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Strong shape-dependent intensity of inelastic light scattering by gold nanocrystals
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We present a numerical approach to calculate inelastic light scattering spectra from gold nanocrystals, based
on the finite element method. This approach is validated by comparison with previous analytic calculations for
spherically symmetric scatterers. Superellipsoid nanocrystals are considered in order to smoothly vary the shape
from octahedra to cubes via spheres, while preserving cubic symmetry. Spectra are calculated and discussed
taking into account the irreducible representation of the involved vibration modes. A strong increase in the
inelastically scattered light intensity is observed for small variations of the shape around the sphere. This increase
is related to variations of the electric field inside the nanocrystals, which are very small for small nanospheres but
increase quickly for nonspherical nanocrystals. This strong dependence with shape must be taken into account
when interpreting experimental spectra acquired from inhomogeneous ensembles of nanocrystals whose shape
dispersion are usually neglected. The overall changes in the spectra when varying the shape of the nanocrystals
provide additional insight into previously published results. Preliminary calculations for chiral shapes further
show a significant difference between spectra obtained with right or left circularly polarized light.
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I. INTRODUCTION

The vibrations of objects are governed by their compo-
sition but also by their size, shape, and environment. Their
exploration therefore provides a way to gain insight into
all these properties. At the nanoscale the frequencies of
vibrations fall into the GHz to the THz range. Different exper-
imental methods have been used to detect them [1]. Inelastic
light scattering by metallic nanoparticles has been shown to
be suitable for this purpose more than 50 years ago [2]. This
experimental technique is still of interest nowadays thanks
to continuous progress in the controlled synthesis of metallic
nanocrystals and to the performance of Raman and Brillouin
spectrometers. Most of the existing literature in this domain
relies on the assignment of modes to the peaks observed
in the spectra, based on a comparison of experimental fre-
quencies with calculated ones. In this context, the Raman
selection rules [3] for isotropic spheres have been very helpful
in reducing the number of responsive vibrations. However,
this method becomes less and less useful as objects of lower
symmetry are considered. A few methods were proposed [4,5]
in the past to calculate Raman spectra, but they have not
been widely used, in particular because they have not been
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extended to nonspherically symmetric systems. Recently,
there has been a renewed interest in this domain with the
appearance of an analytic approach for spherical nanoparticles
composed of an elastically isotropic material [6], that was
later extended to dimers [7]), and of other numerical ap-
proaches [8–10]. A few recent works have also been devoted
to the related topic of numerical models of acousto-plasmonic
coupling in metallic nanoparticles [11–13].

The present work also aims at obtaining a general numer-
ical approach to calculate the Raman spectrum for metallic
nanoparticles of arbitrary shape but with additional con-
straints. First, we want to demonstrate the validity of the
numerical model by reproducing the spectra obtained analyti-
cally for spheres [6]. For this reason, we rely on the formalism
developed in that work. Second, we want to calculate spectra
for nanosuperellipsoids which have been shown to be a good
approximation to the shape of rounded nanocubes, for which
experimental spectra have been published in recent years
[14,15]. By doing so, the shape can be smoothly varied from
an octahedron to a cube via a sphere, preserving cubic sym-
metry and thus allowing the use of group theory [16] to help
monitor the variations of the calculated spectra with shape.
Third, cubic elasticity is introduced in order to calculate
spectra that are closer to experimental conditions. Indeed, pre-
vious works have demonstrated that the splitting of the main
low-frequency Raman peak is due to anisotropic elasticity in
nanoparticles whose internal lattice structure is monodomain
cubic gold or silver [15,17]. In the following, we use the term
“nanocrystal” in the latter case and “nanoparticle” otherwise.
Since the final goal is to devise a general method to calculate
spectra for nanoparticles with arbitrary shapes, symmetry is

2469-9950/2025/111(20)/205431(8) 205431-1 Published by the American Physical Society

https://orcid.org/0000-0002-1249-2730
https://ror.org/02b6c1039
https://orcid.org/0000-0001-8930-8797
https://ror.org/004fmxv66
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.205431&domain=pdf&date_stamp=2025-05-27
https://doi.org/10.1103/PhysRevB.111.205431
https://creativecommons.org/licenses/by/4.0/


LUCIEN SAVIOT AND VINCENT LAUDE PHYSICAL REVIEW B 111, 205431 (2025)

not enforced during finite element calculations but used at the
classification stage. To interpret the results, free vibrations are
indeed calculated using the Rayleigh-Ritz approach [18]. This
method takes advantage of the cubic symmetry [16,19]. It is
very fast and allows determining the irreducible representa-
tions of the vibrations and to follow the dispersion of each
mode as the shape is varied.

