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Topological waves guided by a glide-reflection symmetric crystal interface
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A domain wall separating two different topological phases of the same crystal can support the propagation of
backscattering-immune guided waves. In valley-Hall and quantum-Hall crystal waveguides, this property stems
from symmetry protection and results from a topological transition at a Dirac point. Since an initially closed band
gap has to open, the guidance bandwidth remains limited compared to that of wide band gap crystals. When a
glide-symmetric dislocation is introduced in a 2D crystal, we show that a pair of wide-bandwidth, single-mode,
and symmetry-protected guided waves appear in the bulk band gap. The 2D Zak phase changes by π on either
side of the interface, providing a topological invariant protected by glide-reflection symmetry at the X point
of the Brillouin zone. A demonstration experiment is performed with acoustic waves in water, at ultrasonic
frequencies, and shows the continuous tuning of transmission as a function of the glide parameter. The concept
further extends to other types of waves, including the case of elastic waves in solids, but also of optical and
electromagnetic waves.
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Topological phononics promises unprecedented wave
properties inspired by the concepts of topological insulators
[1–6]. One promising direction is the achievement of uni-
directional and backscattering-free guided wave propagation
along a boundary of a crystal or a domain wall between two
crystal phases. Passive topological waveguides, for instance
of the valley-Hall [7,8] and the quantum-Hall type [9–11],
lead to symmetry-protected, single-mode guided waves along
a domain wall separating two phases of the same crystal with
different topological invariants. The topological properties
of the waveguide are inherited from those of the two-
dimensional (2D) bulk crystal according to the bulk-boundary
correspondence principle [12]. The one-dimensional (1D) do-
main wall heterostructure is formed without breaking the
periodicity of the 2D lattice, by tuning a continuous geomet-
rical parameter that controls a topological transition [13,14].
For instance, in valley-Hall crystals, a triangular inclusion is
rotated continuously to reduce the symmetry of a 2D crys-
tal possessing a band structure with a Dirac point at the K
point of the first Brillouin zone, causing a gap to open there
[7,15,16]. In quantum-Hall crystals with C6v symmetry, a
double Dirac at the � point undergoes a topological transition
under the continuous tuning of the internal structure of the
unit cell of the crystal [9,10,17]. In both cases, however, the
available bandwidth for the dispersion of the guided wave
is limited by the effective opening of the band gap that the
control parameter allows [18]. In contrast, artificial crystals
have long been designed to present very wide complete band
gaps [19–21] that the guided bands could in principle cover.
Phononic crystal waveguides formed by coupling a sequence
of crystal defects, however, lack topological protection and are
generally multimodal, leading to a competition of the guided
bands inside the complete band gap that can severely flatten
the guided bands [18].

Can we obtain topological crystal waveguides that make
full use of a wide complete band gap crystal? We propose in
this Letter to start from a 2-periodic crystal and to introduce a
glide-reflection (GR) symmetric dislocation running all along
one of the periodicity axes. The resulting structure loses one
periodicity, along the directional orthogonal to the glide op-
eration, but gains a glide-reflection symmetry that the initial
2-periodic crystal did not possess. The 2D Zak phase of bulk
bands, measured along the interface direction, changes by π

on either side, providing a topological invariant protected by
GR symmetry. All pairs of bands at the boundary of the first
Brillouin zone (X point) are degenerate, leading to the appear-
ance of pairs of left- and right-propagating guided waves in
all Bragg band gaps of the crystal. The pairs of guided Bloch
waves are protected by GR symmetry at the X point and their
smooth dispersion covers most of the band gap of the bulk
crystal.

