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Quasinormal mode representation of radiating resonators in open phononic systems
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Open phononic systems including resonators radiating inside an unbounded medium support localized
phonons characterized by a complex frequency. In this context, the concept of elastic quasinormal mode (QNM)
arises naturally, as in the cases of nanophotonic and plasmonic open systems. Based on a complex, unconjugated
form of reciprocity theorem for elastodynamics, the eigenfunction expansion theorem expressed on the elastic
QNM basis yields an accurate approximation to the response function, for an arbitrary excitation. The description
of the elastic Purcell effect then requires defining a complex-valued modal volume for each QNM. For validation,
we first consider the case a vibrating nylon rod radiating in water. As a second test example, we consider a slender
nickel ridge on the surface of a fused silica substrate, before extending our attention to a nanoscale tuning fork
composed of two such ridges. In all cases, the response estimated from only a few elastic QNMs agrees with the
solution to the elastodynamic equation.
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I. INTRODUCTION

Resonating elements are ubiquitous in systems supporting
wave propagation, including photonics, plasmonics, acous-
tics, and phononics. The description of wave radiation from
discrete resonators in interaction with an open, infinite sub-
strate or a surrounding medium is thus an important problem.
Fundamental questions in this regard include the description
of radiation loss from a resonant source, and the enhancement
by its environment of the spontaneous emission rate from a
quantum system, known as Purcell effect [1], as well as its ex-
tension to classical waves [2–6]. In photonics and plasmonics,
the radiation from resonating objects whose dimensions are
smaller than the wavelength is indeed strongly influenced by
the surrounding media. Here, we consider the similar case of
small resonators coupled to elastic waves, or acoustic phonons
in the long wavelength limit. In phononics, arrangements of
small size resonators on a surface are often considered, either
as crystal arrays [7], acoustic metamaterials [8], or simply sys-
tems of a few coupled resonators at the micro- and nanoscale
[9].

An important issue with open systems is the definition
and proper use of complex eigenmodes satisfying radiation
boundary conditions at infinity. An open system is not conser-
vative because energy can escape it. As a result, the dynamical
matrix describing wave propagation is not Hermitian and the
eigenfunctions are no longer normal modes but quasinormal
modes (QNMs) whose frequencies are complex [10]. Quasi-
normal mode analysis allows one to rely on only a few QNMs
to provide an approximate description of the response, even
though they do not respect the orthogonality property of nor-
mal modes. QNMs are used in the description of gravitational
waves emitted by perturbed black holes or relativistic stars
[11–13]. They are widely employed in photonics [14] and

plasmonics [15] as a practical reduced-order (few-parameter)
model based on the resonant frequencies.

In this paper, following ideas from Ref. [2], we elaborate
on the concept of elastic quasinormal mode and its application
in phononics. Although there have been previous attempts at
defining elastic QNMs based on Green’s functions techniques
[16], we instead derive our results from basic solutions of the
elastodynamic wave equation and a complex, unconjugated
form of the reciprocity theorem valid for open systems. This
approach significantly avoids reference to an energy conser-
vation principle. Furthermore, we have used the concept of
the perfectly matched layer (PML) to approximate radiation
at infinity and thus obtain QNMs of resonators with arbitrary
shape. Of particular relevance is the use of the superposition
of a few QNMs to predict the elastodynamic response to an
arbitrary excitation of a resonator. In the process, we define a
complex modal volume and give an expression of the response
near resonance that is similar to Purcell’s.

II. QUASINORMAL MODE EXPANSION

A. Normal modes

In this subsection, we summarize some important prop-
erties of the modes of closed and lossless elastodynamic
systems, that belong to the class of normal modes. The pur-
pose is mainly to highlight which properties are not conserved
in open systems.

Normal modes are eigenmodes of closed structures. Math-
ematically, for elastic waves they are the eigensolutions inside
a finite domain � [see Fig. 1(a)] of the elastodynamic equation

ω2
nρun = −∇ · (c : Sn), (1)

Sn = ∇un, (2)
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(a) (b) (c)

FIG. 1. Definition of supporting domains for wave resonance
and propagation. (a) Finite, closed domain supports normal modes.
(b) Infinite, open domain supports quasinormal modes. (c) These
can be approximated by closing the domain of computation with a
perfectly matched layer (PML), that is the truncated image of the
infinite domain in (b) in a complex coordinate transformation.

with exterior boundary conditions on ∂� (typically free or
clamped). The elastic tensor c has four indices and is symmet-
rical, ρ is the mass density, u is the displacement field, and S
is the strain tensor. In the absence of loss, eigenfrequencies
ωn are real and eigenvectors un are orthogonal. By projection
on normal mode number m, the orthogonality relation can be
written

ω2
n

∫
�

u∗
m · ρun =

∫
�

S∗
m : c : Sn = 0 if m �= n. (3)

For m = n, the equality of kinetic and elastic energy of the
normal mode is

ω2
n

∫
�

u∗
n · ρun =

∫
�

S∗
n : c : Sn. (4)

The total energy of normal modes is bounded

H (un) = 1

2

(∫
�

S∗
n : c : Sn + ω2

n

∫
�

u∗
n · ρun

)

