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Transmission enhancement of sound waves across the interface between media with different impedances
is a classical problem in acoustic communication, for instance in the case of the water-air interface. Different
strategies, including bubble-embedded metasurfaces or impedance-matched metamaterials, have been developed
to render the interface transparent. Transmedia wave enhancement is up to now either broadband or incorporating
customized wavefront manipulation. In this paper, we explore the use of transformation acoustics and gauge
transformation to realize both goals simultaneously. Transformation acoustics is first argued to provide lossless
transmedia sound enhancement, although at the expense of adapting the cross section to respect power-flow
conservation. It is specifically proven that a gradient anisotropic metamaterial provides perfect transmission
between two media in two dimensions and that perfect steering of sound waves is allowed as well. Gauge
transformation theory is then adapted from transformation elasticity to provide one-dimensional perfect sound
transmission via a gradient Willis-like acoustic metamaterial. Finally, the two transformations are combined
together to implement broadband perfect acoustic transmission and focusing at the water-air interface. The lens
designed by the proposed method is achromatic. This paper is expected to provide alternative solutions for
transmedia communication.
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I. INTRODUCTION

The enhancement of sound wave transmission through the
water-air interface is receiving increasing attention [1], for
applications to environmental monitoring and marine com-
munications [2,3]. As a typical problem in wave propagation,
it is well known that the transmitted power is related to the
ratio of the acoustic impedances of the two media. Acoustic
impedance, the product of sound speed and mass density, is
thus generally used to describe the ability of homogeneous
media to carry plane waves. At first sight, it seems impossible
to transmit waves integrally between water and air [4]. There
is indeed a huge contrast in acoustic impedance, of about
3600, which leads to a theoretical power transmission rate as
low as 0.1% [5].

Two techniques have been developed along the past two
decades to improve transmission: bubble scattering and trans-
mission line theory. The potential of bubble scattering was
first discovered in the analysis of the radiation character-
istics of underwater point sound sources by Oleg [6–8]. It
was predicted that natural sound sources, e.g., air bubbles
oscillating under water, should be beneficial for transmedia
sound transmission. This idea was then proven through mul-
tiple scattering theory and demonstrated experimentally by
Bretagne et al. [9] with a meta-screen consisting of a single
layer of bubbles. The bubble-embedded structure made of

*Contact author: wangyanfeng@tju.edu.cn

hydrophobic materials proposed by Cai et al. suggested a
more practicable method [10] within the concept of metama-
terials [11] and metasurfaces [12]. Efficient transmission at
different frequencies was achieved by adjusting the immersion
depth of the structure. The technique was recently simplified
by Gong et al. [13] with membrane-sealing bubbles supplying
better operability. Such designs can also be extended to multi-
ple frequencies or be made broadband using series and parallel
connected bubbles of different scales [14] or resonance
modes [15].

Based on transmission line theory, another solution was
proposed by Zhang et al. [16]. Nonreflective transmission
can be observed when two mismatched media are con-
nected through a composite waveguide with specific effective
impedance. Similarly, Bok et al. [17] proposed a membrane-
mass metasurface with extremely thin thickness and verified
it experimentally. Interestingly, some bubble-based struc-
tures have also been found to provide matched equivalent
impedance [10,14,15]. They, however, suffer from some crit-
ical limitations. Structures containing resonant components
often lead to a relatively narrow operation bandwidth. Con-
sequently, the efficiency and the information capacity of
transmedia acoustic communications are difficult to improve.
One may turn to focused vortex-based communication [18] to
achieve multiplexing [19] at a given frequency. But the trans-
mitted phase difference is then fixed in a discrete fashion to
either π/2 or 3π/2, as determined by transmission line theory
[20]. This results in a huge obstacle for further modulation of
the wave field, whereas custom phase modulation is essential.
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FIG. 1. Schematic diagram of (a) coordinate transformation method, (b) transformation theory, and (c) inverse analysis of transformation
theory.

Some solutions have been proposed to solve these issues.
First, a wider operation bandwidth can be achieved by con-
sidering materials with gradient impedance distribution [21].
Direct water-air communication through acoustic wave was
hence demonstrated by Zhou et al. with extremely high capac-
ity and accuracy [22]. But the relationship between gradient
function and transmittance has not yet been proven clearly
[23]. Second, an arbitrary phase difference modulation can
be supplied by the series connection of two or more different
impedance-matched units for further enhancement and wave-
front manipulation [24,25]. Additional functions like acoustic
focusing enhancement and acoustic vortex generation were
thus implemented. However, there is up to now no clear so-
lution to achieve both goals simultaneously.

Transformation acoustics may offer an alternative solution
[26,27]. It originates from coordinate transformation theory
and enables many functionalities in electromagnetism [28,29],
acoustics [30–34], elasticity [35–38], thermology [39–41],
and even multicoupled physics [42–44], because of the uni-
versal existence of coordinate transformation invariance in
the governing equations [45]. Invisibility cloaking is the most
commonly considered application [46]. The use of transfor-
mation theory for metasurface design has also aroused great
interest [47,48]. Precise wave manipulation can be achieved
by structures with specific gradients of properties. Further-
more, additional degrees of freedom become available for
field regulation, as the amplitude becomes adjustable with
the introduction of gauge transformation [37,44,49]. How-
ever, most studies involving gauge transformation remain in
the field of transformation elasticity. It still has considerable
potential in transformation acoustics.

In this paper, broadband transmedia sound transmission
and enhancement is considered based on the combination of
transformation acoustics and gauge transformation. It is first
shown that two arbitrarily different media can be continuously
connected using a 2D spatial transformation. Gauge trans-
formation with a Willis-like material is then adapted from
transformation elasticity and perfect acoustic transmission is
realized in 1D. Finally, it is argued that phase modulation can
be allowed when combining the two transformations together.

As an example, a broadband and achromatic lens is designed
for acoustic signal enhancement. All theoretical developments
are validated through numerical simulation.