The Letter is organized as follows. We first discuss the
topology of the band structure of a square-lattice crystal and
its transformation under a glide dislocation. We show how
the dispersion of waves guided along the glide dislocation
closes the complete band gap exactly for a half-lattice glide
dislocation. Tuning the glide parameter, the spectral trans-
mission can be changed continuously from no transmission
at all to full transmission through the phononic band gap.
The glide-reflection symmetric crystal waveguide offers wide
bandwidth, single mode operation, and symmetry-protected
backscattering immunity. An experiment performed with ul-
trasonic acoustic waves around 0.5 MHz and a crystal of
steel rods in water demonstrates the operation of the glide-
reflection symmetric phononic crystal waveguide.

For demonstration purposes, in the following, we con-
sider a 2-periodic square-lattice phononic crystal of circular
inclusions, as shown in Fig. 1. Numerical simulations are
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FIG. 1. Principle of the glide-reflection symmetric topological
phononic crystal waveguide. (a) A 2-periodic square-lattice phononic
crystal is composed of steel rods in water (lattice constant a, diameter
d = 0.9a). For every frequency within the complete band gap, trans-
mission of incident acoustic waves is forbidden. (b) Two pieces of
the same square-lattice crystal are now glided along the x-axis. The
glide parameter g is periodic with period a. For a half-lattice glide pa-
rameter (g = a/2), waves are guided along the glide dislocation, for
frequencies within the complete band gap. In numerical simulations,
P is the normalized pressure field, frequency is taken at the center of
the band gap, and waves are incident from the left.

performed in this Letter considering a phononic crystal of
steel rods in water, but the results extend naturally to other
material systems [22]. In the glide dislocation, one half of
the crystal is spatially shifted by an amount g, along direc-
tion x. The glide operation creates an interface between two
crystal phases that remain identical except for the spatial
shift. The initial crystal (g = 0) possesses a complete band
gap within which transmission decreases exponentially with
crystal thickness. Figure 1(a) illustrates numerically, for a
frequency at the center of the complete band gap, that total
reflection of incident waves results. When g = a/2, guided
waves appear along the dislocation and transmission is ob-
tained, as Fig. 1(b) shows.

Let us analyze the topology of the band structure of the
phononic crystal structure and its change with the glide pa-
rameter. Figure 2(a) shows a super-cell and the phononic
band structure for the 2-periodic crystal for g = 0; Fig. 2(b)
shows similar information for the glide-reflection symmet-
ric waveguide for g = a/2. The super-cell is the numerical
device used to obtain the dispersion relation of crystal waveg-
uides. Periodic boundary conditions are applied on the vertical
boundaries of the supercell while the horizontal boundaries
are left free (Neumann boundary condition). In the figure,
we consider N = 10 unit cells in the vertical direction and
1 unit cell in the horizontal direction. The band structures
account for acousto-elastic coupling between pressure waves
in water and elastic waves in steel [23]. The band structure for
g = 0 in Fig. 2(a) shows the complete band gap separated by
groups of bands. Counting the bands, there are exactly N + 1
bands below the band gap. Those bands are actually sampled
from the original Brillouin zone as (kya/π = n/N, kx ) with
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FIG. 2. Band structure topology of the glide-reflection waveg-

uide, computed for a supercell made of N = 10 unit cells of the
crystal. (a) For g = 0, the supercell simply repeats N times vertically
the primitive cell of the 2D square-lattice crystal (d = 2 mm, a =
2.22 mm). The band structure of the waveguide is obtained from the
projected band structure of the 2D crystal. (b) For g = a/2, the bands
group by pairs of symmetric (S) / anti-symmetric (AS) Bloch waves,
with respect to the glide reflection symmetry. They are degenerate at
the Brillouin zone edge (the X point), causing a pair of guided waves
to appear inside the complete band gap. The modal distributions of
the S (red color band) and AS (yellow color band) guided waves are
shown on the left for kxa/π = 0.8.

n = 0, · · · , N [20]. Hence, when n = N , the Bloch wavevec-
tor varies along the YM edge of the first Brillouin zone
(kya/π = 1).

