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Stochastic excitation method for calculating the resolvent band
structure of periodic media and waveguides
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We introduce a stochastic excitation method for calculating the dispersion relation for waves propagating in
periodic media or along waveguides and subject to material loss or radiation damping. Instead of looking for an
explicit or implicit functional relation between frequency ω and wave number k, as is usually done, we consider
a mapping of the resolvent set in the dispersion space (ω,k). Bands appear as the trace of Lorentzian responses
containing local information on propagation loss in both time and space domains. For illustration purposes, the
method is applied to a lossy sonic crystal, a radiating surface phononic crystal, and a radiating optical waveguide.
The resolvent band structure can be obtained for any system described by a time-harmonic wave equation.
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I. INTRODUCTION

The dispersion relation is essential information to describe
wave propagation [1]. This is especially true for structures that
support wave propagation, such as waveguides and artificial
crystals, including photonic [2–4] and phononic [5–7] crystals.
The dispersion relation gives the possible propagation modes
and relates the angular frequency ω to the wave vector k.
In the case of periodic media and crystals, it is termed
the band structure. It is very often obtained by looking for
the eigenvalues and eigenfunctions of a matrix in the case
of finite-dimensional problems. Finding the eigenvalues and
eigenfunctions of a finite-size matrix is indeed nowadays a
well-mastered numerical problem [8]. Solvers are routinely
used to obtain them, at least in the case of lossless waveguides
and crystals. Indeed, in the absence of loss, one often obtains
a self-adjoint propagation operator, i.e., an operator satisfying
Hermitian symmetry. In this case, the Hilbert-Schmidt theorem
tells us that the spectrum lies on the real line [9]. If the operator
is furthermore compact, eigenvalues are discrete and isolated
(in case they are degenerate, the corresponding eigenfunctions
are orthogonal). Physically, this situation is generally implied
when one plots the dispersion relation as a graph ω(k).
Both frequency and wave vector are real quantities, and the
dispersion relation is composed of distinct bands that can be
numbered. Note that compactness here refers to the domain of
definition being finite and the operator being bounded.

The situation becomes more obscure when propagation loss
or some infinite dimension enters the picture. In the case of loss,
the self-adjoint property is lost. In the case of an infinite domain
of definition, the operator is no longer compact. In the latter
case, there exist computational techniques to approximate the
problem on a finite domain, such as the perfectly matched layer
(PML) [10]. As a result, however, self-adjointness is generally
lost. Fortunately, a theorem similar to the Hilbert-Schmidt
theorem still holds for compact operators in finite-dimensional

*vincent.laude@femto-st.fr

Hilbert spaces, but eigenvalues are complex [9]. As a result, the
bands composing the dispersion relation are not real functions
anymore. Different physical examples where this situation
happens will be considered in this paper: a lossy sonic crystal
[11], such as the one depicted in Fig. 1, a phononic crystal
of pillars sitting on a semi-infinite substrate [12], and an
open optical waveguide. Specifically, the goal of this paper
is to obtain a generalized representation of the dispersion
relation that applies to these difficult cases. The representation
obtained, which we term the resolvent band structure, relies
on an analysis of the response of the propagation medium to a
random excitation with a definite frequency and wave vector.
Figure 1(b) shows a typical random excitation applied to a unit
cell of a crystal. The idea of considering the dispersion relation
as a graph of discrete bands ω(k) is replaced by a response
function E(ω,k) similar to a density of states. The response
itself is obtained from the solution to the forced problem,
as shown in Fig. 1(c). Infinite domains are transformed to a
compact domain using a PML technique implemented as a
complex coordinate transform [13]. As we show in Sec. II, the
stochastic response reveals the spectrum as the complement of
the resolvent set of the operator and gives essential information
about the amount of propagation loss at a particular dispersion
point. Furthermore, the response can be made almost inde-
pendent of the particular realization of the random excitation.
In Sec. III, we describe the application of the method to the
three different situations mentioned above. In Sec. IV, before
concluding the paper, we discuss the merits of the stochastic
excitation method and its relation to previous methods.