II. METAMATERIAL DESIGN BASED ON THE INVERSE
ANALYSIS OF TRANSFORMATION ACOUSTICS

Transformation theory originates from the coordinate
transformation method. The solving process can be inter-
preted as applying a mapping F to the governing equation in
original space, as shown in Fig. 1(a). The governing equa-
tion in transformed space is often described by curvilinear
coordinates in a concise form. In the transformation, the orig-
inal space with a regular grid is regarded as real or objective,
whereas the transformed space is virtual.

The application of transformation theory to metamaterial
design follows an inverse application of the coordinate trans-
formation method, which is depicted in Fig. 1(b). A simple
equation in virtual space with a known solution is considered
first. The mapping F is then constructed to relate both coor-
dinate systems. The coefficients of the transformed governing
equation in real space, rather than the solution itself, serve as
the major guidance during metamaterial design; they form the
transformed material parameters. One can directly obtain the
material parameters at given coordinates, as the grid is regular.

In the formulation of the transmedia problem we consider
in this paper, transformation theory is also applied inversely,
as depicted in Fig. 1(c). There is, however, a crucial ques-
tion that needs to be answered beforehand: Which media
can be connected together through a transformation? The
question of the existence of a solution achieving simulta-
neously broadband transmission enhancement and arbitrary
wavefront manipulation is indeed important but easily over-
looked. Therefore, the mapping F should be checked first to
connect different media. Applying it in the original space, the
required parameters in the transformed space, i.e., the real
space, can then be obtained.

Transformation theory in this paper is discussed along the
following line. The original virtual space is occupied by the
single material m1 that is divided into three regions, as shown
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FIG. 2. Schematic diagram of transmedia problem based on
transformation metamaterials. (a) The original space is occupied by
material m1 and divided into three regions. (b) The transformed space
consist of three media m′

1, m′
2, and m′

3, and is obtained by three
different transformations. The transformed space and the original
space share consistent continuity at �1 and �2. (c) Replacing m′

3 with
an impedance-matched medium m′

4, plane waves can be transmitted
without reflection.

in Fig. 2. Three submappings are applied to these three re-
gions, respectively. Mapping F1 connects region m1 on the left
side to region m′

1 in real transformed space. For simplicity, it is
set as the identity mapping, so that original and transformed
parameters are the same. Mapping F3 connects the original
medium m1 on the right side onto region m′

3. Note that it is
a constant mapping if m′

3 is a homogeneous medium. After
these two mappings are determined, mapping F2 is estab-
lished by imposing continuity conditions on the boundaries �1

and �2 separating the three regions. m′
2 is therefore a gradient

metamaterial with spatially varying parameters. Theoretically,
waves can propagate from m′

1 to m′
3 through m′

2 without reflec-
tion, just like they would in a homogeneous medium.

A. 2D metamaterials based on transformation acoustics
with spatial transformation

Under the framework of transformation acoustics, the orig-
inal space is described by a scalar Helmholtz equation. The
governing equation for time-harmonic acoustic waves in ho-
mogeneous medium with a mass density ρ and a bulk modulus
K then reads

∇ · ρ−1∇p(x) + ω2K−1 p(x) = 0, (1)

where ω is the angular frequency and ∇ = ∂
∂x ex + ∂

∂y ey is
the gradient operator in original space. The mapping F is
represented by the transformation matrix

F (x′) = ∂x′

∂x
=

[
∂x′
∂x

∂x′
∂y

∂y′
∂x

∂y′
∂y

]
(2)

whose determinant is the Jacobian J . Substituting Eq. (2) into
Eq. (1), the transformed governing equation is

∇′ · [ρ ′−1(x′)∇′ p(x′)] + ω2K ′−1(x′)p(x′) = 0, (3)

where ∇′ = ∂
∂x ex′ + ∂

∂y ey′ is the gradient operator in trans-
formed space. The transformed specific volume is the

tensor

ρ ′−1(x′) = ρ−1 FF T

J
(4)

and the transformed bulk modulus is the scalar

K ′−1(x′) = K−1

J
. (5)

The mapping F3 relates two homogeneous media so the
restriction of the transformation matrix to region m′

3 is a
constant matrix

F (x′)|m′
3
= F3 =

[
a b
c d

]
. (6)

Since we want m′
3 to be a natural material, for instance air, the

specific volume is imposed to be isotropic

ρ ′−1(x′)|m3 = ρ−1 F3F T
3

J3
= ρ ′−1I . (7)

The ratios of mass densities and bulk moduli before and after
transformation are, respectively, defined as α = ρ ′

ρ
and β =

K ′
K . Hence, the components of the transformation matrix obey
the relations

a2 + b2

ad − bc
= α, (8a)

ac + bd = 0, (8b)

ad − bc = β, (8c)

c2 + d2

ad − bc
= α. (8d)

These equations have no solution if α �= 1, as shown in
Appendix A. This condition imposes the transformation to
act only on the bulk modulus but to leave the mass density
unchanged. Setting α = 1 and writing a = a0, the transfor-
mation matrix can be solved as

F3 =
⎡
⎣ a0 ±

√
β − a2

0

∓
√

β − a2
0 a0

⎤
⎦. (9)

Substituting into Eq. (2), the coordinate transformation is
obtained by integration⎧⎨

⎩
x′ = a0x ±

√
β − a2

0y +hx,

y′ = ∓
√

β − a2
0x +a0y +hy.