= ω2
n

∫
�

u∗
n · ρun < ∞. (5)

If normal modes are known, the eigenexpansion theorem
states that any solution u to the elastodynamic equation at
frequency ω

−∇ · (c : ∇u) − ω2ρu = F (6)

can be written u(ω) = ∑
m αm(ω)um with the

frequency-dependent coefficients αm(ω). Combining the
equations above, especially the orthogonality relation, it is
easy to see that

u(ω) =
∑

m

1

ω2
m − ω2

∫
�

u∗
m · F∫

�
u∗

m · ρum
um. (7)

The formula thus expresses the response of the elastic system
to any excitation F, simply from its projection on each normal
mode and the superposition of poles centered on the real
eigenfrequencies.

B. Elastic quasinormal modes

As noted in introduction, quasinormal modes are a gener-
alization of normal modes for open and lossy systems. The

basic equation (1) defining them is the same, but c and ρ are
now complex valued, and possibly dispersive, � is an infinite
domain [see Fig. 1(b)], and outgoing-wave boundary condi-
tions are considered at infinity. As a result, the orthogonality
relation (3) is lost, as are the finiteness of the total energy (5)
and the eigenexpansion of Eq. (7). All eigenfrequencies are
now complex valued, since the matrices involved are not sym-
metric anymore. As we will show in the next subsection, an
expansion over elastic quasinormal modes formula replacing
(7) can be obtained anyway.

There are different ways to obtain QNMs in practice. A
rigorous way is to use Green’s function techniques [17], for
instance based on some approximation in the finite region
(e.g., finite element analysis), coupled to an exterior analytic
solution when it is known. They can be plane waves for
planar geometries, Bessel and Hankel functions for cylindrical
geometries, or spheroidal harmonics in three-dimensional ho-
mogeneous space. Since we consider vector elastic waves in
anisotropic elastic media, such an approach is cumbersome.
Fortunately, there is an efficient way to circumvent the issue,
though it is an approximate solution. That solution is to ap-
proximate the infinite radiation medium with a finite perfectly
matched layer (PML). PML is here implemented as a coor-
dinate transformation in the complex plane. Some eigenvalue
solver can then be used to obtain the complex eigenmodes
of the now “closed” system [see Fig. 1(c)] but with complex-
valued material constants. A single finite element mesh can be
prepared to describe the resonator and the radiation medium.
However, this approach is not always as easy as it seems, since
perfectly matched layers have their own eigenmodes, from
which the QNMs have to be sorted.

As a note, in the previous subsection on normal modes we
have written the integrals rather casually, without mention of
the integration variable. For quasinormal modes, because of
the presence of the PML, the domain of integration � is still
finite but obtained from a complex coordinate transformation
from an infinite domain; the coordinate transformation is char-
acterized by a Jacobian matrix J that is itself a function of
spatial coordinates. The weak form representation of Eq. (1)
is

ω2
n

∫
�

v · ρun|J|dr =
∫

�

S(v) : c : S(un)|J|dr (8)

with v a test function and with the strain defined as S(u) =
J−t∇u. Note the absence of complex conjugation compared
to the normal mode case of Eq. (4). The expression for the
Jacobian J depends on the PML form that is chosen; in this
paper we have used the polynomial PML model discussed in
Ref. [18]. As a note, J is a function of space coordinates but
also of frequency.

In practice, we have used in this paper the following
algorithm to obtain one QNM at a time, as inspired by
the inverse power iteration [19]. We start with a guess for
the eigenfrequency ω0 that is close to a maximum of the
frequency response. Formally, we assume that a stiffness
matrix K and a mass matrix M have been prepared from
Eq. (8). The initialization of the algorithm is stochastic: solve
(K − ω2

0M )u0 = F for a random excitation F. Then the linear
problem (K − ω2

nM )un+1 = Mun is iteratively solved and the
solution converges to the nearest eigenvector. At the end of
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the nth iteration, the eigenvector is normalized by its infinite
norm |un|∞. The next candidate eigenfrequency is evaluated
as ω2

n+1 = un · K · un/un · M · un. Compared to the Rayleigh
quotient iteration, the main difference is that there is no
complex conjugation on the left vector/matrix product. Con-
vergence of this iteration is very fast but the solution depends
acutely on the distance in the complex plane between the
initial frequency and the target QNM frequency. Note the
method is compatible with dispersive media (resulting from
the presence of the PML), i.e., K and M are simply updated at
the n-th iteration as K (ωn) and M(ωn).

In the following subsection we assume that all necessary
QNMs have been obtained and that they form a complete
basis for representing solutions to the elastodynamic problem.
Examples of QNMs obtained with the algorithm of this sub-
section are given in Sec. III for two representative examples.