II. THEORY

Let us first recall some results from spectral theory [9].
We place ourselves in an appropriate functional space, usually
a Hilbert space. For a bounded linear operator A, R(λ) =
(A − λI )−1 is, by definition, the resolvent operator. The
resolvent set is the set of all complex numbers λ such that
R(λ) exists and is bounded. The spectrum is defined as the
complement of the resolvent set in the complex plane. Every
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(b) (c)

(d)

FIG. 1. Band structure of a two-dimensional sonic crystal of rigid
cylinders in air computed with the stochastic excitation method, with
material loss taken into account. (a) The finite-size computation
domain is here a unit cell of the crystal. (b) A spatially random
excitation is applied, and the response (c) is obtained. (d) From the
response, the resolvent band structure can be plotted. For further
details see Sec. III A and Fig. 2.

eigenvalue of the operator A belongs to the spectrum. Note
that this definition is more general than the usual definition
of eigenvalues of matrices of finite-dimensional spaces. It
also avoids the difficulties of defining the spectrum through
a singular equation by considering instead its nonsingular
complement.

According to the Hilbert-Schmidt theorem, the spectrum of
a self-adjoint operator lies on the real line and is, in general,
a spectral combination of a point spectrum of discrete eigen-
values and a continuous spectrum. For compact self-adjoint
operators, eigenvalues are discrete and isolated. Eigenvalues λn

and eigenfunctions en satisfy Aen = λnen. The eigenfunction
expansion theorem tells us that any function can be written f =∑

n fnen, with the eigenfunctions en forming an orthonormal
basis. The notation fn = 〈 f ,en〉 is for the scalar product in
the functional space. As we indicated in the Introduction, in
case the operator is not self-adjoint, a similar theorem holds

for compact operators in finite-dimensional Hilbert spaces,
provided the eigenvalues are considered complex. Note that
they can further be algebraically degenerated, but we will
not consider that complication in this paper. This assumption
is equivalent to assuming the operator is isomorphic to a
diagonalizable matrix.

Linear wave equations, including those for acoustic, elastic,
and optical waves, can generally be written for time-harmonic
waves as

[K(k) − ω2M]u(ω,k) = f (ω,k), (1)

where K is a stiffness operator, M is a mass operator, u(ω,k)
is a function describing the solution in reciprocal space, and
f (ω,k) is a forcing term at a particular frequency and wave
vector. Equation (1) is obtained from a Fourier transform of the
original wave equation over the time coordinate. The stiffness
operator K is a differential operator of the space coordinates
and can depend on an imposed wave vector k for waveguide
and artificial crystal problems. We can then define the resolvent
operator as

R(λ) = (M−1K − λI )−1, (2)

with λ = ω2. Note that the inversion operation of the mass
operator should be understood as symbolic and is introduced
for convenience; in practice there is no need to invert a matrix
or operator. The solution to Eq. (1) is formally

u = R(λ)M−1 f . (3)

Introducing the eigenvalues λn and eigenfunctions en of
M−1K , we obtain from the eigenfunction expansion theorem
that

un = (λn − λ)−1gn, (4)

with g = M−1 f . Overall, the solution is

u =
∑

n

(λn − λ)−1gnen. (5)

This equation expresses the well-known fact that the solution
to a linear equation is a linear combination of eigenfunctions.
The coefficients of the combination are complex Lorentzian
functions or poles, centered on the eigenvalues, and are
also proportional to the projection of the excitation on each
eigenfunction. When λ ≈ λn, we have u ≈ (λn − λ)−1gnen;
that is, the solution approaches in the limit the particular
eigenfunction. This observation leads to a practical way to
obtain every eigenvalue and eigenfunction: one can explore all
values of λ, i.e., the resolvent set; since the eigenvalues are
isolated, each pole can be isolated and identified. Of course,
such a procedure would be very lengthy compared to existing
eigenvalue solvers. If we forget the idea of obtaining exactly all
eigenvalues and wish to obtain only a view of the landscape of
the resolvent set with a given, and limited, resolution, then the
method can be useful, as we illustrate in the following section.

Equation (1) can be viewed as the dynamical equation
obtained from the Euler-Lagrange principle with a Laplacian
combining potential elastic energy, kinetic energy, and the
work of the forcing term. A Hamiltonian operator can then
be defined as

H = 1
2 (K + ω2M), (6)
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and we evaluate the response as the self-energy of the
solution, or

E = 〈H u,u〉. (7)

Using the eigenfunction expansion (5) for the solution, we have

E(λ) =
∑
n,n′

〈H en,en′ 〉gn(λ − λn)−1g∗
n′(λ∗ − λ∗

n′)−1, (8)

which is real and positive by construction if K and M are real
operators. The response is an expansion over complex poles
centered on the eigenvalues. Close to an eigenvalue, i.e., when
λ ≈ λn, E(λ) ≈ 〈H en,en〉|gn|2|λ − λn|−2. The response has
then locally a possibly damped Lorentzian shape.

