = 0 (12)

for longitudinal wave motion.
In the present paper, numerical calculations are conducted

with the finite element method. The layered system is treated
as a periodic and inhomogeneous medium, whose material
parameters are spatially periodic functions. The pores are

chosen to be open at the interfaces, since the appearance of the
P2 (slow) wave is restricted by the sealing of the pores at the
interfaces [43]. The field variables (ax, bx ) between different
layers are set as continuous [44,45]. We write the coefficient
form of the resulting equation, suitable for use with the partial
differential equation (PDE) module of Comsol Multiphysics,
for instance [46], as

λ2A1u − ∇ · (A0 : ∇u + A2u) + A3∇u + A4u = 0, (13)

where λ = ik and the coefficient matrices are obtained from
Eq. (12) as

A1 = −A0, A2 = −A3 = λA0, A4 = −ω2M0. (14)

Since the dynamic material parameters of FSPMs are fre-
quency dependent, complex band structures [46,47] are the
first choice for the analysis. For this purpose, we set the eigen-
value as λ = ik. Complex band structures are then obtained by
sweeping ω in the frequency range of interest.

In particular, if the pore fluid is lossless, i.e., η = 0, we
have m = α(∞)ρ f /φ nondispersive and r = 0 identically.
Then m1 = m and Eqs. (6) and (12) do not involve frequency-
dependent coefficients. In this case, we may solve Eq. (12) for
the real band structure by choosing the eigenvalue as λ = iω.
The coefficient matrices of Eq. (14) are in this case

A1 = M0, A2 = −A3 = ikA0, A4 = k2A0. (15)

The real band structure is then obtained by sweeping k inside
the first Brillouin zone of the one-dimensional (1D) periodic
metamaterial.

C. Homogeneous fluid-saturated porous medium

For homogeneous FSP media, the amplitudes ax and bx

are constant functions, so the partial terms in Eq. (12) vanish.
Then Eq. (12) reduces to

(−k2A0 + ω2M0)u = 0. (16)

Note that, strictly speaking, k here denotes the wave number
of a harmonic plane wave rather than a Bloch wave number
and u is a constant vector representing the polarization of the
plane wave. As a result, the dispersion relation for longitudi-
nal harmonic plane waves can be obtained as

k = ω

√
−b ± √

b2 − 4ac

2a
, (17)

where a = B2
3 − (2B1 + B2)B4, b = 2ρ f B3 + ρB4 + (2B1 +

B2)m1, and c = ρ2
f − ρm1. Equation (17) also suggests that

there are two longitudinal waves in the porous medium, the
sign + corresponding to the P1 (fast) wave and the sign
− to the P2 (slow) wave. As a note, Eq. (4) could also be
written with the fluid pressure p replacing displacement wx as
an independent variable [41]. In this case, exactly the same
dispersion relation would be obtained, as we have checked. In
this case, the eigenvectors defining the polarization would be
different, although the following results would still hold.

D. Frequency response function

The frequency response function (FRF) [48] of a finite
system can also be calculated by solving Eq. (6), in order
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TABLE I. Material parameters used in this paper. Units are given inside brackets.

ρs ρ f C11 C12 C44 Ks Kf η d
Material (kg/m3) (kg/m3) (GPa) (GPa) (GPa) (GPa) (GPa) (Pa s) (μm) α(∞) φ

Lossy FSP medium 1 3000 1000 10 2 4 30 2 0.001 6.32 1 0.2
Lossless FSP medium 1 3000 1000 10 2 4 30 2 0 6.32 1 0.2
Lossless FSP medium 2 2500 0.1 33.3 8.3 12.5 49.9 2 0 6.32 1 0.01

to compare with phononic band structures. The only nonzero
coefficient matrices are in this case A0 and A4 = −ω2M0.
Harmonic excitation with unit amplitude is applied to the left
side of the finite system. Polarizations (ux,wx ) = (1, 0) or
(0,1) are considered as excitations. Harmonic responses are
measured at the right side of the system, and the frequency
response function is defined as

FRF = − log10

√
ū2

x + w̄2
x√

ū2
x0 + w̄2

x0

. (18)

The imaginary part of the wave number characterizes the
spatial decay of Bloch waves inside a PC [47,49]. As a
result, the FRF can be approximated by using only the least
evanescent Bloch wave [50]

FRF ≈ − log10(T0e−n|Im(k(ω)|�), (19)

where n is the number of layers, and T0 is the conversion
efficiency from the incident wave to the least evanescent
Bloch wave.