⎫⎬
⎭ (10)

where hx and hy are constants. It can be noted that 0 � |a0| �√
β.
The polar decomposition of the transformation matrix F3 =

V R (RRT = RT R = I , det R = 1, V 2 = F3F T
3 ) is introduced to

check its physical significance

F3 = V R =
[√

β 0

0
√

β

]⎡
⎣

√
a2

0
β

±
√

1 − a2
0

β

∓
√

1 − a2
0

β

√
a2

0
β

⎤
⎦. (11)

V is a stretching matrix that is uniquely determined by the
ratio of bulk moduli. R is a rotation matrix. It can be noted
that the ratio of the coefficients of the original coordinates in
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Eq. (10) determines the angle of rotation after transformation.
There is no rotation only if a2

0 = β.
We can now precise the mapping F2. Continuity conditions

[44] need to be satisfied on boundaries �1 and �2,

F2(x′)|�1 = F1(x′)|�1 = I , (12)

F2(x′)|�2 = F3(x′)|�2 = F3. (13)

In between these boundaries, we request the mapping to vary
smoothly with space coordinates, for instance, as a polyno-
mial of x and y, but it is not uniquely defined. A specific
example with simple parameters is provided next as a intuitive
demonstration of the design process for transformation meta-
materials. The original space is set as a waveguide filled with
water with a mass density of ρw = 1000 kg/m3 and a bulk
modulus of Kw = 2.25 × 109 Pa. Assuming that the medium
to be connected owns a mass density ρ ′ = ρw and a bulk mod-
ulus K ′ = Kw/4, then α = 1 and β = 0.25. Impedances are
mismatched, with the impedance ratio γ = Z ′

Zw
= √

αβ = 0.5.
The original space is composed of three rectangles with the
same height hw = 10 cm. The length of the left and right parts
is set to ws = 50 cm, whereas the length of the middle part
is set to wm = 20 cm. The origin of the coordinate system
is chosen at the center of the middle part for convenience. A
plane wave with unit amplitude is incident along the positive
x direction. The line segment with endpoints (−wm/2, 0) and
(wm/2, 0) is imposed to remain unchanged under transforma-
tion, so that

F2(x, 0) = (x′, 0). (14)

The transformation F2 and the constants hx and hy are
obtained by inspection, combining Eqs. (12)–(14), and con-
sidering the simplest possible polynomial dependence,

x′ = x ±
√

β − a2
0

2
y ±

√
β − a2

0

wm
xy,

y′ = a0 + 1

2
y − 1 − a0

wm
xy. (15)

hx = (1 − a0)wm, (16)

hy =
√

β − a2
0wm. (17)

The analysis presented above is frequency independent,
hence the results should be both broadband and achro-
matic. Two operating frequencies, f1 = 5000 Hz and f2 =
10 000 Hz, are adopted in the following numerical simula-
tions. The computation domain is terminated on both sides
by two perfectly matched layers (PML) with a thickness of
10 cm, in order to avoid external reflections. Three cases
are considered, with a0 = √

β,
√

3β/4, and
√

β/4. It can be
inferred from the polar decomposition of the transformation
matrix [Eq. (11)] that the positive or negative value of b in
Eq. (9) determines the sign of the rotation angle. We set
b = +

√
β − a2

0 in the following discussion for convenience.
Detailed metamaterial parameters are given in Appendix B.
Simulation results are summarized in Fig. 3. The sound fields
of Figs. 3(a) and 3(b) in the original space are shown for
reference (α = β = γ = 1, a0 = √

β). When γ = 0.5, there
is impedance contrast at a planar interface leading to partial
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FIG. 3. Response for plane wave incidence under different con-
figurations. The normalized pressure is shown in all panels. A
homogeneous medium with α = 1, β = 1, γ = 1, and a0 = √

β is
considered first at frequencies (a) f1 = 5000 Hz and (b) f2 =
10 000 Hz. [(c),(d)] Two impedance-mismatched media with γ =
0.5 are connected through a bare interface. Two impedance-
mismatched media with α = 1, β = 0.25, and γ = 0.5 are then
connected by a metamaterial based on spatial transformation for [(e),
(f)] a0,1 = √

β, [(g), (h)] a0,2 = √
3β/4, and (i)(j) a0,3 = √

β/4.

transmission of sound waves, as shown in Figs. 3(c) and 3(d).
The remaining panels show what happens when the metama-
terial based on transformation acoustics is introduced, keeping
γ = 0.5 constant. For a0,1 = √

β, as shown in Figs. 3(e) and
3(f), the rotation angle is zero; the medium on the transmitted
side narrows and shortens under the coordinate transform
and the wavelength become shorter. The sound wave is per-
fectly transmitted into the target medium, maintaining a planar
mode. The amplitude of the pressure in every section of the
sound field is unitary, inside as swell as on both sides of
the metamaterial. If a0 is decreased, the transmitted wave
is steered with a refraction angle θ = arctan

√
β

a2
0
− 1. For

a0,2 = √
3β/4, as shown in Figs. 3(g) and 3(h), the refraction

angle is 30◦. For a0,3 = √
β/4, as shown in Figs. 3(i) and

3(j), the refraction angle is 60◦. Hundred percent transmission
efficiency is obtained in all cases, regardless of the angle of
rotation.

The condition α = 1 is a strong limitation, since only
media with the same mass density can be connected. Fortu-
nately, the theory can be further developed in conjunction with
impedance matching theory. A medium m′

4 whose acoustic
impedance is the same as that of m′

3 can be connected onto
it without causing any reflection. Further setting the thickness
of m′

3 to zero, the transmission medium is replaced directly
with m′

4, as shown Fig. 2(c). Transmission should still be
perfect under the excitation of plane waves. Consider for
concreteness a medium m′

4 with mass density ρ ′ = ρw/2 and
bulk modulus K ′ = Kw/2, so that α = 0.5 and β = 0.5. The
impedance ratio with m′

1 is still γ = 0.5. The transmission
between m′

1 and m′
4 remains partial when no metamaterial is
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FIG. 4. Response for plane wave incidence under different con-
figurations. The normalized pressure is shown in all panels. Two
impedance-mismatched media with γ = 0.5 are connected through
a bare interface are considered first at frequencies (a) f1 = 5000 Hz
and (b) f2 = 10 000 Hz. Two impedance-mismatched media with
α = 0.5, β = 0.5, and γ = 0.5 are then connected by a metamaterial
based on spatial transformation for [(c), (d)] a0,1 = √

β, [(e), (f)]
a0,2 = √

3β/4, and [(g), (h)] a0,3 = √
β/4.

introduced, as shown in Figs. 4(a) and 4(b). When the three
metamaterials in Figs. 4(c)–4(h), with α = 0.5, β = 0.5, and
γ = 0.5, are introduced as a connection perfect transmission
can be observed again.