In order not to miss any of the poles, it is necessary that gn =
〈g,en〉 �= 0 for any n. In practice, we can consider a spatially
random excitation. If the number of degrees of freedom is large,
then the probability that any gn = 0 is very small. The result
can further be made almost independent of the exact value of
gn by considering the log derivative of the response

∂

∂λ
ln E = 1

E

∂E

∂λ
. (9)

Indeed, writing λ − λn = α + ıβ, with both α and β being real,
we have locally

∂

∂α
ln E ≈ − 2α(α2 + β2)−1, (10)

which is a real Lorentzian function. The response is thus
practically independent of the excitation. Of course, Eq. (10)
is valid only close to eigenvalue λn, which is separated from
the other eigenvalues. In practice, it also requires that the
eigenvalues are sufficiently isolated compared to the analyzing
resolution.

As a whole, the stochastic response E(ω,k) contains in-
formation on the bands in the form of a continuous map in
the dispersion space (ω,k). Each band leaves a trace which is
locally a Lorentzian function. This Lorentzian function gives
both the real part and the imaginary part of the local eigenvalue;
in particular the width of the response informs on propagation
damping in both time and space.

III. RESULTS

In this section we consider three different examples of the
application of the stochastic excitation method. In each case,
a direct eigenvalue analysis would have been difficult, as we
argue.

A. Bloch waves in a lossy sonic crystal

Let us consider a two-dimensional sonic crystal composed
of steel cylinders in air, as depicted in Fig. 1(a). The structure
is an infinite periodic repetition of a square primitive unit
cell of length a, periodic along axes x1 and x2. The steel
cylinders are assumed to be infinitely long in the x3 direction.
Time-harmonic waves satisfy the linear acoustic equation for
pressure p in air,

−∇ ·
(

1

ρ
∇p

)
− ω2 p

B
= f, (11)

where the mass density ρ(r) and the elastic modulus B(r) are
functions of position and f (r) is an applied forcing term. These
functions are discontinuous at the interface between matrix
and inclusion. The band structure of a sonic crystal gives the
dispersion relation of its Bloch waves. Bloch waves are, in this
case, of the form p(r,t) = p̄(r) exp[ı(ωt − k · r)], with p̄(r)
being the periodic part of the solution. Because of the very
large acoustic impedance mismatch between steel and air, the
boundary condition on the cylinders can be approximated by
∂p

∂n
= 0 (the normal acceleration vanishes on the boundary).

Section A 1 summarizes how to transform Eq. (11) into an
integral equation, using the finite-element method, which is
then easily cast into a linear system (1) and into an eigenvalue
system in case the applied force vanishes.

In the absence of loss, the eigenvalue problem can be
solved readily, and the band structure is usually presented as
reduced frequency, ωa/2π , as a function of reduced wave
number, ka/2π . The result is shown in Fig. 2(a). As the

(a)

(c) (d)

(e) (f)

(b)

FIG. 2. A two-dimensional square-lattice sonic crystal of rigid
cylinders in air, with d/a = 0.8. (a) The band structure for the lossless
crystal is obtained by solving for frequency as a function of wave
vector ω(k) along the path M-	-X-M of the first Brillouin zone.
(b) The stochastic excitation is applied in air as a random periodic
field. (c) and (d) The normalized stochastic response and its log
derivative for small loss (μ/Ba = 10−9 m/s) show mostly undamped
Lorentzian functions following the bands in (a). (e) and (f) The
normalized stochastic response and its log derivative for larger loss
(μ/Ba = 10−7 m/s) show how damping distributes along each band.
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FIG. 3. Cross section of the resolvent band structure of Fig. 2,
taken at the X point of the first Brillouin zone, without and with loss
(μ/Ba = 10−7 m/s). Temporal damping affecting the different Bloch
waves is apparent.

problem is self-adjoint and the unit cell is closed (compact),
eigenfrequencies are discrete and isolated.

Let us now consider material loss. Specifically, loss is
generally frequency dependent and is often modeled by a
complex elastic modulus of the form B ′ = B + jωμ, with μ

being the viscosity [14]. Bloch’s theorem remains valid for
coefficients that depend on frequency, so we can still use the
same formulation as before. The eigenvalue problem, however,
becomes nonlinear. An alternative is to consider the complex
band structure, i.e., to solve for k as a function of ω [15,16].
In this way, the spatial damping of time-harmonic waves can
be obtained as a function of frequency.