The guided waves for g �= 0 appearing inside the band
gap originate from the Nth and (N + 1)th bands. Actually,
as Fig. 2(b) shows for glide parameter g = a/2, all bands
are degenerate by pairs at the X point of the first Brillouin
zone. This essential property is obtained only for a half-lattice
glide; it is shown later to signal a topological transition of the
band structure occurring at g = a/2. Since the Nth and the
(N + 1)th bands were repelling and thus sitting on opposite
sides on the band gap for g = 0 and they are degenerate at
the X point for g = a/2, they have to move inside the band
gap as g is tuned continuously between those two values.
When g > a/2 and is tuned toward g = a, the gap closes
continuously and symmetrically from the case g < a/2.

Why the Nth and (N + 1)th bands hold a pair of guided
Bloch waves can be understood based upon the transformation
of the band structure under the continuous change of glide
parameter g from 0 to a/2. The dispersion of the guided wave
extends inside the complete band gap with a real wavevector
kx; along the y direction the guided wave is evanescent, i.e., its
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amplitude is decreasing exponentially. Figure 2(b) illustrates
that property for one particular value of kx. In contrast to the
case g = 0, the Bloch waves of the 2-periodic phononic crystal
do not translate directly into Bloch waves of the waveguide
structure for g �= 0. However, they can still be used as a
functional basis to express the 1-periodic guided mode. Bloch
waves of the 2-periodic crystal are all evanescent for frequen-
cies inside the complete band gap. Hence their wavevector
satisfies �(ky)a/π = 1: the real part of the Bloch wavevector
is restricted to the top edge of the 2D first Brillouin zone.
Furthermore, the imaginary part of the Bloch wavevector can
only be directed along the ky direction in reciprocal space,
since propagation is lossless along the x-axis. �(ky) �= 0 hence
provides the necessary exponential decrease away from the
glide interface such that the guided wave is confined. It can
be seen in the modal shapes of Fig. 2(b) that the exponential
decrease in amplitude along the y-axis is accompanied by
an alternation of the sign from one unit cell to the next, in
accordance with the condition �(ky)a/π = 1.

Zak phase was originally introduced [24] for 1D crystals
as the integral of the Berry connection along the 1D Brillouin
zone. The 2D Zak phase for 2D crystals [25,26] is a natural
generalization where the integral of the Berry connection is
taken along a 1D contour, chosen as the interface direction in
reciprocal space [5]. Namely, Zak phase for band n is

γn =
∫

C
dR · An(R), (1)

with R = kx at fixed ky and C = [−π/a; π/a]. The Berry
connection is

An(R) = i〈un(R)|∇R|un(R)〉, (2)

with un(R) a Bloch wave defined over the 2D unit cell and 〈.〉
denoting the scalar product in real space defined on this unit
cell. Note that the integration contour chosen, C, is different
from the one used to define Chern numbers, that is the bound-
ary enclosing the first 2D Brillouin zone. By construction, the
bottom crystal B is the glide-reflection (GR) image of crystal
A. The glide operation implies a phase change for every Bloch
wave φ(kx ) = −gkx (a translation of the origin by g). Since the
Berry connection changes as An(R) → An(R) − ∂φ

∂kx
under

any phase change, we have

γn(B) = γn(A) + 2πg/a. (3)

Hence there is a π change of the 2D Zak phase across the
interface for every band, for g = a/2 exactly. Since the Zak
phase is 2π periodic, its value alternates by π between both
crystal images.

Why degenerescence of Bloch waves occurs specifically
for g = a/2 and at the X point of the first Brillouin zone
results from the combination of the space group symmetry
of the waveguide and of its periodicity along the glide dislo-
cation, as the Supplemental Material (SM) details [22]. Let
us consider here a compact demonstration based on opera-
tors of the 1D crystal interface. For any glide parameter g,
the composition Ga−g ◦ Gg is the translation by one lattice
constant Ta in direct space. In reciprocal space, this im-
plies Ga−g(k)Gg(k) = exp(ika). For g = a/2, we then have
G2

g(k) = −1 at the X point of the 1D Brillouin zone (ka = π ).