Theoretically, an impedance-matched connection between
water and air can be achieved thanks to metamaterials based
on spatial transformation. The norm-preserving nature of
the solution ensures that the amplitude of transmitted sound
waves are equal to the amplitude of incident waves, which
is a significant enhancement of the sound pressure compared
to the plane wave value 1/60 [24]. Setting the material of
m′

4 as air with mass density ρa = 1.18 kg/m3 and bulk mod-
ulus K = 1.38 × 105 Pa, the result of numerical simulation
at 10 000 Hz is given in Fig. 5. The metamaterial works
as expected, but the reduction in waveguide cross section is
obviously strong.
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10 cm

FIG. 5. The normalized pressure for a water-air transmedia meta-
material based on spatial transformation is shown at 10 000 Hz. The
huge contrast in impedance between water and air leads to small port
areas on the air side.

It should be noted that the method in this section could be
extended to 3D but does not work in 1D. Indeed, in 1D the
material parameters change as

ρ ′−1(x′) = ρ−1 ∂x′

∂x
, (18)

K ′−1(x′) = K−1

∂x′/∂x
, (19)

hence the impedance ratio (γ = √
αβ ) is always 1. This con-

clusion can also be reached by checking the conservation of
power flow. In 2D or 3D, this conservation expresses as

|p2
1|

2Z1
× A1 = |p2

2|
2Z2

× A2. (20)

where A1 and A2 are the areas of the incident and trans-
mission ports, respectively. Because of the norm-preserving
nature of the spatial transformation (p1 = p2), a difference in
impedance directly results in a change in port area, ( Z1

Z2
= A1

A2
).

That characteristic can be observed in both Figs. 3 and 4. For
the 1D case, in contrast, the ratio of port areas is always 1 and
the impedance is unchanged in a 1D transformation.

B. 1D metamaterials based on transformation acoustics
with gauge transformation

2D or 3D spatial transformation achieves perfect connec-
tion between arbitrary media, preserving the wave amplitude.
The huge contrast in impedance between water and air, how-
ever, leads extremely small port areas on the air side, as
apparent in Fig. 5. The ratio of port areas is A2

A1
= 1/60. This

fact makes the solution questionable in practice, despite the
superior sound enhancement. Therefore, conventional trans-
formation acoustics based on spatial transformation may only
be suitable in case of slight impedance mismatch.

Gauge transformation, inspired by transformation elas-
ticity [44], may provide an alternative solution. As an
energy-preserving transformation, the wave amplitude be-
comes variable while the dispersion relation is not disturbed. It
has been observed that Willis-like materials [50] are inevitably
introduced by a gauge transformation [37,44,49]. Fortunately,
there have been reports suggesting that materials with Willis-
like properties are actually accessible [51,52] or can even be
tunable [53]. The corresponding tuning strategies have also
been thoroughly developed [54,55] for easier implementation.
In this section, we examine how the Willis-like properties
are introduced by transformation acoustics under a gauge
transformation.

As a transformation on wave amplitude, 1D gauge trans-
formation can be defined as

p(x) = G(x)p′(x). (21)

Note that the spaces before and after transformation share the
same regular coordinate system, which is a special case of
Fig. 1(c). Substituting Eq. (21) into Eq. (1), the transformed
governing equation is

∂

∂x

[
ρ ′′−1(x)

∂

∂x
p′(x) + S(x)p′(x)

]

= S(x)
∂

∂x
p′(x) + E p′(x) − ω2K ′′−1(x)p′(x), (22)
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where

S(x) = G(x)

ρ

∂G(x)

∂x
,

E (x) = 1

ρ

(
∂G(x)

∂x

)2

, (23)

are the Willis-like terms introduced by the gauge transforma-
tion. The transformed mass density and bulk modulus are

ρ ′′(x) = ρ

G2(x)
, (24)

K ′′(x) = K

G2(x)
. (25)

The acoustic impedance changes proportionally to G−2(x),
as do ρ(x) and K (x). It can be noticed that Willis coupling
requires a nonconstant gauge function G(x), since parameters
S(x) and E (x) are defined from its first derivative. When
connecting different media, larger Willis coupling will result
from larger impedance mismatch or thinner metamaterials.

As an important special case, we consider first a transfor-
mation between two homogeneous media, for which the gauge
transformation should be linear. The Willis terms vanish and
the parameters for the target material (m′

3 in Fig. 2) are

ρ ′′ = ρ

G2
3

, (26)

K ′′ = K

G2
3

, (27)

with α = β = γ = G−2
3 . As a note, the gauge transformation

obeys the conservation of power flow, since∣∣p′2
1

∣∣
2Z1

= G2
3

∣∣p′2
2

∣∣
2Z1

=
∣∣p′2

2

∣∣
2Z2

. (28)

Physically, the change in wave amplitude exactly compensates
for the change in acoustic impedance, without impacting wave
propagation.