In order to apply the stochastic excitation method, we apply
a Bloch-Floquet excitation, f (r; k,ω) = f̄ (r) exp[ı(ωt − k ·
r)], with a stochastic periodic part, to the acoustic equation.
We then explore the resolvent set as a function of k and ω and
obtain the resolvent band structures in Figs. 2(c)–2(f). Viscous
damping is added only to the host material. In this region of
the unit cell, the elastic modulus B ′(r) is a constant complex
function, so losses are applied uniformly. For illustration
purposes, we have considered two arbitrary amounts of viscous
damping, either μ/Ba = 10−9 s/m or μ/Ba = 10−7 s/m.
With these values and for the highest reduced frequency in the
band structure, the ratio ωμ/B of the imaginary part to the real
part of the elastic modulus is, at most, 4 × 10−6 and 4 × 10−4,
respectively. For the smaller value of viscous damping, the
resolvent band structure is almost not affected, and every band
in the lossless band structure is visible with about the same
intensity. For the larger value of viscous damping, bands are
increasingly damped with increasing frequency.

Frequency-dependent loss can be estimated by looking at
a cross section of the resolvent band structure at constant
k. For instance, Fig. 3 shows this cross section at the X

point of the first Brillouin zone. A superposition of damped
Lorentzian functions is clearly observed. Such vertical cross
sections reveal the amount of temporal damping for every
eigenvalue. Reciprocally, considering horizontal cross sections
would reveal spatial damping of the same eigenvalues. The
resolvent band structure thus contains the information of the
complex band structure, with the imaginary part of the wave
number replaced by the width of the Lorentzian response for

each band. At the same time, it also contains information on
temporal damping that is absent in the complex band structure.

B. Surface Bloch waves of a phononic crystal of pillars

Surface elastic wave propagation on the surface of a
phononic crystal has attracted a lot of attention, partly with
regards to applications to surface acoustic wave technology
[17,18], to microelectromechanical systems [19,20], and to
thermal transport [6,21] but also from a fundamental point
of view. If initial questions were related to the generalization
of the definition of Rayleigh surface waves to periodic media
[22], it was soon realized that surface phononic crystals must
also support the propagation of radiating guided waves [23,24].
These waves can be described as surface excitations that are
coupled with radiation modes of the substrate supporting the
crystal. Radiation modes exist in the region of the dispersion
diagram called the sound cone. By definition, the boundary
of the sound cone is obtained by looking for the slowest bulk
wave propagating in a given direction and along the surface
of the substrate, with the direction of wave propagation being
measured by the Poynting vector [25]. This procedure leads,
in general, to an anisotropic but nondispersive velocity surface
vsc(k/|k|) whose projection on the band structure looks like a
cone.

The elastodynamic equation is

−Tij,j − ρω2ui = fi, (12)

where u is the displacement vector and Tij is the stress tensor.
fi are body forces, and the constitutive relation of elasticity
(Hooke’s law) is

Tij = cijklSkl, (13)

with cijkl being the elastic tensor and Sij = 1
2 (ui,j + uj,i) being

the strain tensor.
In the general case of surface waves and in contrast to bulk

waves, there does not exist an eigenvalue equation giving the
band structure. Surface waves are, instead, found by looking
for the zeros of a determinant of the boundary conditions
or any equivalent secular equation [23,24]. This procedure,
however, is, strictly speaking, limited to lossless surface waves,
whose dispersion lies outside the sound cone. Leaky guided
surface waves, whose dispersion lies inside the sound cone,
have been obtained by looking for minima of the boundary
condition determinant [24]. A difficulty is that radiation modes
of the substrate have to be selected according to a partial-wave
selection rule. In the general case of a finite-depth phononic
crystal sitting on a semi-infinite substrate, this procedure is
cumbersome, and the usual approach has been to consider only
purely guided waves, i.e., nonradiative surface waves lying
outside the sound cone [12,26,27]. An immediate drawback
is that the nonradiative band structure is defined in a quite
restricted sense and neglects the interaction of surface waves
with bulk waves radiated in the substrate.

