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Hybridization of resonant modes and Bloch waves in acoustoelastic phononic crystals
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In phononic crystals composed of solid inclusions distributed periodically in a fluid matrix, Bloch waves
are a superposition of acoustic and elastic waves coupled at the boundaries of inclusions. Resonances internal
to the unit cell and localized on the solid inclusions, when present, populate the phononic band structure with
additional hybridization bands. Comparing the cases of nylon in water and of steel in water, that are conveniently
accessible to experiment, we relate the hybridization bands to the resonant modes, also termed quasinormal
modes, of a single solid inclusion immersed in water, that are identified numerically using a stochastic excitation
technique. To characterize the hybridization of the resonant modes with the continuum of Bloch waves, we
compute the complex phononic band structure giving evanescent Bloch waves with acoustoelastic coupling taken
into account. In the particular case of hexagonal acoustoelastic phononic crystals, we observe that the acoustic
Dirac cone centered at K points of the first Brillouin zone can be severely affected without breaking the symmetry
of the crystal.
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I. INTRODUCTION

Mechanical waves propagating in media composed of a
mixture of solid and fluid parts are superpositions of scalar
acoustic waves in the fluid and of vector elastic waves in
the solid [1]. Acoustic and elastic waves are coupled at ev-
ery solid-fluid boundary. The number of degrees of freedom
(DOF) is not the same in the acoustic domain and in the
elastic domain. Acoustic waves are typically described using a
single DOF, for instance, pressure, whereas elastic waves are
described with up to three DOF, for instance, displacements
in physical space. Solid-fluid boundary conditions are the
continuity of pressure and of normal particle acceleration [2].

Phononic crystals formed from periodic solid-fluid com-
posites are very practical for experiments [3], since a porous
solid crystal or a manufactured structure are easily immersed
in or filled with air or water [4–6]. Phononic crystal sensors
have been proposed that use resonances of fluid inclusions
inside a solid matrix [7]. The reverse case of solid inclu-
sions in a fluid matrix has been considered extensively for
demonstration of phononic band gaps [8], waveguiding [5],
negative refraction [9], tunneling [10], or topological prop-
erties [11]. The appearance of local resonances in this case
actually depends on the contrast between inclusions and ma-
trix. When the matrix is air, acoustic waves feel the boundary
condition on any rigid solid as almost equivalent to a fully
rigid boundary condition, because of the huge impedance
contrast. The problem hence reduces effectively to a single
scalar acoustic wave equation only [12]. In water with heavy
metal inclusions, a composition that has often been considered
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experimentally, acoustoelastic boundary coupling definitely
results in the excitation of elastic waves in the solid inclusion,
but the effect on wave dispersion is mostly a shift of the
bands, at least for frequencies up to and slightly above the
first Bragg band gap [8]. For the soft inclusions of colloidal
crystals [13–15] or of random composites of nylon rods in
water [16,17], however, the appearance of hybridizations can
be observed in the band structure already below the first Bragg
band gap. Elastic resonances of the solid inclusions can indeed
couple with longitudinal acoustic waves in the fluid because
in-plane elastic waves have mixed shear and longitudinal
polarization.

In this paper, we consider the periodic case of acoustoe-
lastic phononic crystals. We observe that the phononic band
structure is populated by additional hybridization bands for
nylon in water that are absent for steel in water. Comparing
both cases, we definitely relate the hybridization bands to the
resonant modes, also termed quasinormal modes, of a single
solid inclusion immersed in an infinite water domain. The
resonant modes are identified numerically using a stochastic
excitation technique [18]. To characterize the hybridization
of the resonant modes with the continuum of Bloch waves,
we compute the complex phononic band structure giving
evanescent Bloch waves with acoustoelastic coupling taken
into account. In the particular case of hexagonal acoustoelastic
phononic crystals, we observe that the acoustic Dirac cone
centered at K points of the first Brillouin zone can be severely
affected without breaking the symmetry of the crystal.

II. BAND STRUCTURE OF ACOUSTOELASTIC
PHONONIC CRYSTALS

We first consider in this section the phononic band struc-
ture and the Bloch waves of acoustoelastic phononic crystals.
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TABLE I. Mass density ρ, longitudinal velocity cL , and shear
velocity cS for the materials considered in this paper.