C. Sauvan’s method transposed to elastic waves

Sauvan et al. [2] base their derivation of the QNM expan-
sion on a particular form of the electromagnetic reciprocity
theorem, the unconjugated form expressed for two arbitrary
solutions at different frequencies. We will keep the latter idea
but work directly with the elastic equations of motion; the
usual form of the reciprocity theorem for elastic waves is
recalled for completeness in Appendix A. We consider the
weak form of the equations of motion for a solution u1 at
frequency ω1 with the test function chosen as another solution
u2 at frequency ω2, i.e.,

∫
S2 : c(ω1) : S1 − ω2

1

∫
u2 · ρ(ω1)u1 =

∫
u2 · F1 (9)

and the same equation with indices 1 and 2 permuted. Their
difference then leads to∫

S2 : [c(ω1) − c(ω2)] : S1

−
∫

u2 · [
ω2

1ρ(ω1) − ω2
2ρ(ω2)

]
u1

=
∫

u2 · F1 − u1 · F2. (10)

This is a reciprocity relation without complex conjugation,
valid for an arbitrary frequency-dependent material distribu-
tion. Note that the integration variable is not written explicitly
in this section, for compactness of expressions, but all inte-
grals have an implied |J|dr factor as in Eq. (8). We also use
the notation Sn = S(un) for the strain tensor.

Next we take solution 2 as QNM number n and solution
1 as the current solution u depending on ω as a continuous
parameter, such that

∫
Sn : [c(ω) − c(ωn)] : S(u)

−
∫

un · [
ω2ρ(ω) − ω2

nρ(ωn)
]
u

=
∫

un · F,∀n. (11)

The QNMs constitute a basis for the solution (per the eigen-
function expansion theorem), according to which we can write

u(ω) =
∑

m

αm(ω)um. (12)

Inserting the eigenfunction decomposition we obtain

∑
m

Bnm(ω)αm(ω) =
∫

un · F = Fn,∀n (13)

with

Bnm(ω) =
∫

Sn : [c(ω) − c(ωn)] : Sm

−
∫

un · [
ω2ρ(ω) − ω2

nρ(ωn)
]
um. (14)

If the QNMs are known, the Bnm(ω) coefficients are easily
computed, and the αm(ω) are obtained by solving a small
linear problem as a function of frequency, formally α(ω) =
B(ω)−1F. By small, we mean that the size of the problem
depends on the number of quasinormal modes that are used
in practice in the expansion. It is clear that Bnm(ωn) = 0
by construction. Applying the reciprocity relation (10) with
ω1 = ωm and ω2 = ωn, we also have Bnm(ωm) = 0 for m �= n.
For all other frequencies, however, Bnm(ω) has in principle
a nonvanishing value that must be taken into account in the
solution. It is then apparent that matrix B(ω) is singular at
each QNM, in the complex plane, but is always invertible
for ω taken along the real axis. Finally, Eq. (12) gives the
general solution, i.e., the frequency response of the system to
an arbitrary body force distribution.

As a note, if the material constants are nondispersive, the
formulas is simplified as

Bnm(ω) = (
ω2

n − ω2) ∫
un · ρum. (15)

Anyhow, the orthogonality relation of normal modes does not
apply and matrix B(ω) is not diagonal. The explicit expansion
(7) still does not apply.

More can be said regarding the form of the solution close to
a resonance, that is in the vicinity of a particular ωn. Sauvan’s
trick [2] for this purpose is indeed to pole Eq. (13) by defining

Anm(ω) = 1

ω − ωm
Bnm(ω)

= 1

ω − ωm

[∫
Sn : [c(ω) − c(ωn)] : Sm

−
∫

un · [
ω2ρ(ω) − ω2

nρ(ωn)
]
um

]
. (16)

At the pole center, we are basically dividing zero by zero in
view of producing a finite quantity (the pole strength). More
precisely, Anm(ωn) = 0 if m �= n and else

Ann(ωn) =
∫

Sn :
∂c

∂ω
(ωn) : Sn

−
∫

un · ∂ (ω2ρ(ω))

∂ω
(ωn)un. (17)

144301-3



VINCENT LAUDE AND YAN-FENG WANG PHYSICAL REVIEW B 107, 144301 (2023)

In the nondispersive case, we have

Ann(ωn) = −2ωn

∫
un · ρun, (18)

but in the viscoelastic case we have

Ann(ωn) = −2ωn

∫
un · ρun + ı

∫
Sn : μ : Sn, (19)

with μ the phonon viscosity tensor. Note that Anm(ω) is gen-
erally complex for all frequencies, even in the nondispersive
case, since the wave solution inside the PML region is com-
plex valued.

Sufficiently close to the nth QNM, and assuming the
spectrum is separated, a single damped pole dominates the
response locally and we can approximate

αn(ω) ≈ 1

ω − ωn

Fn

Ann(ωn)
+ �n(ω). (20)

This simple pole form is similar to the one obtained based on
the resolvent method [20]. It does not apply, however, to the
Hamiltonian, or total energy, but to the frequency response
directly. Note that when computing the frequency response
along the real axis, ωn ∈ C∗ and ω ∈ R, so that the frequency
response is finite for all ω.