As an example, let us consider the phononic crystal of pillars
in Fig. 4. A unit cell of the crystal shown in Fig. 4(a) consists
of a cylindrical pillar of the same material as the substrate,
silicon. The crystal has a square lattice with lattice constant a.
For obvious practical reasons, the unit cell has to be limited
to a certain depth. Figure 4(b) shows the band structure for
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(a)

(d)

(b)

(c)

FIG. 4. A two-dimensional square-lattice phononic crystal of
silicon pillars on a silicon substrate. (a) The unit cell is arbitrarily cut
at a depth h + w in the substrate, with w being the depth of a perfectly
matched layer (PML) introduced to approximate radiation inside the
semi-infinite substrate. The height of the pillar is h1/a = 1, and the
diameter is d/a = 0.5. (b) The classical band structure, generated
by solving an eigenvalue problem with damping in the PML set off,
gives the dispersion of nonradiative surface waves only outside the
sound cone highlighted in gray. (c) and (d) The normalized stochastic
response and its log derivative map the resolvent band structure
throughout the (ω,k) dispersion plane.

surface guided waves computed according to the method in
Ref. [12]. The overlaid sound cone indicates the bands that are
removed from consideration; those bands are actually strongly
dependent on the substrate thickness, and most of them are
obviously spurious Lamb waves.

In order to apply the stochastic excitation method, the semi-
infinite radiation medium has to be replaced by a finite region.
A solution could be to couple the solution in a finite crystal
layer with a homogeneous radiation medium. This is, however,
applicable only in specific cases for which the Green’s function
is known explicitly, such as isotropic infinite media. Instead,
we approximate numerically the semi-infinite substrate by an
elastic PML, as summarized in Sec. A 2. A Bloch-Floquet
stochastic body force is applied in the layer region.

The stochastic response and its log derivative are shown in
Figs. 4(c) and 4(d). Below the sound cone, the resolvent band
structure is very similar to the nonradiative band structure, as
expected. Inside the sound cone, however, spurious bands are
removed, and radiation damping associated with each band
can easily be evaluated. In particular, the avoided crossings
appearing at the intersection of local resonances of the pillars
with propagating surface waves become clearly apparent. In
the classical band structure of Fig. 4(b), they were damaged by
interference with the spurious Lamb waves.

(d)

(a)

(b) (c)

(b)(d)

FIG. 5. Optical guidance along a freestanding silicon microwire
in air (d = 1 μm). (a) Axis x3 is an invariance axis along which the
wave number k is counted. (b) The dispersion diagram for waves
guided by total internal reflection is divided into three different
regions: guided waves can be either fully evanescent, guided inside
the slow core, or coupled to the radiation modes of air. (c) The com-
putation domain is divided between core, cladding, and a perfectly
matched layer approximating radiation to infinity. (d) The resolvent
band structure maps the dispersion relation throughout the (ω,k)
dispersion plane, especially informing on radiation damping inside
the light cone for air.

C. Leaky guided waves in the light cone

Waveguides are structures with one invariance axis that
are able to confine propagating waves around a central core.
They have many applications in engineering, starting with
the optical fiber. There are different guidance mechanisms,
including guidance provided by a photonic or a phononic band
gap, but the simplest guidance mechanism is total internal
reflection. For simplicity, we will consider optical waves in the
remainder of this section. As depicted in Fig. 5(a), waves can
be guided in a “slow” core surrounded by a “fast” cladding,
provided the dispersion of the guided waves lies in between
the light lines of the core and the cladding [28]. When this
condition is met, the dispersion point (ω,k) is inside the light
cone of the core but outside the light cone of the cladding.
The light field is then sinusoidal in the core and evanescent in

224110-5



VINCENT LAUDE AND MARIA E. KOROTYAEVA PHYSICAL REVIEW B 97, 224110 (2018)

FIG. 6. Optical guidance along a freestanding silicon microwire
in air (d = 1 μm). (a) The log derivative of the stochastic response is
shown for kd/(2π ) = 0.7. (b) The first damped Lorentzian resonance
appearing in the light cone is fitted to the model of Eq. (10). (c) The
magnetic field distribution at the maximum of the stochastic response
in (b) approximates a particular radiation guided mode. (d) and (e)
Same as (b) and (c) for the second resonance. (f) and (g) Same as (b)
and (c) for the third resonance.

the cladding, implying confinement around the core as light
propagates along the axis of the waveguide.

Now there are two more regions of dispersion space in
Fig. 5(a). In the doubly evanescent region, there are no guided
solutions in optical dielectric waveguides [28], but interface
guided waves may exist in other types of systems, such as
the Stoneley wave of elastic media [14]. In the radiation
region, however, there exist radiation guided waves that can
be regarded as a combination of waves propagating in the
core with radiation modes of the infinite cladding. Many
different methods have been proposed in order to obtain
radiation guided waves and their approximation with leaky
waves; see, for instance, Ref. [29]. In the following we illustrate

that the stochastic excitation method yields a direct mapping
of dispersion and an estimate for propagation losses due to
radiation.