Next, the gauge transformation for m′
2 can be inferred to

provide a smooth connection and is not unique. Here, we
assume that the gauge transformation follows a polynomial
form

G2(x) =
n∑

i=0

aix
i. (29)

The gauge transformation should be first-order differentiable
on the boundaries �1 : x = x1 and �2 : x = x2, leading to the
degradation condition [44]

G2(x1) = 1, (30)

∂G2(x1)

∂x
= 0, (31)

G2(x2) = γ − 1
2 , (32)

∂G2(x2)

∂x
= 0. (33)

It can be checked by inspection that the simplest solution
is obtained when n = 3 (there are no solution for smaller

polynomial degrees) and is

a3 = 2
(
γ − 1

2 − 1
)

(x1 − x2)3
,

a2 = −3(x1 + x2)
(
γ − 1

2 − 1
)

(x1 − x2)3
,

a1 = 6x1x2
(
γ − 1

2 − 1
)

(x1 − x2)3

a0 = γ − 1
2 x3

1 − 3γ − 1
2 x2

1x2 + 3x1x2
2 − x3

2

(x1 − x2)3
. (34)

Because gauge transformation affects the wave amplitude
without touching spatial coordinates, the wavelength and the
sound speed are unchanged. The impedance is modified, how-
ever, and connection between arbitrary media can be achieved
by combining the solution with impedance matching theory,
as illustrated in Fig. 2(c).

The water-air sound transmission using a metamaterial
based on gauge transformation is considered now. The nu-
merical simulation model adopts the same geometry settings
as in the previous section. An intermediate medium m′

3 with
α = β = γ = Za

Zw
is used to establish the gauge transforma-

tion. Substituting these parameters, along with Eqs. (23)–(25),
(29), and (34), into Eq. (22), the results of numerical simula-
tions are given in Figs. 6(a) and 6(b). Detailed metamaterial
parameters are given in Appendix B.

Because of power flow conservation, the wave amplitude
in region m′

3 is relatively small. The transmitted wave has
a normalized amplitude of about 1/60, which is exactly the
theoretical limit value for complete transmission given by
Eq. (28) [24]. The quantity G(x)p′(x) is depicted in Figs. 6(c)
and 6(d) for better observation. It can be noted that the re-
sults are actually consistent with the original field p(x) =
G(x)p′(x). The sound pressure distribution along axis y = 0
is shown in Fig. 6(e), together with the variations of ± 1

G(x) .
It can be observed that the phase and wavelength remain
unchanged after the gauge transformation. The envelope of
the wave amplitude |p′(x)| follows the gauge transformation
± 1

G(x) . Replacing region m′
3 with region m′

4 (air), the total
fields p′(x) and G(x)p′(x) at operating frequencies f1 and f2

are given in Figs. 6(f)–6(i). Intact sound transmission from
water to air is achieved without reflection.

C. Transmedia acoustic lens based on spatial-gauge
cooperative transformation

Although gauge transformation can achieve a perfect con-
nection between arbitrary media in 1D and has the potential
to be expanded to 2D or 3D, phase modulation is directly
not included at first. However, it is essential in order to
supply further wavefield modulation for transmedia acoustic
communication. The combination of spatial and gauge trans-
formations may provide a solution, as shown next, with 1D
analysis as in the previous section. The gauge transformation
is now defined in transformed space as

p(x′) = G(x′)p′(x′). (35)
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FIG. 6. Response for plane wave incidence under different
configurations. The normalized pressure p′(x) for two impedance-
mismatched media connected by a metamaterial based on gauge
transformation theory with α = β = γ = Za

Zw
is shown at frequencies

(a) f1 = 5000 Hz and (b) f2 = 10 000 Hz. [(c),(d)] The gauge trans-
formed pressure field G(x)p′(x) has unitary amplitude variations.
(e) The normalized pressure distributions p(x) and p′(x) are shown
along y = 0, together with the gauge transformation function ±G(x).
The normalized pressure p′(x) for two impedance-mismatched media
connected by a metamaterial based on gauge transformation theory
with α = ρa

ρw
, β = Ka

Kw
, and γ = Za

Zw
, is shown at frequencies (f) f1

and (g) f2. [(h),(i)] The gauge-transformed pressure field G(x)p′(x)
again has unitary amplitude variations.

Substituting Eq. (35) into Eq. (1), the transformed governing
equation is given by

∂

∂x′

[
ρ ′′′−1(x′)

∂

∂x′ p′(x′) + S′(x′)p′(x′)
]

= S′(x′)
∂

∂x′ p′(x′) + E ′ p′(x′) − ω2K ′′′−1(x′)p′(x′), (36)

where

S′ =G(x′)
ρ

∂x′

∂x

∂G(x′)
∂x′ ,

E ′ = 1

ρ

∂x′

∂x

(
∂G(x′)

∂x

)2

, (37)

are the Willis-like terms introduced by the spatial-gauge co-
operative transformation. The transformed mass density and
bulk modulus are

ρ ′′′(x′) = ρ

G2(x′) ∂x′
∂x

, (38)

K ′′′(x′) = K

G2(x′)
∂x′

∂x
. (39)

The acoustic impedance changes proportionally to G−2(x′)
and does not depend on the ∂x′

∂x term. In contrast, the acoustic
velocity changes proportionally to | ∂x′

∂x | but does not depend
on G(x′). Hence, the gauge transformation adapts the wave
amplitude to the change in acoustic impedance, whereas the
spatial transformation regulates the local wavelength.

For a transformation between two homogeneous media, the
spatial-gauge cooperative transformation is linear

G(x′)|m3 = G3, (40)

x′ = F3x + hx. (41)

The Willis terms vanish, and the parameters for the target
material (m3 in Fig. 2) are

ρ ′′ = ρ

G2
3F3

, (42)

K ′′ = KF3

G2
3

. (43)

The coefficients of the transformations can be solved uniquely
as

G3 = (αβ )−
1
4 = γ − 1

2 , (44)

F3 = (β/α)
1
2 . (45)

It can be noted that the gauge transformation is only de-
termined by the impedance ratio γ , which ensures the
conservation of power flow expressed by Eq. (28). The spa-
tial transformation is only determined by the ratio of sound
speeds, F3 = c′

c . Transformation between arbitrary media can
thus be achieved considering these two independent design
variables.