II. METHODS

To calculate Raman spectra, we use the expressions derived
by Girard et al. [6]. They rely on a simple mechanism of
Raman scattering, based on the density fluctuations in the
nanoparticles induced by the elastic vibrations. Alternatives
exist which also take into account the deformation potential
coupling [5,8,10,11]. This is required when considering very
small or nonmetallic nanoparticles [5]. This is not the case
in this work and the deformation potential coupling can be
neglected.

In this theory, the Stokes Raman intensity for each vi-
bration eigenmode i (pulsation ωi, displacement ui) of a
homogeneous particle is given by overlap integrals involving
the internal electric field E int and the vibration field, as

Ii(ω) ∝ 1 + n(ω)

ω

∥∥∥∥u ×
(

u ×
(∫∫∫

E int (r)e−ikr∇ · ui(r)dV

−
∫∫

E int (r)(ui(r) · n)dS

))∥∥∥∥
2

δ(ω − ωi ). (1)

The volume and surface integrals in Eq. (1) are over the
nanoparticle only, n(ω) is the Bose factor, k = ‖k‖u is
the scattered wave vector, and n is the outward normal to
the surface. As a first-order perturbation theory, acoustoplas-
monic coupling is evaluated from the unperturbed internal
electric field and nanoparticle vibration, in contrast to a full-
wave approach that requires solving the scattered electric
field for every particle vibration [11]. Equation (1) is further
reminiscent of optomechanical coupling in dielectric nanos-
tructures [20], that also involves a linear combination of
volume and surface overlap integrals.

E int and ui are both calculated using the finite element
method (FEM) with FreeFem++ [21], as in Ref. [11].
Vibration eigenmodes are obtained by solving the Navier
equation for a nanoparticle defined by its mass density ρ,
elasticity tensor CIJ , and shape. We neglect the embedding
matrix in this calculation so that only free vibrations are con-
sidered. This assumption is generally valid, in particular when
the matrix mass density and the coefficients of the elasticity
tensor are smaller than those of the nanoparticle [22]. Should
radiation of elastic waves inside the host medium be included,
it would be required to properly account for leakage, for
instance using the concept of quasinormal modes [23], but this
goes beyond the scope of the present work.

For the electric field calculation, we consider the plane-
wave illumination of the single metallic nanoparticle at rest,
with permittivity ε, embedded in an homogeneous dielectric
medium defined by its real permittivity εm = n2

m. We solve the
vector wave equation as detailed in Ref. [11].

1.5 1.8 2 2.2 3 8 50

← octahedron sphere cube →

FIG. 1. Superellipsoids of cubic symmetry considered in this
work. The shape varies from an octahedron for n = 1 (left side) to
a cube as n → ∞ (right side), via a sphere at n = 2.

We consider superellipsoid (or superquadrics) nanoparti-
cles whose surface is defined by the implicit equation∣∣∣ x

L

∣∣∣n
+

∣∣∣ y

L

∣∣∣n
+

∣∣∣ z

L

∣∣∣n
= 1. (2)

Their shape varies from octahedra for n = 1 to cubes for
n → ∞ via spheres for n = 2. Their length in the x, y and
z directions is 2L. The shapes considered in this work are
represented in Fig. 1.