ρ (kg m−3) cL (m/s) cS (m/s)

Water 1000.0 1500.0
Steel 7800.0 6023.0 3222.0
Nylon 1150.0 2396.0 932.0

This problem has been considered before, especially in the
case of heavy and stiff solid inclusions in air and water [5,8].
The consideration of nylon in water, for which the shear elas-
tic velocity is smaller than the acoustic velocity, in contrast
leads to additional bands.

The scalar equation of motion for acoustic waves in the
fluid can be written for the pressure as the variable as [2]

ω2

B
p + ∇ ·

(
1

ρ f
∇p

)
= 0, (1)

with B the bulk modulus and ρ f the mass density for the fluid.
This single scalar equation supplemented with rigid boundary
conditions describes well sonic crystals in air.

In the case of solid inclusions in water, or whenever
the contrast between the properties of fluid and solid is
not overwhelming, acoustoelastic interaction must be taken
into consideration. Elastodynamic motion in the solid can be
described as [19]

ω2ρsu + ∇ · (c : ∇u) = 0, (2)

with ρs the mass density of the solid and c the rank-4 elastic
tensor. The displacement vector u has three components in
physical space. In this paper, we restrict our consideration to
in-plane elastic waves in two-dimensional phononic crystals,
so only two displacement components will be needed.

Acoustoelastic interaction can be generally described as
follows. First, the normal acceleration is continuous across
solid and fluid domains, leading to

ω2u · n = n ·
(

1

ρ f
∇p

)
, (3)

with n the vector normal to the boundary. Second, the normal
traction is continuous across the interface, i.e.,

(c : ∇u) · n = −pn. (4)

The phononic band structure can be obtained by combining
Eqs. (1)–(4) with Bloch’s theorem as outlined in Appendix A.

For concreteness we consider the two-dimensional
phononic crystal whose primitive unit cell is depicted in
Fig. 1(a). Cylindrical solid rods of radius r are arranged pe-
riodically according to a hexagonal Bravais lattice with lattice
constant a. The filling fraction is (2π/

√
3)(r2/a2) = 0.4. Ma-

terial constants listed in Table I are specified with mass density
and bulk phase velocities. The fluid matrix is chosen as water,

with longitudinal phase velocity cL =
√

B
ρ f

. Either steel or

nylon are considered for the solid inclusions. For isotropic
elastic solids there are only two independent elastic constants.

Note that in this case cL =
√

c11
ρs

and cS =
√

c66
ρs

.

FIG. 1. (a) Primitive unit cell for two-dimensional hexagonal
phononic crystals composed of solid cylindrical rods embedded in a
fluid matrix. Lattice vectors are represented by the red vectors, with
a1 = a(i − √

3j)/2 and a2 = a(i + √
3j)/2. (b) The first Brillouin

zone is also hexagonal. High-symmetry points �, K , and M are indi-
cated. b1 = b(i − √

3/3j) and b2 = b(i + √
3/3j) with b = 2π/a.

Band structures for steel in water and nylon in water are
shown in Figs. 2 and 3, respectively. They present the reduced
frequency ωa/(2π ) of Bloch waves as a function of the wave
number inside the first Brillouin zone. The band structures

FIG. 2. Phononic band structure for a two-dimensional hexag-
onal phononic crystal of steel rods in water, accounting for
acoustoelastic coupling. Dashed lines are for the simplified fluid-
fluid case, with shear waves in the solid neglected. The first two
Bloch waves at the M and K points of the first Brillouin zone are
presented below the band structure. The color scale represents the
pressure in water, from negative (blue) to positive (red) amplitudes.
The thin arrows represent the displacement vector in the solid in-
clusion. The thick arrow indicates the direction of propagation of
Bloch waves. The two Bloch waves at the K point are degenerate in
frequency.
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FIG. 3. Phononic band structure for a two-dimensional hexag-
onal phononic crystal of nylon rods in water, accounting for
acoustoelastic coupling. Dashed lines are for the simplified fluid-
fluid case, with shear waves in the solid neglected. The first eight
Bloch waves at the M and K points of the first Brillouin zone are
presented below the band structure. The color scale represents the
pressure in water, from negative (blue) to positive (red) amplitudes.
The thin arrows represent the displacement vector in the solid in-
clusion. The thick arrow indicates the direction of propagation of
Bloch waves.