D. Modal volume and elastic Purcell effect

We can now define the modal volume of each elastic QNM.
Considering some point in space r0, this modal volume is
defined as

Vn = Ann(ωn)

2ωn
[
ρ(r0)U 2

n (r0)
] (21)

with the squared total displacement U 2
n (r) = u2

1n(r) +
u2

2n(r) + u2
3n(r). With this definition, Vn is expressed in units

of cubic meters and can be thought of as measuring the vol-
ume occupied by the particular mode. Note that the modal
volume thus defined is complex valued. The downside of this
definition is the arbitrary choice for the center position r0;
following Ref. [2], we pick the maximum of the modal field
associated with the QNM. Specifically, since the displace-
ments are also complex valued, we select

r0 = argmaxr

∣∣ρ(r)U 2
n (r)

∣∣. (22)

A benefit of that choice is the insensitivity of the modal
volume to multiplication of the modal displacement by an
arbitrary complex number. Indeed, QNMs are defined up to
a complex multiplication constant only.

Furthermore, an elastic Purcell effect can be defined. From
(21) we have

u(ω) ≈ 1

ω − ωn

1

2ωn
[
ρ(r0)U 2

n (r0)
] Fn

Vn
un. (23)

At resonance, ω ≈ 	ωn and ω − ωn ≈ −i
ωn. Introducing
the quality factor Qn = −	ωn/(2
ωn), the response at res-
onance is then

u(	ωn) ≈ −i
1

ωn	ωn
[
ρ(r0)u2

n(r0)
] Qn

Vn
Fnun. (24)

TABLE I. Characteristics for the QNMs of a cylindrical nylon
rod immersed in water. The reduced frequency is ωd/(2π ) with d
the diameter of the rod.

Mode 0 1 2 3 4

Reduced frequency (m/s) 548 562 790 850 919
Q 12 48 24 30 12

Numerical factors aside, the response is proportional to the Q
factor and inversely proportional to the modal volume, which
are the usual signatures of Purcell’s effect [1]. The formula
is valid whatever the applied force, after projection on the
QNM, so it is not limited to quantum emitters as with the
original Purcell formula but it also applies to an arbitrary body
force excitation. It has been obtained here without reference
to power conservation [5] or an orthogonality relation [16].

III. APPLICATIONS

A. Vibrating solid rod in water

As a first illustration of the concept of quasinormal mode
in the context of phononics, let us consider a cylindrical rod
made of nylon, immersed in water [21]. The elastodynamic
equation is replaced in this case by a coupled acousto-elastic
equation that considers the boundary conditions at the inter-
face between the vibrating solid rod and the surrounding fluid
medium in which radiation occurs [21]. Nylon, an isotropic
solid, is chosen because the shear velocity (1150 m/s) is
smaller than the longitudinal velocity in water (1480 m/s),
leading to enhanced localization of elastic vibrations of the
rod. The longitudinal velocity in nylon (2400 m/s) is larger
than in water, however. The cross section of the nylon rod
is chosen to be elliptical in order to avoid the appearance
of degenerate QNMs. Figure 2 shows the stochastic response
[20,21] of the nylon rod radiating in water. The response is
obtained by solving the acousto-elastic equation subjected
to a random source distribution in the rod, as a function of
frequency. There are five damped resonances appearing in
the frequency range of the plot (there are more resonances
at higher frequencies). The resonance frequencies listed in
Table I are well separated. Quality factors are moderate, in the
range of a few tens at most. The frequency response around
each peak satisfies the model of damped poles superimposed
upon a background described by the ad hoc term �n(ω),
Eq. (20).

The frequency response can be approached using a linear
superposition of the QNMs, following the theory given in
the previous section. Since coupled elasto-acoustic systems
are beyond the theory of Sec. II C, however, we derive in
Appendix B an acoustic version of that section, and then
in Appendix C its coupled elasto-acoustic version. Figure 2
shows the five QNMs (limited to the pressure part in water)
after convergence with relative error smaller then 10−12. The
obtained QNMs clearly satisfy symmetry properties that were
only approximated by the maximum solutions in Ref. [21]. It
is apparent that the response is well approximated, especially
near the main resonance frequencies. Some low-Q QNMs may
have been missed, however, because their complex frequency
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FIG. 2. Stochastic response for a solid nylon rod with elliptical
cross-section vibrating in water, as a function of the reduced fre-
quency ωd/(2π ). d is the diameter of the rod, or length of the long
axis of the ellipse. The short axis length is 0.8d . The exact forced
response is plotted with the magenta line, whereas the eigenexpan-
sion solution is plotted with the green line. There are five damped
resonances in the frequency range of interest, labeled from 0 to 4.
The corresponding real parts of the pressure of QNMs are shown,
with the color bar going from blue (negative values) to red (positive
values). The characteristics of QNMs are listed in Table I.

lies close to the PML spectral range. The zero-frequency
contribution to the response, that is not encompassed in the
QNM set, can not be approximated. For the larger frequencies,
a sixth QNM appearing just above the frequency range of
interest has not been included but contributes to the response.