Transformation F2 is again determined by the continuity
conditions [Eqs. (12) and (13)] and the degradation conditions
[Eqs. (30)–(33)] as

x′ = F3x2 − x1 + hx

x2 − x1
(x − x1) + x1, (46)

F2 = ∂x′

∂x
= F3x2 − x1 + hx

x2 − x1
, (47)

G2(x′) = a0 + a1x′ + a2x′2 + a3x′3. (48)

For the given original coordinates x1 and x2, the length of the
metamaterial changes with hx according to

t = F3x2 − x1 + hx. (49)

Conversely, for fixed length t = t0 and coordinate x1, the
phase difference can be adjusted by changing x2. For different
x2 and x̂2, the phase difference at a given frequency f0 is

�φ = k0(x2 − x̂2), (50)
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FIG. 7. A lens designed by spatial-gauge cooperative transformation theory for the water-air interface. Response to plane wave excitation
is shown at (a) 6000 Hz, (b) 8000 Hz, (c) 10 000 Hz, (d) 20 000 Hz, (e) 40 000 Hz, and (f) 80 000 Hz. The incident field on the left is depicted
with the real part of the complex pressure. The transmission field on the right is depicted with the amplitude of the complex pressure.

where k0 is the wavenumber of the medium in original space.
A metasurface based on generalized Snell’s law can conse-
quently be realized, for which phase modulation is achieved
with perfect power flow conservation. An interesting fact is
that when x1 = x′

1 and x2 = x′
2, the replacement from m′

3 to
m′

4 is actually a linear transformation applied on m′
3 along the

propagation direction.
It appears from the theory of spatial-gauge transformation

that perfect transmission can not be achieved with a graded
material in 1D unless Willis coupling is added. Because of
the degradation condition [Eqs. (30)–(33)], the gauge trans-
formation has to be continuous at the boundaries. Willis
coupling terms then arise naturally when writing the acous-
tic equation Eq. (37). They only vanish when γ = 1, which
indicates that an impedance difference is not permitted at all
without Willis coupling. In practice, considering the graded
material described by Eqs. (38) and (39) only would provide
a smooth connection between two impedance-mismatching
media without involving Willis coupling. It is indeed gen-
erally considered intuitive that graded materials can provide
transmittance with limited reflection. In order to precise
this intuition, we provide an numerical simulation exam-
ple in Appendix C that illustrates the contribution of Willis
coupling to perfect transmission: In the absence of Willis cou-
pling, large transmittance is achieved for high frequencies—or
shorter wavelegnths—but strong reflection is observed for low
frequencies—or longer wavelengths.

Transmedia manipulation of the wave field can now be
implemented after phase difference modulation is allowed.
Considering the decrease in amplitude from water to air, a
focusing lens is designed at the interface for further enhance-
ment of acoustic signals. Setting the center of the lens at (0, 0)
and the focal length to l0, the distribution of phase difference
along the y axis is

�φ(y′) = k′
0

(√
y′2 + l2

0 − l0
) + C0, (51)

where k′
0 is the wavenumber of the medium in trans-

formed space at the operating frequency f0. Substituting this

expression into Eq. (50), x̂2(y) should obey

x̂2(y′) = k′
0

k0

(√
y′2 + l2

0 − l0
) + x2 + C0/k0. (52)

When the excitation frequency changes from f0 to f1, the
wavenumbers in original space and transformation space be-
come k1 and k′

1, respectively. Then, the phase difference
supplied by the lens is

�φ(y′) = k1

(
k′

0

k0

(√
y′2 + l2

0 − l0
) + C0/k0

)

= k′
1

(√
y′2 + l2

0 − l0
) + C1. (53)

It is thus clear that the designed lens is achromatic.
We set x1 = x′

1 = −10 cm, x2 = x′
2 = 10 cm, l0 = 50 cm,

and C0 = 0, from which the expression for x̂2 can be uniquely
determined. Fifty one units with a width of 9.5 mm are ar-
ranged evenly along the y axis and are separated by rigid walls
with a thickness of 0.5 mm. Each unit has its corresponding x̂2,
which can be obtained by substituting the ordinate of its center
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FIG. 8. Normalized pressure distribution on the transmission
side of the metasurface along the y = 0 axis at different frequencies.
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FIG. 9. Comparison of the transmittance provided by metamate-
rials with Willis coupling (blue line) and graded material.

point into Eq. (52). Their interior is filled with the Willis-like
material whose parameters are obtained by substituting x̂2

and Eqs. (46)–(48) into Eqs. (37)–(39). Detailed metamaterial
parameters are given in Appendix B. The incident field and the
transmission regions are set as two rectangular regions with
a width of 80 cm and a height of 60 cm. Perfectly matched
layers with a thickness of 10 cm surround both domains to
avoid reflection on the external boundaries (not drawn for
simplicity). A plane sound wave is excited by a line source
with a length of 50 cm, placed 75 cm away from the left side
of the metasurface.

Numerical simulation of the operation of the lens is re-
ported in Fig. 7 for six different frequencies. A wave is
incident from the water side. When it reaches the metasurface,
only minor reflection occurs. Waves are transmitted through
the Willis-like materials filling the unit cells composing the
metasurface and are focused in air. The transmitted beams

focus at a distance of about 50 cm after the metasurface.
The focus is stable under a considerably broader frequency
range, from 6000 Hz to 40 000 Hz, validating achromaticity.
The transmission field seems no longer ideal when it reaches
80 000 Hz. This is mainly because the sound wavelength on
the air side decreases to about 4 mm, which is less than the
thickness of the unit cell. Sound pressure distributions are
shown along the horizontal axis y = 0 in Fig. 8. The lens
performance appears to improve with increasing frequency.
Actually, the acoustic wavelength decreases with frequency,
causing waves to converge to a tighter focus. The pressure at
the focal point exceeds by least 2–7 times the theoretical limit
for plane wave transmission, [|p2/p1| = 1/60 in Eq. (28)].
However, the performance is not ideal only at 80 000 Hz. Con-
sidering that the unit-cell thickness may play an important role
in practical design, a discussion of the relationship between
thickness and broadband operation is provided in Appendix D.