IV. RESULTS AND DISCUSSION

In this section, Bloch wave propagation in a 1D FSPM is
investigated, including complex band structures and harmonic
responses. To get a convergent result, the size of the mesh is
100 times smaller than the lattice constant in the calculation
of complex band structures, and 50 times smaller in the calcu-
lation of attenuation properties. Results for the homogeneous
FSP media are first presented for reference and comparison.

A. Homogeneous fluid-saturated porous media

We first consider the case of a homogeneous FSP medium.
The material parameters are listed in the second row of
Table I. It should be pointed out that the tortuosity is rigor-
ously related to the electrical conductivity of the pore space
[51]. We choose the ideal case α(∞) = 1 for qualitative
analysis [42,45]. The complex band structure k(ω) is shown
in Fig. 2. It consists of two parts, showing the variations of
frequency, ω/(2π ), as a function of the real [Re(k)] and of the
imaginary [Im(k)] parts of the wave number in the direction of
propagation. The color scale amounts for the relative energy
ratio between the kinetic energy E f

k for the pore fluid and the
kinetic energy Es

k for the solid skeleton, defined as∫
es

kdL∫ (
es

k + e f
k

)
dL

, (20)

where L is the integration line along the unit cell, es
k = (1 −

φ)ρsω
2u2

x/2 and e f
k = φρ f ω

2U 2
x /2. Both longitudinal waves

are dispersive and lossy, as a result of the viscosity of the

pore fluid. The polarization of the P1 wave is mainly ux while
the polarization of the P2 wave is mostly Ux. The imaginary
part of the wave number generally increases with frequency,
but its value for the P2 wave is much larger than that for the
P1 wave, implying a much larger attenuation. The analytical
result of Eq. (17) is in excellent agreement with the finite
element result.

For comparison, the band structure for the lossless homo-
geneous FSP medium (third row of Table I) is also plotted in
Fig. 2. Im(k) is zero in this case for both waves, but Re(k) is
almost unchanged for the P1 wave while it changes drastically
for the P2 wave. In the low-frequency range, the imaginary
and the real parts of the wave number are nearly equal in
the lossy case, in agreement with the results in Ref. [45].
We correspondingly evaluate in Fig. 3 the variation of phase
velocity, ω/Re(k), and of the attenuation, log10(1/Q), as a
function of frequency. The quality factor is here defined as

Q = Re(k)

2Im(k)
. (21)

As a note, this definition is slightly different from that used in
Ref. [28]. Three different values of viscosity are considered
in Fig. 3, η = 10−7, 10−4, and 10−3 Pa s. The phase velocity
of the P1 wave is not strongly affected by the value of
viscosity and remains only slightly dispersive. The attenua-
tion has larger variations with frequency: it first increases,
reaches a maximum, and then decreases. The frequency of

FIG. 2. Complex band structures for homogeneous FSP media.
The left and right panels illustrate the variation of the frequency
with the real and imaginary part of the wave vector, respectively. The
solid lines represent for the analytical results obtained by Eq. (17).
The color scale indicates the relative energy ratio between the solid
skeleton (1) and the pore fluid (0). The blue and red dashed lines
represent the analytical dispersion curves for lossless homogeneous
media. The inset shows a closer view of the imaginary part at the
origin.
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(a) (b)

FIG. 3. Variation of (a) the phase velocity and (b) the attenuation
with frequency for different viscosities of the pore fluid. The hori-
zontal axis is shown with a logarithmic scale. The thick-solid blue,
thin-solid red, and thin-dashed green lines represent the results for
η = 10−7, 10−4, and 10−3 Pa s, respectively. The upper and lower
panels present the results for P1 and P2 waves, respectively.

the maximum is termed the critical frequency and can be
expressed as [52]

fc = 3ηφ/[8πK (0)α(∞)ρ f ]. (22)

It is thus linearly proportional to viscosity. For the chosen
values of viscosity, the critical frequency is 2.4 Hz, 2.4 kHz,
and 24 kHz, respectively. The phase velocity of the P2 wave,
in sharp contrast, is strongly dependent on viscosity and
strongly dispersive, with a sharp variation around the critical
frequency. The attenuation remains almost constant until fc

and then decreases with increasing frequency. For the same
value of viscosity, the attenuation of the P2 wave is generally
larger than that of the P1 wave.