B. Ridge and tuning fork on a semi-infinite substrate

We consider next an elongated nickel ridge attached to
a fused silica substrate. The ridge is infinitely long in the
third direction of space. We thus simplify the problem of a
typical elastic resonator to a two-dimensional geometry in this
section, but the results would be similar in three dimensions,
for instance when describing radiation from a vibrating rod
[9,22,23]. Geometrical parameters are height h = 1000 nm
and width w = 100 nm. The elongated ridge has low fre-
quency bending resonances, of the clamped-free type with
in-plane polarization, but also pure shear resonances with out-
of-plane displacements. We choose this simple mechanical

FIG. 3. A nickel ridge on a fused silica substrate. The ridge is
100-nm wide and 1000-nm high. The frequency response is ob-
tained for a body force on the ridge applied along the x axis only
(Fx = 1). The result of the superposition of the four quasinormal
modes identified in the frequency range of interest is plotted on
top of the frequency response computed as a function of frequency
by solving the forced elastodynamic equation. The modulus of the
total displacement for the four QNMs is plotted, together with the
deformed mesh in-plane. The colorbar scales from black (zero total
displacement) to green (maximum total displacement).

system because despite its simplicity it has quite well defined
resonances with rather high quality factors, especially in the
case of the fundamental bending vibration mode. Because
of anchoring to the silica substrate, however, the resonances
are damped by radiation in the semi-infinite substrate and
must hence be represented by quasinormal modes rather than
normal modes. For simplicity, material loss is not considered
and elastic constants are considered nondispersive. Notwith-
standing, their inclusion per the theory of Sec. II would pose
neither formal difficulty nor additional computational burden.
Material constants for fused silica are ρ = 2203 kg/m3, c11 =
78.5 GPa, and c44 = 31.2 GPa. Material constants for nickel
are ρ = 8600 kg/m3, c11 = 277 GPa, and c44 = 76.3 GPa.

Figure 3 shows the frequency response of the nickel ridge
attached to the fused silica surface, obtained for a body force
in the ridge applied along the x axis. The response shows
three resonance peaks. When we look for QNMs, we find that
there are four resonances in the frequency range of interest.
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TABLE II. Characteristics of the elastic QNMs of Fig. 3.

Mode freq. (GHz) Q Volume (µm2) Polarization

0 0.0681 12600 0.0272 (0.997, 0.003, 0)
1 0.417 1000 0.0277 (0.979, 0.021, 0)
2 0.676 9 0.0923 (0, 0, 1)
3 1.12 60 0.0285 (0.959, 0.041, 0)

These QNMs are depicted in Fig. 3 and their characteristics
are summarized in Table II. The third QNM is pure-SH (shear
horizontal, with pure out-of-plane polarization), whereas the
other three QNMs are bending modes; the third QNM hence
does not contribute to the response because it is polarized
orthogonal to the body force. The quality factors of the
different QNMs are quite different. Anyway, the frequency
response reconstructed by superposition of the QNMs using
the eigenexpansion (12) reproduces quite accurately the exact
computation. Only three QNMs are sufficient in this case,
since the body force is applied along the x axis. As a note, the
eigenexpansion computation is faster than the full frequency
response computation by a factor 10 in this case. It can also
be performed for any arbitrary applied body force.

The modal volumes (here expressed as the modulus of the
modal in-plane area) are much smaller for the bending QNMs
compared to the SH QNM. All of them, however, are smaller
than the ridge area, 0.1 µm2. There are thus all clearly confined
to the surface and localized inside the ridge in the case of
bending QNMs.

Figure 4 next considers the case of a system of two identi-
cal ridges, each identical to the one in Fig. 3, separated by only
50 nm (the center-to-center separation between ridges is δ =
150 nm). As the two resonators are placed very close, they
couple through the substrate and form a kind two-dimensional
tuning fork. Per the symmetry of the structure, that has a
mirror plane in between the two ridges, it could be expected
that each of the elastic QNMs of the single ridge doubles
into a symmetric/antisymmetric pair of QNMs, similar to
binding/anti-binding dimers. It would then be expected that
antibinding QNMs show an improved quality factor and the
converse conclusion for binding QNMs. The actual situation
does not follow exactly this simple intuition (see Appendix D
for a simple model supporting the above discussion). The
elastic QNMs characteristics summarized in Table III suggest
that the binding/antibinding dimer picture applies to the first
two pairs of bending QNMs (pairs 0/1 and 2/3 correspond

TABLE III. Characteristics of the elastic QNMs of Fig. 4.

Mode freq. (GHz) Q Volume (µm2) Polarization

0 0.0674 240000 0.0536 (0.997, 0.003, 0)
1 0.0689 6700 0.0533 (0.997, 0.003, 0)
2 0.414 334 0.0569 (0.979, 0.021, 0)
3 0.421 4200 0.0524 (0.972, 0.028, 0)
4 0.659 3200 0.113 (0, 0, 1)
5 0.993 82 0.103 (0.01, 0.99, 0)
6 1.137 200 0.0365 (0.957, 0.043, 0)
7 1.369 10 0.474 (0, 0, 1)