III. CONCLUSIONS

In this paper, transformation acoustics has been considered
from the perspective of broadband transmedia transmission
with achromatic focusing for water-air acoustic communica-
tion. The spatial transformation and the gauge transformation
were applied both separately and jointly in the design of trans-
formation metamaterials. Reflectionless sound wave trans-
mission between arbitrary different media can be achieved
in 2D based on a spatial transformation. Transmitted waves
own a conserved amplitude and can be steered with an ar-
bitrary transmission angle. Gauge transformation was then
introduced into transformation acoustics to provide a 1D so-
lution. Perfect connection between media with very different
acoustic impedances is achieved through Willis-like materials.
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FIG. 10. The comparison of lenses with different numbers of units designed by spatial-gauge cooperative transformation theory for
the water-air interface. The performance of the lens discretized into 25 units with a thickness of 1.95 cm at (a) 6000 Hz, (b) 10 000 Hz,
(c) 40 000 Hz. The performance of the lens discretized into 13 units with a thickness of 3.95 cm at (d) 6000 Hz, (e) 10 000 Hz, (f) 40 000 Hz.
The performance of the lens discretized into seven units with a thickness of 7.95 cm at (g) 6000 Hz, (h) 10 000 Hz, (i) 40 000 Hz. The incident
field on the left is depicted with the real part of the complex pressure. The transmission field on the right is depicted with the amplitude of the
complex pressure.
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Combining the two transformations, the dilemma of phase
locking on the water-air interface can be effectively solved
based on a spatial-gauge cooperative transformation. A fo-
cusing lens was designed for further enhancement of acoustic
signals and was shown to provide broadband and achromatic
operation. It should be mentioned that the designed metama-
terials may be put into practice by applying effective medium
theory or homogenization. The operating bandwidth may fur-
thermore degrade to some extent when involving resonance.
However, the transformation proposed in this paper leaves
great flexibility in design parameters. A properly designed
transformation function is conducive to the implementation
of the designed metasurface. A subsequent study will be de-
voted to the development of effective gradient Willis materials
to improve the practical aspects of spatial-gauge cooperative
transformation. This paper is expected to provide theoretical
support for transmedia acoustic communication and the devel-
opment of additional application scenarios for transformation
acoustics.
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APPENDIX A: EXPRESSION OF MATRIX F3

Equations (8a)–(8d) imply that a2 + b2 = c2 + d2 =
αβ �= 0. Multiplying Eq. (8c) with a and using Eq. (8b) im-
plies αd = a. Similarly, multiplying Eq. (8c) with c and using
Eq. (8b) implies αb = −c.

Inserting those relations in Eq. (8b) gives (α2 − 1)bd = 0.
Hence, either of the three factors must equal zero. If b = 0,
then c = 0 and a2 = d2; we are then led to α2 = 1. If d = 0,
then a = 0 and b2 = c2; we are again led to α2 = 1. As a
whole, α2 = 1 necessarily applies. Considering positive mass
densities, α = 1. As a result, solutions are of the form of
Eq. (9).

APPENDIX B: EXPLICIT EXPRESSIONS
OF MATERIAL PARAMETER

The metamaterials for the simulations in Sect. II A are
described by

ρ ′−1 = ρ−1 FF T

J
= ρ−1

∂x′
∂x

∂y′
∂x − ∂x′

∂y
∂y′
∂x

[
∂x′
∂x

∂x′
∂x + ∂x′

∂y
∂x′
∂y

∂x′
∂x

∂y′
∂x + ∂x′

∂y
∂y′
∂y

∂y′
∂x

∂x′
∂x + ∂y′

∂y
∂x′
∂y

∂y′
∂x

∂y′
∂x + ∂y′

∂y
∂y′
∂y

]
, (B1)

K ′−1 = K−1

∂x′
∂x

∂y′
∂x − ∂x′

∂y
∂y′
∂x

, (B2)

where the partial derivatives can be determined by Eq. (15) as

∂x′

∂x
= 1 +

√
β − a2

0

wm
y,

∂x′

∂y
=

√
β − a2

0

2
+

√
β − a2

0

wm
x,

∂y′

∂x
= −1 − a0

wm
y,

∂y′

∂y
= a0 + 1

2
− 1 − a0

wm
x. (B3)

According to the discussion at the beginning of Sec. II, all parameters should be described by transformed coordinates. It can be
noted that Eq. (15) is monotonic when (x ∈ [−wm/2,wm/2] ∩ y ∈ [−hm/2, hm/2]). Then its inverse function can be given as

x =

(
a0+1

2 −
√

β−a2
0

wm
y′ + 1−a0

wm
x′

)
+

√(
a0+1

2 +
√

β−a2
0

wm
y′ + 1−a0

wm
x′

)2

+ 4(1−a0 )
wm

(√
β−a2

0

2 y′ − a0+1
2 x′

)
2(1−a0 )

wm

, (B4)

y =

(
− a0+1

2 + 1−a0
wm

x′ +
√

β−a2
0

wm
y′

)
+

√(
− a0+1

2 + 1−a0
wm

x′ +
√

β−a2
0

wm
y′

)2

+ 4

(√
β−a2

0

2
1−a0
wm

+
√

β−a2
0

wm

a0+1
2

)
y′

2

(√
β−a2

0

2
1−a0
wm

+
√

β−a2
0

wm

a0+1
2

) . (B5)
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Substituting them back to Eqs. (B1) and (B2), the required
material parameters can then be acquired.