Let us consider a freestanding silicon microwire in air, as
depicted in Fig. 5(b). Maxwell’s equations in dielectric media
lead to the following vector wave equation for the magnetic
field vector H :

∇ ×
(

1

ε
∇ × H

)
− ω2

c2
H = f , (14)

with ε being the relative dielectric constant and c being
the speed of light in a vacuum. Because of the invariance
of the structure along axis x3, solutions can be written as
H̄(x1,x2) exp[ı(ωt − kx3)]. Hence, the unknown becomes the
modal shape H̄(x1,x2) defined in two-dimensional transverse
space. As a result, it is enough to represent the solution on
a two-dimensional mesh. Section A 3 gives a hybrid-mode
variational formulation of guided wave optics, from which an
equation system such as Eq. (1) can be obtained, as well as the
expression of a PML to terminate the computation domain.

Considering guided wave stochastic excitation inside the
fiber core, we obtain the resolvent band structure of Fig. 5(c).
In the guidance region below the light cone for air, the
usual sequence of guided modes leaves Lorentzian traces,
with higher-order guided modes appearing as the frequency is
increased. In the radiation region, i.e., inside the light cone for
air, the resolvent band structure shows that higher-order guided
modes are continuously connected to transverse resonances of
the microwire, with a cutoff frequency at k = 0. Bands in the
light cone for air are affected by radiation damping, which can
be estimated from the damped Lorentzian functions. A vertical
cross section of the resolvent band structure at kd/(2π ) = 0.7
is presented in Fig. 6. For frequencies under the light line
the bands for guided modes are undamped. Above the light
line, however, all Lorentzian functions acquire a certain level
of damping that can be attributed to coupling with radiation
modes. Each of them can be fitted individually to the model
of Eq. (10), from which the quality factor can be estimated
as Q ≈ β/Re(λn). Three examples of the fitting procedure are
given in Fig. 6, together with the magnetic field distributions
obtained at each maxima of the stochastic response.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have introduced the stochastic excitation
method as a generic method to obtain a mapping of the
dispersion relation for wave equations. Instead of relying on
an eigenvalue problem or an equivalent root-finding method,
we apply a stochastic excitation in a unit cell, with given
wave number and frequency, and observe the response to this
excitation. Plotting the stochastic response yields a mapping
of the resolvent set, of which the spectrum is the singular
complement. Close to an eigenvalue, the solution to the forced
problem is proportional to the eigenfunction, and the response
has a simple damped Lorentzian shape, containing information
on damping in both time and space. As we have illustrated, the
method (i) can be applied to frequency-dependent material loss
(it would work for k-dependent loss too), (ii) takes into account
radiation in an infinite or semi-infinite medium by combining
it with a perfectly matched layer or other numerical technique,
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and (iii) reveals radiating guided waves and resonant modes of
vibration.

In contrast to eigenvalue-based methods, we don’t need
to look for an explicit ω(k) or k(ω) functional dispersion
relation. Instead, an implicit response E(ω,k) is obtained that
is similar to a local density of states. The full complex (ω,k)
dispersion space can be explored if desired, although we have
considered only its real restriction in this paper. In the case
of material loss, it would be interesting to compare further
the resolvent band structure with the complex band structure
[11,15,30–32]. Furthermore, the theory in Sec. II has a definite
relation with the Green’s function operator. In particular,
the spectral representation of the Green’s function contains
all the information on the spectrum of eigenvalues and eigen-
vectors. Thus, on-shell methods based on Green’s functions,
such as the layer multiple-scattering method [33–35], generate
band structures and densities of states with properties similar
to those of this paper. The stochastic excitation method does
not require an explicit expression of the Green’s function to be
known, which is advantageous in case the structure has compli-
cated details or contains anisotropic materials. Alternatively, if
the Green’s function is known, on-shell methods will probably
be computationally more efficient.

The numerical efficiency of the stochastic excitation method
is rather poor because the forced problem has to be solved for
each dispersion point and hence a great number of times in
most practical problems. It thus should not be used to replace
an eigenvalue computation when the latter is possible. The
method is also best suited to small unit cells, such as those
used for artificial crystal and waveguide problems.