Superellipsoids are meshed with gmsh [24], starting from
the parametric description of their surface

x(t, p) = L c(t, n) c(p, n),

y(t, p) = L c(t, n) s(p, n),

z(t, p) = L s(t, n), (3)

with 0 � t � π and 0 � p � 2π . Coordinates t and p identify
with the usual spherical coordinates θ and φ for n = 2 only.
Functions c(x, n) and s(x, n) are defined as

c(x, n) = cos x | cos x|2/n−1,

s(x, n) = sin x | sin x|2/n−1. (4)

III. RESULTS AND DISCUSSION

A. Spherical nanoparticles

We first apply the method presented above to the case of
isotropic spheres, in order to reproduce the analytic calcu-
lations from Girard et al. [6]. Figure 2 shows spectra for
isotropic gold spheres with diameters 18 and 49 nm that can be
directly compared with those presented in Fig. 3 of Ref. [6].
The elastic parameters for gold are obtained from the sound
velocities (vL = 3330 and vT = 1250 m/s). The mass density
is ρ = 19300 kg/m3. Optical constants are taken from John-
son and Christy [25]. For simplicity, we used λ = 520.8 nm
(ε = (0.62 + 2.081i)2). That wavelength is close to λ =
532 nm and no significant change is expected from this minor
difference. The nanospheres are embedded in a transparent
matrix of index nm = 1.5. Spectra are calculated for the back-
scattering configuration. The 300 lowest frequency vibrations
are taken into account. They cover the frequency range
up to about 1.4 times the breathing mode frequency (funda-
mental spheroidal mode with 
 = 0). The different contribu-
tions were summed after broadening with a Lorentzian shape
function with a full width at half-maximum of 3 GHz, as in
Ref. [6].

The agreement with the original figure is very good for the
larger nanoparticle, for which most vibrations have a negli-
gible contribution to the spectrum, except for the expected
Raman active ones: fundamental and first overtone of the
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FIG. 2. Raman spectra computed for two isotropic gold spheres
embedded in a transparent matrix of index nm = 1.5, for a 520.8 nm
excitation wavelength and in the backscattering geometry. Two di-
ameters are considered, 18 nm (top) and 49 nm (bottom). Labels
(
, n) and arrows indicate the frequencies of the nth overtone of the
spheroidal mode with angular momentum 
. Raman active modes are
indicated in bold. Compare with Fig. 3 of Ref. [6].

quadrupolar mode (spheroidal 
 = 2), and a minor contribu-
tion from the fundamental breathing mode (spheroidal 
 = 0).
The weak spheroidal 
 = 3 peak also agrees with the analytic
calculations. It results from the relaxation of the selection
rules for nanoparticles that are not very small compared to
the optical wavelength.

The agreement is good for the smaller nanoparticle as well,
except for the additional weak contributions from spheroidal
modes with 
 > 2. As already pointed out in Ref. [6], the
intensity of the main peak is in this case three orders of mag-
nitude lower than for the larger nanoparticle. This fact results
from the almost exact cancellation of volume and surface
integrals in Eq. (1). The spurious peaks have even smaller
intensities. Reproducing such small intensities is challenging
with numerical approaches. The spherical shape is imperfectly
modeled due to the mesh discretization and to the convergence
of the finite element method. The results reported in Fig. 2
are therefore promising, since all the main features of the
calculated spectra are reproduced, except for minor deviations
in the most numerically challenging cases.

B. Superellipsoidal nanoparticles

To demonstrate the usefulness of the present approach,
we now consider the case of nonspherically symmetric
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FIG. 3. Raman spectra computed for isotropic gold superellip-
soid nanoparticles with 2L = 18 (black) and 49 nm (red, below)
and n = 1.5, 1.8, 2, 2.2, 3 and 8 from top to bottom. Spectra are
normalized by the maximum intensity and shifted vertically as 1/n
for clarity and to overlay frequency variations with n. Intensities are
divided by a factor 15 for reduced frequencies ranging from 650 to
1100 m/s. The blue and gray curves show the dispersion curves for
Raman active (A1g, Eg and T2g) and inactive vibrations, respectively.