FIG. 4. A pair of nickel ridges on a fused silica substrate. The
ridges are w = 100 nm wide and h = 1000 nm high, and are sepa-
rated by δ = 150 nm from center to center. The frequency response
is obtained for a body force on the left ridge only, applied along the x
axis only (Fx = 1). The result of the superposition of the eight quasi-
normal modes identified in the frequency range of interest is plotted
on top of the frequency response computed as a function of frequency
by solving the forced elastodynamic equation. The modulus of the
total displacement for four of the QNMs is plotted, together with the
deformed mesh in-plane. The colorbar scales from black (zero total
displacement) to green (maximum total displacement).

respectively to QNMs 0 and 1 of the single ridge). QNM 4 is
similar to QNM 2 for the single ridge, with the exception of
a much larger quality factor; maybe the binding QNM could
not be found in this case because of a too small quality factor.
The situation is similar for QNM 6 that is similar to QNM
3 for the single ridge. QNM 5, however, has an almost pure
vertical shear polarization and no counterpart in the QNMs of
the single ridge. QNM 7 also has no counterpart in the QNMs
of the single ridge.

It is checked again that the eigenexpansion formula repro-
duces very closely the response to a given applied force, taken
again as Fx = 1 but applied only to the left ridge. Only the six
elastic QNMs that are polarized in the (x, y) plane contribute,
as for the single ridge. In practice, the eigenexpansion compu-
tation is faster than the full frequency response computation
by a factor 7 in this case. This property can be employed to
compute the response to different body forces, since only the
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right-hand side changes with the applied force in Eq. (13).
Finally, though we considered an isotropic elastic substrate
in this example, the method of solution works equally well
for an anisotropic elastic substrate. Appendix E summarizes
the characteristics of the QNMs when sapphire is considered
as a substrate instead of fused silica, all other parameters
remaining the same.

IV. CONCLUSIONS

Elastic quasinormal modes are the eigenmodes of resonant
open phononic structures subject to radiation and material
loss. As they are nonconservative solution to the elastody-
namic equation, their eigenfrequencies are complex numbers.
The approximation of the frequency response function to an
arbitrary body force from the set of elastic QNMs appearing
in the frequency range of interest was considered. It was
verified that only a small number of QNMs are required. The
derivation we have followed uses a complex, unconjugated
form of the reciprocity relation for elastodynamics. It avoids
assuming energy conservation or a normalization relation and
directly gives the frequency response by solving a small lin-
ear problem at each frequency. The modal volume of elastic
QNMs defined in the process is complex valued and a formula
describing the elastic Purcell’s effect was obtained. The the-
ory extends straightforwardly to acoustic waves in open fluid
media containing resonators.
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APPENDIX A: RAYLEIGH-LAMB RECIPROCITY

According to Auld (Chapter 10 of [24], starting with
equation 10.106), reciprocity for elastic waves is obtained as
follows. Equations of propagation are written for stresses and
velocity as

∇ · T = ∂

∂t
(ρv) − F, (A1)

∇v = ∂S

∂t
, (A2)

S = s : T, (A3)

with s = c−1 the compliance tensor. Introducing a (v, T ) state
vector with 9 components, equations are condensed as(

0 ∇·
∇ 0

)(
v
T

)
= ∂

∂t

(
ρ 0
0 s :

)(
v
T

)
+

(−F
0

)
. (A4)

Next one considers two different solutions to the equations,
obtained for different forces but the same frequency (and
for material constants independent of frequency). Taking the
cross-scalar product and subtracting, one obtains

∇ · (v1 · T2 − v2 · T1) = v2 · F1 − v1 · F2. (A5)

This is a local expression, called Rayleigh or Lamb reci-
procity.

A more general expression is obtained by avoiding any as-
sumption regarding the time dependence, with two additional
terms that were canceling in the monochromatic case,

∇ · (v1 · T2 − v2 · T1)

= v2 · F1 − v1 · F2 + T2 : Ṡ1 − T1 : Ṡ2

+ v1 · ∂

∂t
(ρv2) − v2 · ∂

∂t
(ρv1). (A6)

The latter form is compatible with dispersion of the material
constants.

Generally, when the integral form of this equation is ob-
tained by integration over an infinite domain of definition,
the divergence does not contribute, thanks to the radiation
boundary conditions at infinity. For waveguide problems, in-
tegration over the cross-section of the waveguide leads to an
orthogonality relation for guided waves, that is a bilinear form
similar to the Poynting vector appears from the divergence
term.

As a remark, the expression of the reciprocity theorem is
numerically inefficient, unless the solutions are known every-
where. Solving (A4) is possible by the finite element method,
but there are nine equations, hence nine unknowns compared
to three with the displacement formulation of Sec. II C.

APPENDIX B: SAUVAN’S METHOD TRANSPOSED
TO ACOUSTIC WAVES

In this Appendix, we parallel the derivation of Sec. II for
the case of acoustic waves in fluids. The acoustic equation at
frequency ω replacing the elastodynamic equation (6) is

−∇ · (ρ−1∇p) − ω2B−1 p = ∇ · (ρ−1F) = g (B1)

for pressure field p(r) (a scalar field) and body force F(r). B(r)
is the elastic modulus and can be dispersive. The scalar source
field g(r) is introduced for convenience. Eq. (9) becomes∫

∇p2ρ
−1
1 ∇p1 − ω2

1

∫
p2B−1

1 p1 =
∫

p2g1 (B2)

with ρ−1
1 = ρ−1(ω1) and B−1

1 = B−1(ω1). Eq. (10) is now∫
∇p2

[
ρ−1

1 − ρ−1
2

]∇p1 −
∫

p2
[
ω2

1B−1
1 − ω2

2B−1
2

]
p1

=
∫

p2g1 − p1g2. (B3)

This is an acoustic reciprocity relation without complex con-
jugation, valid for an arbitrary frequency-dependent material
distribution. Note that as for elastodynamics the integration
variable is not written explicitly, for compactness of expres-
sions, but all integrals have an implied |J|dr factor as in
Eq. (8).