It is furthermore instructive to consider the dependence
of the complex dispersion with porosity in Fig. 4. To en-
able a fair comparison, the pore size d is considered fixed.
The change in porosity φ can then be understood as a change
in the number of pores. According to Eq. (10), the critical
frequency in Eq. (22) can be rewritten as

fc = 3η/(πd2ρ f ). (23)

This expression implies that fc is independent of porosity
for a fixed pore size. It is found that porosity has a strong
influence on both the phase velocity and the attenuation of the

(a) (b)

FIG. 4. Variation of (a) the phase velocity and (b) the attenuation
with frequency for different values of porosity. The horizontal axis is
shown with a logarithmic scale. The thick-solid blue, thin-solid red,
and thin-dashed green lines present the results for φ = 0.05, 0.24,
and 0.45, respectively. The upper and lower panels present the results
for P1 and P2 waves, respectively.

P1 wave. For the particular value φ = 0.24, the phase velocity
is observed to be nondispersive. This effect is contained in
the FSP model summarized in Sec. II, which is based on the
literature, but has not yet been observed experimentally to
the best of our knowledge. At a given frequency, the phase
velocity and the attenuation first decrease and then increase
with increasing porosity. The attenuation of the P2 wave is
almost independent of porosity, but the asymptotic value of
the phase velocity at large frequencies generally increases
with porosity.

B. One-dimensional lossless fluid-saturated
porous metamaterial

We now turn our attention to wave propagation in 1D
FSPM composed of periodic layers of FSP media. We first
consider a lossless FSPM (zero viscosity). The filling ratio for
FSP medium 2 is chosen to be 0.35 and the lattice constant is
� = 2 m. Material parameters are listed in the fourth row of
Table I.

The complex band structure in Figs. 5(a) and 5(b) shows re-
duced frequency  = ω�/(2π ) as a function of reduced wave
number k�/(2π ), as usual with PCs. We consider the reduced
frequency range 0 <  < 2000 m/s and the corresponding
frequency range is 0–1000 Hz for the chosen lattice constant.
Given the color scale representing the energy ratio between
the P1 and the P2 wave, it is inferred that both longitudinal
waves exist in the composite metamaterial and can form Bragg
band gaps opening at the edges of the first Brillouin zone. The
Bragg band gap for the P1 wave is the widest and contains the
second Bragg band gap for the P2 wave. The first Bragg band
gap for the P2 wave is too narrow to be observed from the real
part of the wave number alone but still can be clearly identified
from the imaginary part of the wave number. Overall, the
complete Bragg band gap is small and covers the reduced
frequency range 1495 <  < 1547 m/s.

Since the polarizations of the P1 and P2 waves share cou-
pled longitudinal displacements, they can interfere whenever
their dispersion curves cross. As a result of band anticross-
ing, two complete band gaps appear around  ∼ 1000 and
2000 m/s in Figs. 5(a) and 5(b). Vibration distributions at the
marked points M1 and M2 near the first anticrossing region
are presented in Fig. 5(d). Note that the polarizations of these
Bloch waves change abruptly at the anticrossing, as can be
attributed to level repulsion or avoided-crossing of the bands
[53,54]. A pair of evanescent Bloch waves appear inside the
anticrossing band gaps, connecting the extremal points of the
two dispersion bands. The attenuation of the P1 and P2 waves
are identical inside these band gaps, implying that the band
gaps are complete.

In addition, the FRF curves of a finite metamaterial are
calculated and presented in Fig. 5(c) for either 8 or 50 periods.
Many oscillations come up in the FRF curves, even inside
band gaps. These oscillations are caused by the excitation of
Fabry–Pérot resonances of the finite structure. Since the polar-
ization of the P1 and P2 waves share coupled longitudinal dis-
placements, the resonances affect both waves simultaneously.
Bragg band gaps cannot be clearly observed when only eight
periods are considered. For 50 periods, the first P2 Bragg band
gap is still missing in the FRF curves, because the imaginary
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FIG. 5. Complex band structures for 1D lossless FSPM with periodic layers of FSP medium. Panels (a) and (b) illustrate the variation of the
reduced frequency with the real and imaginary part of the wave vector, respectively. The solid lines represent the real band structures obtained
by using Eqs. (13) and (15). The blue and red dashed lines are the dispersion curves of P1 and P2 waves for lossless FSP media, as obtained
by Eq. (17). The color scale is the same as that in Fig. 2. FRF curves of a finite metamaterial with 8 or 50 unit cells are shown in panel (c).
The solid and dashed lines represent the results for the excitation of P1 and P2 waves, respectively. The light gray region indicates the Bragg
band gap for P1 wave in panel (a), while the gray regions show the complete band gaps for both P1 and P2 waves. The green lines represent
the results predicted by using Eq. (19) through the imaginary part of the wave vector for P1 wave (dashed lines for P2 wave). Normalized
displacement distributions at the marked points in panel (a) are illustrated in panel (d). The relative energy ratio is 0.74 at point M1 and 0.27
at point M2.