particles that can not be modeled analytically. To do so, we
first vary the shape of the nanoparticles. Figure 3 shows nor-
malized spectra calculated for different superellipsoids chosen
so that the shape varies around the sphere while keeping
2L = 18 or 49 nm. Frequencies are multiplied by the cubic
root of the volume and expressed as sound velocities, as in
previous works [14,15]. Using these reduced frequencies, the
position of Raman active vibrations remain mostly unchanged
while varying L and n [16]. The peaks are now broadened
with narrower Lorentzian functions to better highlight indi-
vidual contributions. Vibrations are also calculated using the
Rayleigh-Ritz method [16] for each irreducible representa-
tions of Oh with varying n. The resulting dispersion curves
are added to Fig. 3 for both Raman active (blue) and inactive
(grey) modes to help assign peaks. The spectra contain two
intense Eg and T2g peaks that merge into the quadrupolar
vibrations of the sphere (n = 2) at 853 m/s. This modal
splitting results from cubic symmetry (n �= 2) being lower
than spherical symmetry. The incident light polarization is
kept along a (100) direction and the Eg peak is more intense.
Additional weaker peaks at higher frequency are present even
for 2L = 18 nm when n �= 2. Their assignment will be dis-
cussed later. The most striking point regarding these spectra is
their intensity that increases sharply when the shape deviates
from the sphere, as seen in Fig. 4 (top). This variation is
strong, in particular for the smaller nanoparticles for which
the intensity increases by two orders of magnitude between
n = 2 and n = 2.2 or n = 1.8 while the volume variation
remains small (±10%). Girard et al. pointed out that the main
ingredient driving the Raman intensity is the spatial varia-
tion of the electric field inside the nanoparticle. Therefore,
to understand the origin of the large intensity variations, we
plot the magnitude of the electric field inside the n = 1.8, 2,

205431-3



LUCIEN SAVIOT AND VINCENT LAUDE PHYSICAL REVIEW B 111, 205431 (2025)

 0.001

 0.01

 0.1

 1

 1.5  1.8  2  2.2  3  8

I E
g
 (

a
rb

. 
u

n
it

s)
n

0.0

0.1

0.2

0.3

0.4

0.5

1/4
2/314/3

σ
/E

i

2/n

FIG. 4. Intensity of the Eg band normalized at n = 8 (top)
and standard deviation σ of the electric field amplitude inside the
nanoparticle normalized to the amplitude of the incident electric field
(bottom), for different superellipsoids whose cross section along the
x = 0 plane is represented in the middle.

and 2.2 nanoparticles with 2L = 18 nm in Fig. 5. The inter-
nal electric field is almost the same everywhere inside the
sphere. This is expected because it is exactly constant for a
dielectric sphere in the electrostatic case (an analytic deriva-
tion is provided in Ref. [26]). It is not exactly zero in the
numerical calculations because the retardation effect is taken
into account (variation of the phase of the incident electric
field along the propagation direction) as in Mie scattering
theory. The average value is nevertheless close to | 3εm

ε+εm
Einc|

for 2L = 18 nm. We calculated the standard deviation σ of

1
2
3
4

Ei

ki

FIG. 5. ‖E int‖ inside gold superellipsoids with 2L = 18 nm for
n = 1.8, 2 and 2.2 from left to right. The directions of the incident
field Ei and propagation ki are indicated with arrows.

the magnitude of the electric field inside the nanoparticle to
quantify its variation. The results plotted in Fig. 4 (bottom)
show that σ varies quickly around n = 2. When n varies
from 2 to 1.8 for 2L = 18 nm, the intensity increases by two
orders of magnitude while the volume decreases. To reach the
same intensity, it would be necessary to multiply the volume
V of the 2L = 18 nm sphere by �9 according to the V 2.3

intensity variation obtained in Ref. [6]. The difference is
even more striking when the shape tends to an octahedron
(larger intensity increase as the volume becomes smaller).
Similarly, when going from a sphere to a cube while keeping
L constant, the volume is approximately doubled. The V 2.3

law predicts that the intensity is multiplied by �5.5 which is
much less than the 2 or 4 orders of magnitude observed in
Fig. 4 (top). From this point of view, the variation of intensity
with shape is significantly stronger than the variation with
size.

To the best of our knowledge, this strong shape depen-
dence has not been reported previously in the literature. Yet
the spherical shape approximation is never perfectly valid,
because actual nano-objects are made of a finite number of
atoms. In addition, nanocrystals are often faceted as can be
predicted for example by Wulff construction. It is therefore
necessary to be careful when comparing experimental re-
sults with the spherical approximation, in particular when
discussing the intensities for small, almost spherical nanopar-
ticles.