The metamaterials for the simulations in Sec. II B are de-
scribed by

S(x) = G(x)

ρ

∂G(x)

∂x
,

E (x) = 1

ρ

(
∂G(x)

∂x

)2

,

ρ ′′(x) = ρ

G2(x)
,

K ′′(x) = K

G2(x)
. (B6)

Substituting Eqs. (29) and (34) into them, their explicit ex-
pression can be obtained

S(x) = (a0 + a1x + a2x2 + a3x3)(a1 + 2a2x + 3a3x2)

ρ
,

E (x) = (a1 + 2a2x + 3a3x2)2

ρ
,

ρ ′′(x) = ρ

(a0 + a1x + a2x2 + a3x3)2
,

K ′′(x) = K

(a0 + a1x + a2x2 + a3x3)2
. (B7)

Similarly, the metamaterials for the simulations in Sec. II C
are described by

S′ = G(x′)
ρ

∂x′

∂x

∂G(x′)
∂x′ ,

E ′ = 1

ρ

∂x′

∂x

(
∂G(x′)

∂x

)2

,

ρ ′′′(x′) = ρ

G2(x′) ∂x′
∂x

,

K ′′′(x′) = K

G2(x′)
∂x′

∂x
. (B8)

Substituting Eqs. (47) and (48) into them, their explicit ex-
pression can be obtained

S′ = (a0 + a1x′ + a2x′2 + a3x′3)(a1x + 2a2x′ + 3a3x′2)

ρ

× F3x̂2(y′) − x1 + hx

x̂2(y′) − x1
,

E ′ = (a1x + 2a2x′ + 3a3x′2)2

ρ

F3x̂2(y′) − x1 + hx

x̂2(y′) − x1
,

ρ ′′′(x′) = ρ

(a0 + a1x′ + a2x′2 + a3x′3)2 F3 x̂2(y′ )−x1+hx

x̂2(y′ )−x1

,

K ′′′(x′) = K

(a0 + a1x′ + a2x′2 + a3x′3)2

F3x̂2(y′) − x1 + hx

x̂2(y′) − x1
.

(B9)

where the explicit expression for x̂2(y′) is given in Eq. (52)
and hx is determined by

hx = t0 + x1 − F3x2. (B10)

APPENDIX C: CONTRIBUTION OF WILLIS COUPLING
IN TRANSMEDIA ACOUSTIC TRANSMISSION

The metamaterials defined by Eqs. (37)–(39) enable acous-
tic connection between arbitrarily different media. They
would simplify to graded impedance-matching materials if
Willis terms were removed. Here, we use an example to
discuss the role of Willis coupling in transmedia trans-
mission. We set x1 = x′

1 and x2 = x′
2 in Eq. (B9) whereas

other parameters are set following Sec. II B. Then the
transformation-induced metamaterial can be determined with
parameters consistent with Figs. 6(f) and 6(g). The graded ma-
terial used for comparison is set to have the same mass density
and bulk modulus but with S′ = 0 and E ′ = 0. Power-flow
transmittance is defined as T = |p2

t |/Za
|p2

i |/Zw
where pi = 1 is the

unitary incident amplitude in water and pt is the transmission
amplitude in air, respectively. The simulation results for the
two designs in the range 5–40 kHz are presented in Fig. 9. The
blue line represents the transformation-induced metamaterial,
exhibiting perfect performance. When the Willis terms are
removed, transmittance changes to the orange line. Almost
no power flow is transmitted at lower frequencies, whereas
the transmittance gradually approaches 1 as the frequency
increases.

It can be concluded that Willis coupling compensates for
the reflections caused by drastic impedance changes. In the
homogenization picture, the graded material can be regarded
as a thin layer at lower frequencies, for which the wavelength
is relatively large, thus providing an abrupt impedance change
that converges to a step function for the zero frequency. For a
large frequency, impedance changes slow down compared to
the shorter wavelength. The contribution of the Willis terms
thus diminishes and the transmittance provided by the two de-
signs almost overlap. As a consequence, a slower impedance
change rate provides a lower operating frequency for graded
materials without Willis coupling. Conversely, a graded mate-
rial incorporating Willis coupling achieves broad bandwidth
transmedia transmission compactly. However, it should be
mentioned that the transformation function in this work, as
well as the grading function, are presented as polynomials,
whereas the definition of transformation F2 is actually not
unique. There may still be a specific transformation function
that leads to a slighter difference between metamaterial and
graded material transmittance at lower frequencies. Hence, the
contribution of Willis terms can be mitigated and the design
of the metamaterial may be simplified.

APPENDIX D: EFFECT OF THE UNIT THICKNESS
ON THE ACHROMATIC LENS

Simulation results for generalized Snell’s law based lenses
with different thicknesses of units at three different frequen-
cies 6000 Hz, 10 000 Hz, and 40 000 Hz, are shown in Fig. 10.
Three designs were examined, including 25 units with a thick-
ness of 1.95 cm, 13 units with a thickness of 3.95 cm, and
seven units with a thickness of 7.95 cm. All units are separated
by rigid walls with a thickness of 0.5 mm. Other configura-
tions are consistent with those in Sec. II C.

It can be observed that the lens with 25 discrete units op-
erates normally at low frequencies [6000 Hz in Fig. 10(a) and
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10 000 Hz in Fig. 10(b)]. However, a failure similar to Fig. 7(f)
also occurs at 40 000 Hz. The performance at low frequency is
basically the same when the number of units decreases to 13
in Fig. 10(d), while some additional scattering occurs in the
transmission field at 10 000 Hz in Fig. 10(e). This lens does
not work at all at 40 000 Hz in Fig. 10(f). When the number of
units decreased to seven, the convergence of the sound beam is

still observed at 6000 Hz as shown in Fig. 10(g). Interestingly,
the performance at 10 000 Hz in Fig. 10(h) can be barely
maintained as well even though the wavelength decreases to
34 mm, which is less than half of the unit thickness. This could
be greatly beneficial for the production of metamaterials in
practice. Substantially, almost no reflection on the water side
can be perceived in all cases even in Fig. 10(i).
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