part of the wave number remains very small. The Bragg band
gap for the P1 wave is corrupted by Fabry–Pérot resonances
of the P2 wave. Interestingly, the anticrossing band gaps show
the same attenuation for P1 and P2 waves, in agreement with
the complex band structure. The approximation of the FRF
curves inside band gaps as obtained with Eq. (19) are added
with a green line to Fig. 5(c). They are in excellent agreement
with FEM results in all complete band gaps. Inside the Bragg
band gap for the P1 wave, the approximation breaks when
wave P2 is not itself inside a band gap. Again, this is attributed
to the coupling of longitudinal waves in the solid skeleton and
in fluid saturated pores.

C. Effects of fluid viscosity

Next, we consider FSP metamaterials with varying
viscosity, as shown in Fig. 6. Even when only a slight
viscosity is added (η = 10−7 Pa s), the dispersion curves
are affected compared with the lossless case of the previous
section. Regarding the real part of the wave number, the sharp
corners at the edge of the Brillouin zone for the P1 wave
become rounded. The degeneration of the evanescent modes
at the anticrossings is now lifted for the imaginary part of the
wave number. The P2 wave presents a larger attenuation than
the P1 wave, in correspondence to the larger attenuation of
the P2 wave in a homogeneous FSP medium shown in Fig. 3.
FRF curves are also affected by viscosity. The Fabry–Pérot
oscillations of the lossless system are washed out, especially
inside the Bragg band gap for the P1 wave. The attenuation is
generally larger for all frequencies and adds to the attenuation
already present inside the band gaps.

When η = 10−4 Pa s, fc is beyond the frequency range
considered and the attenuation of the P2 wave is expected to
be quite large following Fig. 3. Thus, the dispersion relation of
the P2 wave resembles that of the homogeneous FSP medium
in Fig. 2. The anticrossings disappear from the FRF, because
the P2 wave is too strongly attenuated to interfere with the P1

FIG. 6. Influence of fluid viscosity on complex band structures
for 1D FSP metamaterials. Panels (a) and (b) show the variation of
the reduced frequency with the real and imaginary part of the reduced
wave number. The color scale is the same as that in Fig. 2. The insets
in (b) show a larger view of the imaginary part of the wave number.
The attenuation properties of a finite metamaterial with 50 periods
are shown in panel (c). The red solid and blue dashed lines represent
the results for the excitation of ux and wx , respectively. The green
lines represent the results predicted by Eq. (19) for the P1 wave
(green dashed lines for the P2 wave). The gray areas indicate the
band gaps for the lossless FSPM in Fig. 5.
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wave. The Bragg band gaps for the P2 wave also disappear.
When the viscosity is further increased to η = 10−3 Pa s, the
same observations amplify. Interestingly, the base attenuation
for the P1 wave (outside the Bragg band gap) is smaller than
for η = 10−4 Pa s. This observation is in correspondence with
the decrease of the attenuation of the P1 wave in Fig. 3(b) for
larger viscosities. With an increase in viscosity, the number
of foldings for the P2 wave generally increases, but the same
number for the P2 wave is almost unchanged. This could also
be explained by the distinct variation of phase velocity of the
P2 wave with a change in viscosity indicated by Fig. 3(a). For
both excitations, the FRF curves have only small differences
at large viscosity. Generally, the transmission of the P1 wave
dominates the frequency response. As a result, the FRF curves
can be closely approximated by considering only the least
evanescent P1 wave.