C. Symmetry and Raman active modes

We now turn to the modal assignment of the lower in-
tensity features in the spectra. As explained before, care
should be taken for small spheres due to the very low inten-
sity of the spectrum resulting in the appearance of spurious
peaks due to numerical and discretization issues. Thanks to
the strong intensity increase discussed before, this point is
less problematic for nonspherical nanoparticles. Peaks around
1700 m/s in Fig. 3 are present in most spectra. The corre-
sponding vibrations are Raman active modes (A1g, Eg, and
T2g) coming from the (2,1) and (4,0) spheroidal modes of the
sphere. For the larger nanoparticles, peaks are also present
around 1300 m/s and come from the previously mentioned
(3,0) spheroidal mode of the sphere. For the shape closest
to a cube (n = 8), additional peaks are observed near 610
and 1130, 1250 and 1320 m/s. The first one comes from the
(2,0) torsional modes, whereas the others come from the (3,0)
spheroidal and (3,0) torsional modes of the sphere. Raman
scattering by torsional modes is generally considered to be
negligible, including for large nanoparticles. This is because
such vibrations do not modify the mass density during os-
cillation, but also because the shape of a sphere does not
change during oscillations caused by torsional vibrations. It
is indeed well-known for spheres that the Raman intensity
is associated to the ability of the vibration to change the
shape during oscillation [5]. For cubes, torsional vibrations
modify the shape, which explains why the Raman scattering
cross sections for these vibrations becomes non-negligible.
However, contrarily to the strong shape dependence reported
above for the intensity, the apparition of peaks due to torsional
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FIG. 6. Raman spectra computed for cubic Au superellipsoid
nanocrystals 2L = 49 nm (red) and n = 1.5, 1.8, 2, 2.2, 3, 8, and
50 from top to bottom. The spectra are normalized at the maximum
intensity and shifted vertically as 1

n for clarity and to overlay the
frequency variations with n. Intensities are divided by 15 between
450 and 700 m/s. The blue and grey curves show the normalized
frequencies of the Raman active (A1g, Eg and T2g) and inactive
vibrations, respectively.

modes is only observed for values of n significantly different
from 2.

D. Superellipsoidal nanocrystals

A detailed comparison with experiments is out of the
scope of the present work because results reported in the
literature differ in nanocrystal composition, shape, size, exci-
tation wavelength, optical index of the surrounding medium,
different ligands, presence of neighboring nanocrystals, ...
In the following, we highlight some general features of the
Raman spectra of metallic nanocubes and their manifesta-
tion in published spectra. While the previous calculations
provide an interesting insight in Raman scattering from non-
spherically symmetric nanoparticles, it does not take elastic
anisotropy into account. Gold and silver nanocubes are of-
ten single domain (not twinned) and their shape comes from
the cubic lattice structure of gold. This has to be taken into
account to model the vibration frequencies of gold nanocrys-
tals accurately and assign the observed Raman peaks [17].
For this reason, we calculated the spectra for the same
2L = 49 nm gold nanocrystals using the elastic parame-
ters for cubic gold (ρ = 19.283 g/cm3, C11 = 191, C12 =
162 and C44 = 42.4 GPa). The x, y, and z axes of the su-
perellipsoids are along the <100> directions of the lattice
structure.

Computed normalized spectra are plotted in Fig. 6, with the
same conventions as in Fig. 3. Note that there is a strong re-
lationship between the intensities calculated for nanocrystals
with identical shapes but different elasticity tensors. Indeed,
the displacements associated to each vibration mode for each
system form an orthogonal basis. The vibrations of one system
are therefore fully described by projecting onto the sec-
ond system [27]. Therefore, the strong shape dependence of

the intensity discussed before for isotropic elasticity is still
valid for cubic gold. As a note, the Raman spectrum for
a sphere made of an elastically anisotropic material can be
obtained more accurately by projecting the vibrations of the
anisotropic sphere obtained numerically (FEM or Rayleigh-
Ritz for example) onto those of the isotropic sphere (Lamb
modes [28]) and calculating the intensities using the analytic
approach [6].