As we have shown, the result appears to be independent, to
a large extent, of the precise random realization of the driving
force; that is, it is almost deterministic even though the gener-
ating mechanism is stochastic. Clearly, this is possible because
the stochastic excitation appears only as the right-hand side of
a linear equation; the singularities of the propagation operator
filter out the solution to deliver only the eigenfunctions as
maxima of the response. By analogy with thermal fluctuations
generating acoustic phonons, as observed, for instance, via
Brillouin light scattering [36] or from visualization of the
vibration modes of nanomechanical resonators from thermal
noise [37,38], the response has fluctuations, but there is little
doubt that all eigenmodes are excited for each noise realization.

We note that photonic band structures have been obtained
via finite-difference time-domain (FDTD) computations [39].
The FDTD method was extended to metal-dielectric [40] and
phononic band structures as well [41,42]. It works by applying
a spatially random excitation, with a temporal excitation, to
a finite computation domain terminated by periodic boundary
conditions. By computing a Fourier transform of the solution
as a function of time, a response similar to the one we have
introduced is obtained. A difference is that we work in the
frequency-wave-number domain directly, so the frequency res-
olution can be arbitrarily high, whereas it takes an increasingly
long computation time with FDTD. As a result, the stochastic
excitation method is adapted to resonant structures and very
low group velocities. Furthermore, the computation error is not
growing as a function of time, as with FDTD, but is instead
increasing with frequency because the mesh captures fewer and
fewer of the wave details that are of the order of the wavelength.

Finally, we suggest that the resolvent band structure can
be computed for any medium supporting wave propagation
as described by a time-harmonic wave equation or Helmholtz
equation, which includes pressure waves in fluids, water waves,
elastic waves in solids, electromagnetic waves described with
Maxwell’s equations (including plasmons), and structures
described with Schrödinger’s equation.
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APPENDIX: MATHEMATICAL MODELS

In this appendix, we summarize the mathematical models
that were used to generate the results in Sec. III.

1. Sonic crystal

A weak form of the linear acoustic equation (11) is [43]
∫

�

∇q∗ ·
(

1

ρ
∇p

)
− ω2

∫
�

q∗ 1

B
p =

∫
�

q∗f, (A1)

with q being test functions taken in the same functional space
as the solution p. � is the domain of definition, i.e., a unit cell
of the sonic crystal. Assuming a Bloch wave form for all field
quantities, i.e., p(r,t) = p̄(r) exp[ı(ωt − k · r)], q(r,t) =
q̄(r) exp[ı(ωt − k · r)], f (r,t) = f̄ (r) exp[ı(ωt − k · r)], we
obtain a weak form for the periodic parts as [44]
∫

�

(∇q̄ − ıkq̄)∗ ·
(

1

ρ
(∇p̄ − ıkp̄)

)
− ω2

∫
�

q̄∗ 1

B
p̄ =

∫
�

q̄∗f̄ ,

(A2)

with periodic boundary conditions applied on pairs of exter-
nal boundaries. When the applied force vanishes, this is an
eigenvalue equation giving λ = ω2 as a function of k. When
the applied forcing term is nonzero, this is an equation system
of the form of Eq. (1). The corresponding total energy of the
solution is computed as

〈Hp,p〉 = 1

2

∫
�

∇p∗ ·
(

1

ρ
∇p

)
+ 1

2
ω2

∫
�

p∗ 1

B
p. (A3)

2. Surface phononic crystal

Since the stress and strain tensors are symmetric, we can
employ the contracted notation for symmetric pairs of indices
[14]: the contracted indices I = (ij ) and J = (kl) run from
1 to 6 according to the rule 1 = (11), 2 = (22), 3 = (33), 4 =
(23), 5 = (13), and 6 = (12). With the definitions TI = Tij and
SJ = Skl for I = 1,2,3 and SJ = 2Skl for I = 4,5,6, Hooke’s
law (13) can be written TI = cIJ SJ . Considering test functions
v taken in the same functional space as the solution u, a weak
form of the elastodynamic equation for Bloch waves is [44,45]∫

�

SI (v)∗cIJ SJ (u) − ω2
∫

�

v̄∗ · ρ ū =
∫

�

v̄∗ · f̄ , (A4)
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with

S1(u) = ∂ū1

∂x1
− ık1ū1, (A5)

S2(u) = ∂ū2

∂x2
− ık2ū2, (A6)

S3(u) = ∂ū3

∂x3
− ık3ū3, (A7)

S4(u) = ∂ū3

∂x2
+ ∂ū2

∂x3
− ı(k3ū2 + k2ū3), (A8)

S5(u) = ∂ū3

∂x1
+ ∂ū1

∂x3
− ı(k3ū1 + k1ū3), (A9)

S6(u) = ∂ū2

∂x1
+ ∂ū1

∂x2
− ı(k2ū1 + k1ū2). (A10)