It is also noted that the curvature of the lower round corner
of the Bragg band gap for P1 wave first increases and then
decreases. This can be simply explained by expanding ω(k)
in powers of complex k about the zone edge k0 = π/d via a
Taylor expansion [55], i.e.,

�ω = ω(k) − ω(k0) ≈ ζRe((�k)2) = ζ (g2 − h2), (24)

where ζ is a constant related to the second derivative of the
band, and �k = g + ih. For the same �ω > 0 and a different
viscosity, since the attenuation in Fig. 3(b) first increases
and then decreases, the corresponding imaginary part first
increases then decreases. Then h follows a similar variation,
and so does g according to Eq. (24). Hence, the corners first
get rounded and then become sharper.

D. Effects of fluid porosity

Porosity is also an important factor for FSP media. In
this section, we consider the influence of fluid porosity on
the complex band structures and the attenuation spectra. For
comparison, we also consider the system with zero porosity.
In this case, the system reduces to a 1D elastic layered
metamaterial, the band structure of which is plotted with a
dashed line in Fig. 7; no P2 wave exists in this case. Even
when a small porosity (φ = 0.05) is considered, the P2 wave
comes up and the phase velocity of the P1 wave decreases.
Correspondingly, the Bragg band gap for the P1 wave shifts
downward. Comparing with Fig. 4, with an increase in poros-
ity, the phase velocity of the P2 wave increases monotonically
and there are less foldings in the real part of the P2 wave.
In contrast, the phase velocity of the P1 wave first decreases
and then increases, but the relative changes remain small.
The real parts for φ = 0.24 and 0.45 are thus similar. Both
outside and inside the Bragg band gap, the imaginary wave
number of the P1 wave increases monotonically with porosity,
leading to an overall lower transmission. This observation
is in contrast with the variations of attenuation for the P1
wave in a homogeneous FSP medium shown in Fig. 4(b).
We attribute this difference to the periodicity of the FSPM.
It is also noted that the upper (lower) corner of the band gap
generally becomes more rounded (sharper) with an increase
in the fluid porosity. This variation is explained by Eq. (24) as
in the case of viscosity.

FIG. 7. Influence of porosity on the complex band structures for
1D FSPMs. Panels (a) and (b) show the variation of the reduced
frequency with the real and imaginary parts of the reduced wave
number. The dashed lines are the dispersion curves for φ = 0. The
color scale is the same as that in Fig. 2. FRF curves for a finite
metamaterial with 50 periods are shown in panel (c). The red solid
and blue dashed lines represent the results for the excitation of ux

and wx , respectively. The green lines present the results of Eq. (19)
for the P1 wave.

V. CONCLUSIONS

This paper has presented a comprehensive analysis of
wave propagation in 1D fluid-saturated porous metamateri-
als (FSPMs) described by Biot’s model and supporting two
longitudinal waves, P1 and P2. Complex band structures and
harmonic responses of 1D FSPMs were calculated by a finite
element method. A theoretical analysis of longitudinal wave
motion in homogeneous FSP media was conducted. Numer-
ical results match perfectly analytical ones for homogeneous
FSP media. It is found that the material parameters of the pore
fluid have a strong influence on both complex band structures
and FRF curves. With an increase (decrease) in viscosity
(porosity), the attenuation in the passing bands is first en-
hanced and then reduced. Inside Bragg band gaps, the attenua-
tion varies in the opposite way. Anticrossing band gaps can be
generated by level repulsion between the fast P1 wave and the
slow P2 wave when viscosity is negligible. These anticrossing
band gaps soon disappear, however, as viscosity increases.
With an increase in fluid porosity, attenuation increases mono-
tonically inside passing bands and Bragg band gaps.

Generally speaking, the P2 wave is highly attenuated and
influenced by material parameters. The P1 wave then plays the
key role in the transmission though a finite periodic structure.
In the limit that the influence of the P2 wave has been removed
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by viscosity, the frequency response is well predicted by
considering only the least evanescent P1 wave.

The present work is limited to 1D periodic metamaterials
and should be extended to the two-dimensional (2D) and
three-dimensional (3D) cases. In this case, appropriate in-
dependent variables should be chosen, because there are six
displacements but only four degrees of freedom [41]. The
influence of other complex interface conditions on wave prop-
agation in FSPMs should be discussed [56]. The case of sur-
face waves [57,58] propagating over a fluid-saturated porous
metamaterial is also of interest. These different problems are

significant for the development of novel metamaterials applied
to the mitigation of blast and/or seismic waves.
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