The main Raman peaks in Fig. 6 correspond to the Eg

and T2g peaks at about 600 and 950 m/s, coming from the
splitting of the intense spheroidal 
 = 2 peak of the isotropic
sphere. The spectra also show minor contributions to the
high frequency side of the T2g peak which shift to the low
frequency side for n > 3. A similar behavior was recently
reported for silver nanocubes [15]. It was assigned to the
anticrossing between two T2g branches. The present calcula-
tions show an additional contribution of the second Eg branch.
Interesting experimental Raman spectra for gold nanocrystals
were also reported recently [14]. They showed very narrow
peaks because they were obtained for single nanocrystals and
therefore without inhomogeneous broadening, contrarily to
most reported results involving ensemble measurements,i.e.,
for which the spectra contain the contribution of several
nanocrystals. The present calculations, and in particular those
presented in Fig. 6, shed a new light on these results. The
substructures observed for the Eg and T2g peaks were tenta-
tively assigned to their splitting due to unequal dimensions
of the nanocrystals along the three directions. Even so, the
spectrum near the expected Eg peak seemed to be composed
of 3 contributions which could not be explained by the two-
fold degeneracy of the Eg mode. The spectra calculated for
n = 50 show that additional Raman inactive vibrations can
contribute in this frequency range. Their calculated intensity
is here small, but the nanocubes in Ref. [14] were larger
(2L ∼ 80 nm). The large shift observed for the peak near
the T2g frequency when changing the incident polarization
was also not explained. The present calculations show that
additional contributions in this frequency range are indeed
possible, as discussed before for silver nanocubes. Finally,
the nanocrystals showing the most unexpected features in
Ref. [14] were those close to a silica step. In addition, the
spectra were sensitive to the polarization of the incident light.
The presence of this step was also shown to modify the
electric field magnitude inside the nanocube. Different inci-
dent polarizations are expected to modify E int. As detailed
above, these modifications can in principle change the cal-
culated spectra. Taking into account all these factors goes
beyond the scope of this work, but will be considered in the
future. They may open the door to monitoring the electric
field inside metallic nanoparticles through inelastic scattering
measurements.

As indicated in the introduction, Montaño Priede et al. [8]
recently reported similar calculations for small gold spherical
nanocrystals made of isotropic and cubic gold. As discussed
before, calculations for anisotropic spheres can be handled
analytically after projection of the vibrations onto those of
an isotropic sphere. We note also that the method used in
that work requires the calculation of the electric field for
the sphere deformed by each vibration mode, which requires
significantly more computations. Calculations were actually
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performed only for a few selected vibrations (spheroidal 
 = 0
and 2). This selection is valid for an isotropic sphere, but
questionable for an anisotropic sphere whose vibrations are
not pure Lamb modes anymore; it can not be applied non-
spherical shapes.

In another recent work, Gelfand and Pelton [10] presented
calculated spectra for small isotropic silver and gold spheres
and a silver cube. Similar comments regarding the analytical
solution for spheres and the larger computational resources
required to calculate spectra are valid. The authors did not
attempt to check the validity of the Raman selection rules,
arguing that Raman inactive vibrations have been experimen-
tally observed in Ref. [29]. However, the cited work concerns
much larger silica spheres with diameters �200 nm. The Ra-
man selection rules are indeed invalid in that case because they
are derived for sizes that are small compared to the wavelength
of light. The authors also argue that the Raman selection rules
break down for nontotally symmetric vibrations because the
deformed nanoparticle does not have the same symmetry as
the undeformed one. This reasoning seems dubious because
it should also apply to Raman scattering in molecules. It is
difficult to discuss in detail here the results presented by the
authors because the peaks in the spectra of spheres were not
assigned to Lamb modes. However, we note that the relative
intensities for the silver sphere are quite different from those
reported in Ref. [5]. While the reason for this discrepancy is
unknown, it may be related to a poor convergence of the calcu-
lations in this challenging case, as explained before. We also
believe that our work demonstrates that the Raman selection
rules remain useful to follow the evolution of the intensity of
each mode, in particular when smoothly varying the shape of
the nanoparticles. A direct comparison with spectra calculated
in Vasileiadis et al. [9] is difficult since that work focused
on nanorods, which are not considered in the present work.
We note however that the electromagnetic coupling in dimers
was shown to play a significant role, which agrees with the
sensitivity to the variation of the electric field discussed in the
present work.