Equation (A4) is used to solve an eigensystem in case the
forcing term vanishes or to obtain an equation system of the
form of Eq. (1) for the stochastic excitation method. The total
energy of the solution is computed as

〈H u,u〉 = 1

2

∫
�

SI (u)∗cIJ SJ (u) + 1

2
ω2

∫
�

u∗ · ρu. (A11)

The perfectly matched layer (PML) is next introduced to
transform the infinite problem into a finite problem. The idea
is to seek a solution to the dynamical equations by using a
coordinate transform from a complex infinite space, which
admits evanescent waves as eigenfunctions instead of plane
waves, to the real finite space [13,46]. Given coordinates x of
real space, we introduce coordinates y of complex space via a
transform yi = yi(x). Upon introducing the Jacobian matrix

Jij = ∂yi

∂xj

, (A12)

we can rewrite the integrals of the variational formulation. In
an integral, the integration element changes proportionally to
det(J ). Consider a function u(x) = ũ( y). The gradient of the
displacement vector transforms as

∇ũ = ∂ũ

∂yi

= ∂xj

∂yi

∂u

∂xj

= J−t∇u. (A13)

The inverse Jacobian has elements J−1
ij = ∂xi

∂yj
and (· · · )t

denotes the transposition operator.
In the case of the elastodynamic equation, the weak form

becomes [44]
∫

�

SI (v)∗cIJ SJ (u) det(J ) − ω2
∫

�

v̄∗ · ρ ū det(J ) =
∫

�

v̄∗ · f̄ ,

(A14)

with the modified definition of the strains

S1(u) = J−1
m,1u1,m, (A15)

S2(u) = J−1
m,2u2,m, (A16)

S3(u) = J−1
m,3u3,m, (A17)

S4(u) = J−1
m,2u3,m + J−1

m,3u2,m, (A18)

S5(u) = J−1
m,1u3,m + J−1

m,3u1,m, (A19)

S6(u) = J−1
m,1u2,m + J−1

m,2u1,m, (A20)

where summation over m is implied and ui,m = ∂ūi

∂xm
− ıkmūi .

In practice we use the following coordinate transform for
the SAW problem for x3 < −h:

y3 = x3 + i

ω

∫ x3

−h

σ (s)ds, (A21)

with σ (s) = β|s + h|/w2, where w is the PML width and β

is a numerical coefficient whose value is tuned to optimize
absorption. In Fig. 4, the values h = 2a and w = a were used.

3. Dielectric optical waveguide

A weak form of the guided-wave optical equation (14) is
[47]

∫
�

1

ε
[rot(H̄ ′)rot(H̄) + div(H̄ ′)div(H̄) + k2 H̄ ′ · H̄]

+
∫

δ�

H̄ ′
ndiv(H̄)

[
1

ε

]
− ω2

c2

∫
�

H̄ ′ · H̄ =
∫

�

H̄ ′ · f̄ .

(A22)

This expression is obtained by keeping as unknowns only the
first two components of H , i.e., H = (H1,H2), since the third
component is set by the auxiliary Maxwell equation ∇ · H =
0. Here we use the transverse divergence div(H̄) = H̄1,1 +
H̄2,2 and transverse rotational rot(H̄) = H̄2,1 − H̄1,2; H̄ ′

n is the
normal component of H̄ ′ at the boundary δ�, and [ 1

ε
] denotes

the jump of the permittivity. Note that the boundary integral
appears because of the noncontinuity of the electric field at
the interface between different dielectric media. In Fig. 5, the
boundary δ� is the interface between silicon and air.

The total energy of the solution is computed as

E = 1

2

∫
�

1

ε
[rot(H̄)rot(H̄) + div(H̄)div(H̄) + k2 H̄ · H̄]

+ 1

2

∫
δ�

H̄ndiv(H̄)

[
1

ε

]
+ ω2

2c2

∫
�

H̄ · H̄ . (A23)

Again, Eq. (A22) leads to an equation system of the form
of Eq. (1). A PML is constructed as in the elastic case from
a complex coordinate transformation, now along both axes
x1 and x2. The integrands of the first and third integrals in
Eq. (A22) are multiplied by det(J ), while the definition of the
transverse divergence and rotational become

div(H̄) = J−1
m,1H̄1,m + J−1

m,2H̄2,m, (A24)

rot(H̄) = J−1
m,1H̄2,m − J−1

m,2H̄1,m, (A25)

where summation over m is implied.
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