Next we take solution 2 as QNM number n and solution
1 as the current solution p depending on ω as a continuous
parameter, such that Eq. (11) becomes∫

∇pn
[
ρ−1(ω) − ρ−1

n

]∇p −
∫

pn
[
ω2B−1(ω) − ω2

nB−1
n

]
p

=
∫

png,∀n. (B4)
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The QNMs constitute a basis for the solution (per the eigen-
function expansion theorem), according to which we can write

p(ω) =
∑

m

βm(ω)pm. (B5)

Inserting the eigenfunction decomposition we obtain
∑

m

Dnm(ω)βm(ω) =
∫

png = gn,∀n (B6)

with

Dnm(ω) =
∫

∇pn
[
ρ−1(ω) − ρ−1

n

]∇pm

−
∫

pn
[
ω2B−1(ω) − ω2

nB−1
n

]
pm. (B7)

If the QNMs are known, the Dnm(ω) coefficients are easily
computed, and the βm(ω) are obtained by solving a small
linear problem as a function of frequency, formally β(ω) =
D(ω)−1g. It is clear that Dnm(ωn) = 0 by construction. Apply-
ing the reciprocity relation (B2) with ω1 = ωm and ω2 = ωn,
we also have Dnm(ωm) = 0 for m �= n. For all other frequen-
cies, however, Dnm(ω) has in principle a nonvanishing value
that must be taken into account in the solution. It is then
apparent that matrix D(ω) is singular at each QNM, in the
complex plane, but is always invertible for ω taken along
the real axis. Finally, Eq. (B5) gives the general solution, i.e.,
the frequency response of the system to an arbitrary body
force distribution.

If the material constants are nondispersive, the formulas
simplify to

Dnm(ω) = (
ω2

n − ω2
) ∫

pnB−1 pm. (B8)

Anyhow, the orthogonality relation of normal modes does not
apply and matrix D(ω) is not diagonal. The explicit expansion
(7) still does not apply.

More can be said regarding the form of the solution close to
a resonance, that is in the vicinity of a particular ωn. Defining

Enm(ω) = 1

ω − ωm
Dnm(ω), (B9)

Enm(ωn) = 0 if m �= n and else

Enn(ωn) =
∫

∇pn
∂ρ−1

∂ω
(ωn)∇pn

−
∫

pn · ∂ (ω2B−1(ω))

∂ω
(ωn)pn. (B10)

In the nondispersive case, we have

Enn(ωn) = −2ωn

∫
pnB−1 pn. (B11)

Enm(ω) is generally complex for all frequencies, even in the
nondispersive case, since the wave solution inside the PML
region is complex valued.

Sufficiently close to the nth QNM, and assuming the
spectrum is separated, a single damped pole dominates the
response locally and we can approximate

βn(ω) ≈ 1

ω − ωn

gn

Enn(ωn)
+ �n(ω). (B12)

We can now define the modal volume of each acoustic QNM.
Considering some point in space r0, this modal volume is
defined as

Vn = Enn(ωn)

2ωn
[
B−1(r0)p2

n(r0)
] . (B13)

With this definition, Vn is expressed in units of cubic meters
and can be thought of as measuring the volume occupied by
the particular mode. Note that the modal volume thus defined
is complex valued. The downside of this definition is the
arbitrary choice for the center position r0; following Ref. [2],
we pick the maximum of the modal field associated with the
QNM. Specifically, since the pressure is complex-valued, we
select

r0 = argmaxr

∣∣B−1(r)p2
n(r)

∣∣. (B14)

Furthermore, an acoustic Purcell effect can be defined.
From (B14) we have

p(ω) ≈ 1

ω − ωn

1

2ωn
[
B−1(r0)p2

n(r0)
] gn

Vn
pn. (B15)

At resonance, ω ≈ 	ωn and ω − ωn ≈ −i
ωn. Introducing
the quality factor Qn = −	ωn/(2
ωn), the response at res-
onance is then

p(	ωn) ≈ −i
1

ωn	ωn
[
B−1(r0)p2

n(r0)
] Qn

Vn
gn pn. (B16)

APPENDIX C: EIGENEXPANSION FOR
ACOUSTO-ELASTIC RESONANCES

A variational formulation for the coupled acousto-elastic
dynamic problem is [21]

ω2
∫

�e

v · ρeu −
∫

�e

S(v) : c : S(u)

−
∫

σe

vn p − ω−2
∫

�a

∇qρ−1
a ∇p

+
∫

�a

qB−1 p +
∫

σa

unq =
∫

�e

v · F (C1)

where (u, p) are the unknown coupled fields, (v, q) are mixed
test functions, and the indices ()e and ()a refer to the dis-
joint elastic and acoustic domains of definition. σe and σa

refer to the same boundary separating the elastic and acoustic
domains, but reversely oriented. Hence the boundary terms
ultimately yield symmetric contributions to the finite element
matrices. The body force F is applied only inside the elastic
domain, for simplicity.