Hence the eigenvalues of Gg(π/a) are ±i. Its eigenvectors
form complex conjugate pairs, since Gg(π/a)u = iu implies
Gg(π/a)u∗ = −iu∗. Since the glide operator commutes with
the dynamical operator for the wave equation, they share
common eigenvectors. Hence Du = ω2u implies Du∗ = ω2u∗
since the wave equation has real coefficients because of its
time reversal invariance (TRI). Summarizing, each complex
conjugate eigenvector pair shares a degenerate eigenvalue at
the X point.

We now turn to the experimental demonstration of the
glide-reflection symmetric phononic crystal waveguide. The
phononic crystal of steel rods in water is depicted in Fig. 3(a).
A total of 24 × 16 parallel rods are aligned using perforated
parallel plates [22]. The rod diameter is d = 2 mm and the lat-
tice constant is a = 2.22 mm (d/a = 0.9). Figure 3(b) shows
the numerical transmission as a function of frequency. The
experimental transmission of Fig. 3(c) is obtained based on
the ultrasonic pulse-echo technique described for instance in
Ref. [27]. The complete band gap extends from 0.28 MHz
to 0.46 MHz whereas the guided mode transmission covers
the range from 0.28 MHz to 0.43 MHz, in accordance with
theory.

For other glide parameter values, transmission is observed
as well inside the complete band gap but within a reduced
frequency range. Actually, for g �= a/2 the left and right prop-
agating guided Bloch waves interfere and form an anticrossing
and thus a mini band gap at the X point, as Fig. 4(a) shows.
The experiments reported in Fig. 4(b) clearly show the mini
band gap opening when g = a/4 and g = 3a/8 and the corre-
sponding reduction of the transmission range. Furthermore,
Fig. 4(c) shows the variation with g of the N th and the
(N + 1) th band intersection with the X point. The phononic
band gap is completely opened for g = 0 and g = a, closes
midway for g = a/2, and varies continuously and symmetri-
cally between these points. Since the gap is fully opened for
g = 0 and closed for g = a/2, and the glide parameter can be
continuously tuned with periodicity a, a continuouslytunable
transmission filter is obtained. Note that symmetry protection
against backscattering of the guided waves is only achieved
when the glide parameter g = a/2.

Summarizing the results above, the interface waves are
protected by a class of topology relying on spatial symme-
tries and thus belong to crystalline topological insulators [28].
Whereas crystalline topological phases generally induce inter-
face waves that have a gapped spectrum, because the interface
breaks the corresponding spatial symmetries, the glide sym-
metry of the interface ensures a gapless Dirac point at the X
point of the Brillouin zone.

The importance of glide-reflection symmetry is further ver-
ified in the SM [22] by considering the oblique lattice instead
of the square lattice. It is specifically found that inversion
symmetry [29] combined with the glide operation leads to a
gapped spectrum, unlike GRS. We note that glide-reflection
symmetric waveguides have been considered before, e.g., for
microwaves [30] or acoustic waves [31], but that waveguiding
is, in this case, ensured by structural boundaries rather than by
a phononic band gap. The existence of a complete band gap
without glide (g = 0) is indeed essential to our result. Defect
photonic crystal waveguides possessing glide-reflection sym-
metry have also been discussed in terms of symmetry [32]
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FIG. 3. Glide-reflection symmetric topological phononic crystal
waveguide experiment. (a) Two pieces of the same square-lattice
crystal of steel rods in water (diameter d = 2 mm; lattice constant
a = 2.22 mm) are glided. The transmission of acoustic waves guided
along the dislocation is probed using an ultrasonic emitter (E) of
short pulses that are detected by an ultrasonic receiver (R). For a
half-lattice glide parameter (g = a/2), the (b) numerical and (c) ex-
perimental acoustic wave transmission covers most of the complete
phononic band gap (highlighted with the gray color). The reference
for transmission is the measurement in the absence of the phononic
crystal waveguide.

or low group velocity [33], but without consideration of their
topological properties.