E. Chiral nanoparticles

We now turn to calculations for chiral gold nanoparticles
excited with circularly polarized light. To the best of our
knowledge, no such measurements have been reported in the
literature despite the strong current interest in chirality. These
calculations are motivated by the similarity with the probing
of molecular chirality using Raman optical activity (ROA)
[30]. We thus aim at investigating the possibility of probing
chirality in gold nanoparticles. To this end, we consider chiral
nanoparticles that are identical or as close as possible to the
previous ones, to ease comparison. We calculated spectra for
right (clockwise from the point of view of the receiver) and
left circularly polarized incident light for a sphere, a rounded
cube and a twisted rounded cube made of gold with isotropic
elasticity. We used the same length (2L = 49 nm) for all of
them. Only the last particle has a chiral shape. It is obtained
starting from the rounded cube (superellipsoid with n = 8) by
rotating the points around the z axis by the z-dependent angle
α(z) = π
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FIG. 7. Raman spectra for left (blue line) and right (red line)
circularly polarized incident light, and their difference (black line)
for a sphere (bottom left panel), a rounded cube with n = 8 (top left
panel) and a rounded twisted cube (right panel). The 3D views of
the nanoparticles are plotted within a cube with edge length 2L. The
incident beam propagates in the direction perpendicular to the front
face of the cubes. The rounded twisted cube is obtained from the
rounded cube by applying a rotation along the vertical axis z by an
angle varying linearly with z so that the top and bottom faces are
rotated by ±45◦.

The calculated spectra and three-dimensional (3D)
representations of the nanoparticles are presented in
Fig. 7. The volume of the twisted and non-twisted rounded
cube are the same, so their vibrational frequencies are close.
Indeed, the peaks with the largest intensity fall in the same fre-
quency range. As expected, the spectra calculated for the right
and left circular polarizations are equal (within numerical pre-
cision) for achiral nanoparticles (sphere and rounded cube).
A large difference is obtained, in contrast, for the twisted
rounded cube. ROA is a very small effect with a magnitude of
about 10−3 or less requiring special detection schemes to ob-
serve it. In the present case, the magnitude is larger than 10−1,
suggesting that observation may be possible using existing
setups. Indeed, even if all the peaks near the quadrupolar-
like vibration would merge when adding an inhomogeneous
broadening, as in ensemble measurements for example, the
position of this peak would shift between the two circular po-
larization because the sign of the difference is opposite for the
low and high frequency sides. We assign this larger magnitude
to the large size of the nanoparticles compared to molecules,
which makes it easier to observe an effect due to the spatial
variation of the incident electric field, but also to the fact
that we consider the vibrations of a larger entity (compared
to the vibrations a few molecular bonds in the Raman spec-
tra of molecules). The validity and the applicability of these
calculations must of course be reevaluated when investigating
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real systems. In particular, the shape we considered is some-
what arbitrary, even if more complex shapes have been re-
ported in the literature [31]. The environment of the nanopar-
ticle can also play a significant role and inhomogeneous
broadening in ensemble measurements may further hinder this
difference.

IV. CONCLUSION

A numeric approach based on the finite element method
has been proposed to calculate inelastic light scattering spec-
tra of metallic nanoparticles. The approach satisfactorily
reproduces the results of the analytical model from which it
was derived. Calculations for superellipsoids have revealed a
strong variation of the intensity of scattered light with shape,
in particular for small nanoparticles. This effect originates
from the special case of spheres for which the internal electric
field is constant in the electrostatic approximation, resulting in
a very small intensity originating only from small retardation
effects. Going away from this particular case by changing the
shape is shown to increase the inelastically scattered intensity
by orders of magnitude. This point must carefully be taken
into account when the scattering intensity plays a role, as
in ensemble measurements for example. Indeed, within an
inhomogeneous population of almost spherical nanoparticles,
the less spherical ones may contribute more to the spectrum,
making calculations based on the spherical approximation
misleading. Spectra calculated for nanocubes with cubic elas-
ticity show the contribution of vibration modes which have
not been considered before to assign experimental features.

In particular, this work supports the interpretation of original
features observed experimentally on single gold nanocubes as
originating from the variation of the internal electric field in-
side the nanocubes when modifying the incident polarization
or the environment, as observed for nanocrystals near a silica
step. This opens the door to using inelastic light scattering
as an indirect probe of the inner electric field in metallic
nano-objects. Finally, preliminary calculations show that the
spectra of chiral nano-objects with right and left circularly
polarized incident light differ significantly making inelastic
light scattering spectroscopy suitable to assess the chirality of
nano-objects.
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