Upon applying the same procedure as in Sec. II C and
Appendix B, the following form results for matrix B

Bnm(ω) =
∫

�e

Sn : [c(ω) − c(ωn)] : Sm

−
∫

�e

un · [
ω2ρ(ω) − ω2

nρ(ωn)
]
um

+
∫

�a

∇pn
[
ω−2ρ−1(ω) − ω−2

n ρ−1
n

]∇pm

−
∫

�a

pn
[
B−1(ω) − B−1

n

]
pm. (C2)
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TABLE IV. Characteristics of the elastic QNMs of Fig. 3, when
sapphire replaces fused silica as a substrate.

Mode freq. (GHz) Q Volume (µm2) Polarization

0 0.0785 102400 0.0256 (0.996, 0.004, 0)
1 0.469 22927 0.0260 (0.977, 0.023, 0)
2 0.659 194 0.0686 (0, 0, 1)
3 1.22 15 0.0114 (0.947, 0.053, 0)

The eigenexpansion writes

u(ω) =
∑

m

αm(ω)um, (C3)

p(ω) =
∑

m

αm(ω)pm (C4)

where coefficients αm(ω) are obtained by solving
∑

m

Bnm(ω)αm(ω) =
∫

�e

un · F = Fn,∀n. (C5)

Those formulas were used to obtain the eigen-expansion re-
sponse of Fig. 2.

APPENDIX D: RADIATION FROM SINGLE AND
COUPLED PAIR OF RIDGES ON A SURFACE

The single ridge is a vertically elongated structure, con-
nected to the substrate only by a short segment of length
w = 100 nm. As Fig. 3 illustrates, the displacement fields of
elastic QNMs inside the ridge vary mostly along the y axis
but are mostly uniform along the x axis. Radiation inside the
substrate then originates from a mostly uniform force distri-
bution along the line segment (the interface between the ridge
and the substrate). Given the eigenfrequency, the wavelength
inside the substrate is λ = 2πv/ω, with v the phase velocity
of relevant bulk elastic waves, either shear or longitudinal.
The shortest wavelength is obtained for the shear bulk wave,
with velocity of 3763 m/s. For the largest eigenfrequency
of Table II, λ = 3.36 µm and hence the ridge is a deep
subwavelength structure for all considered frequencies. As a
result, radiation at infinity has the form of cylindrical bulk
waves originating from the short interface line segment and
is essentially monopolar.

TABLE V. Characteristics of the elastic QNMs of Fig. 4, when
sapphire replaces fused silica as a substrate.

Mode freq. (GHz) Q Volume (µm2) Polarization

0 0.0783 4.16 106 0.0507 (0.996, 0.004, 0)
1 0.0787 45260 0.0506 (0.996, 0.004, 0)
2 0.469 7872 0.0519 (0.977, 0.023, 0)
3 0.470 227365 0.0515 (0.977, 0.023, 0)
4 0.623 314 0.149 (0, 0, 1)
5 0.888 11 0.179 (0, 0.94, 0.06)
6 1.209 81 0.0875 (0.113, 0.887, 0)
7 1.237 738 0.0513 (095, 0.05, 0)

Moving to the coupled pair of ridges separated by center-
to-center distance δ = 150 nm, surface coupling leads to
QNMs that are hybridizations of the single ridge QNM. Ow-
ing to symmetry, hybridization leads to either binding (two
small sources radiating in phase) or antibinding (two small
sources radiating in phase opposition). The former case leads
to constructive interference in the far field and hence enhanced
radiation loss, whereas the latter case leads to destructive in-
terference in the far field and hence to reduced radiation loss.
These simple considerations support the idea that antibinding
QNMs have improved Q factors, whereas binding QNMs
have deteriorated Q factors, compared to the single ridge
structure.

APPENDIX E: CASE OF AN ANISOTROPIC SUBSTRATE

In Sec. III B, we considered nickel ridges on a fused
silica substrate. Both materials were considered elastically
isotropic, whereas the theory in Sec. II applies to general
anisotropic elastic media. For illustration, we repeat in this
Appendix the computation of QNMs for a sapphire substrate.
Sapphire (Al2O3) is a trigonal crystal with point group 3̄m,
with six independent elastic constants (c11 = 49.7 GPa, c12 =
16.3 GPa, c13 = 11.1 GPa, c33 = 49.8 GPa, c44 = 14.7 GPa,
c14 = −2.3 GPa). The mass density is ρ = 3986 kg/m3. Ta-
bles IV and V list the characteristics the QNMs obtained
for the single ridge and for the pair of ridges, respectively.
The modal shapes are essentially the same as with fused
silica.
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