The SM [22] further explores the resilience of the interface
waves to disorder, a direct check of symmetry protection. It is
observed numerically that they survive a position disorder of
at least 5% of the lattice constant and an inclusion diameter
disorder of 10%.

The discussion so far has been limited to the scalar case
of acoustic waves and to a square lattice crystal of steel rods
in water. It is obvious, however, that the symmetry principles
involved extend the existence of glide-reflection symmetric
crystal waveguides to other material systems and lattices. The
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FIG. 4. Gap opening as a function of the glide parameter. (a) For
g �= a/2, a minigap for guided waves opens in the phononic band
structure at the X point of the Brillouin zone. (b) Experiment con-
firms the opening of the minigap, for g = a/4 and g = 3a/8. (c) The
eigenfrequencies[two words?] of the two guided waves at the X
point vary with the glide parameter (blue line: S waves; red line:
AS waves). For exactly g = a/2, the waveguide is glide-reflection
symmetric and the guided wave gap closes. This gap opens symmet-
rically on either side of that value.

SM specifically illustrates the cases of acoustic waves in a
fluid with rigid inclusions and of vector elastic waves in a
solid perforated with cylindrical holes or containing solid
inclusions [22]. By virtue of the well-established analogies
between acoustic/elastic waves and optical/electromagnetic
waves [34], the transposition to photonic crystals is straight-
forward. Other wave systems such as plasmonic crystals,
gravity-capillary waves at the surface of water [35], or so-
lutions of the Schrödinger equation are likely to present
similar properties too. Indeed, one can start from any wide
band gap artificial crystal and produce a glide-reflection
symmetric interface within it. Then, when the glide param-
eter is exactly one half of the lattice constant, a gapless
spectrum is obtained whereas the nonglided crystal has a
completely gapped spectrum. Hence, any efficient artificial
crystal that has been designed in the past, from seismic
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waves at the meter scale [36] to phononic crystals for ther-
mal transport control at the nanometer scale [37], can be
used as a starting basis to design a completely new topo-
logical glided structure supporting symmetry protected edge
states.

On the practical side, the glide operation offers the
opportunity to design a continuously varying transmission
that can be changed from no transmission (for g = 0)

to full transmission through the phononic band gap (for
g = a/2). As a waveguide for transmission of information,
the glide-reflection symmetric crystal waveguide offers wide
bandwidth, single mode operation, and symmetry-protected
backscattering immunity.

The authors are grateful for support by the E IPHI Graduate
School (Contract No. ANR-17-EURE-0002).

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and
A. Alù, Sound isolation and giant linear nonreciprocity in a
compact acoustic circulator, Science 343, 516 (2014).

[3] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.
Zhang, Topological Acoustics, Phys. Rev. Lett. 114, 114301
(2015).

[4] X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen,
Topological sound, Commun. Phys. 1, 97 (2018).

[5] G. Ma, M. Xiao, and C. T. Chan, Topological phases in acoustic
and mechanical systems, Nat. Rev. Phys. 1, 281 (2019).

[6] P. Gao and J. Christensen, Topological vortices for sound and
light, Nat. Nanotechnol. 16, 487 (2021).

[7] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu,
Observation of topological valley transport of sound in sonic
crystals, Nat. Phys. 13, 369 (2017).

[8] M. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, and Z. Liu, On-
chip valley topological materials for elastic wave manipulation,
Nat. Mater. 17, 993 (2018).

[9] L.-H. Wu and X. Hu, Scheme for Achieving a Topological
Photonic Crystal by Using Dielectric Material, Phys. Rev. Lett.
114, 223901 (2015).

[10] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.
Liu, and Y.-F. Chen, Acoustic topological insulator and robust
one-way transport, Nat. Phys. 12, 1124 (2016).

[11] M. Miniaci, R. K. Pal, B. Morvan, and M. Ruzzene, Experimen-
tal Observation of Topologically Protected Helical Edge Modes
in Patterned Elastic Plates, Phys. Rev. X 8, 031074 (2018).

[12] R. S. K. Mong and V. Shivamoggi, Edge states and the bulk-
boundary correspondence in Dirac Hamiltonians, Phys. Rev. B
83, 125109 (2011).

[13] J. Lu, C. Qiu, S. Xu, Y. Ye, M. Ke, and Z. Liu, Dirac cones
in two-dimensional artificial crystals for classical waves, Phys.
Rev. B 89, 134302 (2014).

[14] Y. Chen, X. Liu, and G. Hu, Topological phase transition in
mechanical honeycomb lattice, J. Mech. Phys. Solids 122, 54
(2019).

[15] J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley Vortex States in Sonic
Crystals, Phys. Rev. Lett. 116, 093901 (2016).

[16] H. Zhu, T.-W. Liu, and F. Semperlotti, Design and experimental
observation of valley-Hall edge states in diatomic-graphene-
like elastic waveguides, Phys. Rev. B 97, 174301 (2018).

[17] R. K. Pal and M. Ruzzene, Edge waves in plates with res-
onators: an elastic analogue of the quantum valley Hall effect,
New J. Phys. 19, 025001 (2017).

[18] V. Laude, Principles and properties of phononic crystal waveg-
uides, APL Mater. 9, 080701 (2021).

[19] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani,
L. Dobrzynski, and D. Prevost, Experimental and Theoretical
Evidence for the Existence of Absolute Acoustic Band Gaps in
Two-Dimensional Solid Phononic Crystals, Phys. Rev. Lett. 86,
3012 (2001).

[20] V. Laude, Phononic Crystals: Artificial Crystals for Sonic,
Acoustic, and Elastic Waves, 2nd ed. (De Gruyter, Berlin, 2020).

[21] J. A. Iglesias Martínez, J. Moughames, G. Ulliac, M. Kadic,
and V. Laude, Three-dimensional phononic crystal with ultra-
wide bandgap at megahertz frequencies, Appl. Phys. Lett. 118,
063507 (2021).

[22] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.064304 for more information on other
material systems, for a discussion of modal symmetry, for ex-
perimental details, and for exploration of resilience to disorder.

[23] N. Laforge, R. Wiltshaw, R. V. Craster, V. Laude, J. A. Iglesias
Martínez, G. Dupont, S. Guenneau, M. Kadic, and M. P.
Makwana, Acoustic Topological Circuitry in Square and Rect-
angular Phononic Crystals, Phys. Rev. Applied 15, 054056
(2021).

[24] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys. Rev.
Lett. 62, 2747 (1989).

[25] F. Liu and K. Wakabayashi, Novel Topological Phase with a
Zero Berry Curvature, Phys. Rev. Lett. 118, 076803 (2017).

[26] F. Liu, H.-Y. Deng, and K. Wakabayashi, Topological photonic
crystals with zero Berry curvature, Phys. Rev. B 97, 035442
(2018).

[27] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S.
Ballandras, and V. Laude, Trapping and guiding of acoustic
waves by defect modes in a full-band-gap ultrasonic crystal,
Phys. Rev. B 68, 214301 (2003).

[28] E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants
for Complex Topological Insulators (Springer, 2016).

[29] Zheng-wei Li, Xin-sheng Fang, B. Liang, Y. Li, and Jian-
chun Cheng, Topological Interface States in the Low-Frequency
Band Gap of One-Dimensional Phononic Crystals, Phys. Rev.
Applied 14, 054028 (2020).

[30] O. Quevedo-Teruel, Q. Chen, F. Mesa, N. J. G. Fonseca, and
G. Valerio, On the benefits of glide symmetries for microwave
devices, IEEE Journal of Microwaves 1, 457 (2021).
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