without acoustoelastic coupling taken into account are also
presented for comparison. They are obtained by replacing the
solid with an equivalent fluid having the same longitudinal ve-
locity, i.e., neglecting the contribution of shear elastic waves.
It is found that for steel in water acoustoelastic coupling does
not change significantly the band structure. The main effect is
a frequency down-shift of the bands, which can be understood
by the fact that the shear part of the elastic energy is neglected

when acoustoelastic coupling is ignored. A Bragg gap appears
for steel in water in the �M direction for reduced frequencies
ranging between 673 m/s and 928 m/s. At the K point of the
first Brillouin zone a Dirac cone is formed [20]. The first two
Bloch waves at the M and K points are further presented. The
first two Bloch waves at the M point have even symmetry with
respect to the direction of propagation. At the K point, they are
degenerate in frequency but the symmetries of the bands they
form are orthogonal.

In the case of nylon in water shown in Fig. 3, in con-
trast, the band structure is strongly affected by acoustoelastic
coupling. Comparing with the fluid-fluid band structure, it is
noticed that additional bands appear. As we outline in the
following section, a single nylon rod in water possesses more
resonances in the low frequency range than a steel rod of
identical diameter. Both the shear and the longitudinal bulk
velocities of nylon are closer to the acoustic velocity of water
than are the velocities of steel, and the reduced contrast favors
the generation of locally resonant gaps. The Dirac cone at the
K point is strongly affected as well. Actually, as we discuss
later, it is pushed upward by the mixing between bands 3 and
4, counted in order of appearance from the � point. The first
eight Bloch waves are plotted in Fig. 3 at the M and K points.
They will be further discussed later in Sec. IV, once resonant
modes of the rod have been introduced. For now we notice that
they can be classified according to their even or odd symmetry
with respect to the direction of propagation. Pairs of Bloch
waves can further be degenerate at the K point. The latter
situation happens for the first and the second Bloch waves,
the fourth and fifth Bloch waves, and the seventh and eighth
Bloch waves.

We argue in the following that the additional bands for
nylon in water result from hybridization of Bloch waves
with resonant in-plane polarized elastic waves that are partly
trapped in the solid rods. Since the coupling of elastic waves
in the rods and acoustic waves in water is significant, the
surrounding water indeed creates the possibility for them to
radiate energy. One resonant gap for instance appears be-
tween 628 m/s and 722 m/s for nylon in water. The Bragg
gap in the �M direction forms between the second and the
fourth bands, i.e., between 879 m/s and 1073 m/s, slightly
higher than for steel in water. The up-shift of the Bragg band
gap is consistent with the effective velocity of the phononic
crystal in the long wavelength limit. This effective velocity is
simply obtained numerically from the slope of the first band
starting at the zero frequency. As a note, effective velocities
for periodic elastic composites were obtained by the multiple
scattering method [21] and effective velocities for periodic
acoustic composites were obtained by the plane wave expan-
sion method [22], but we are not aware of theoretical results
for periodic acoustoelastic composites. The effective velocity
for the nylon-in-water composite is 1672 m/s, compared to
1401 m/s for the steel-in-water composite. We have also
checked that the effective velocity only increases very slightly
when acoustoelastic coupling is ignored.

III. RESONANT MODES

How can we identify the resonant modes participating in
the hybridizations with Bloch waves? Our idea is to obtain
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first the free modes of vibration of an isolated solid rod in
water. Since in-plane polarized elastic vibrations are coupled
with pressure waves in water, radiation at infinity is expected.
A resonant mode is also termed a quasinormal mode (QNM)
in the literature [23]. In contrast to normal modes of a closed
domain that are lossless, QNM has a complex resonance
frequency with the imaginary part accounting for radiation
loss. Because the physical domain of radiation is infinite, the
practical problem of obtaining the eigenmodes is generally
nontrivial. Different approaches have been proposed in the
literature, for instance, based on coupling the acoustic Green’s
function of the infinite radiation medium to the elastic solu-
tion in the rod [24,25]. Analytical solutions for the scattering
of plane waves by circular cylinders and spheres are also
available [26]. However, they do not provide with the QNMs
directly, but rather with their contribution to the scattering
cross section as a function of frequency. Here we consider a
numerical approach based on the use of a perfectly matched
layer (PML) to truncate the computation domain to a finite re-
gion of space and at the same time minimize reflections from
boundaries [23,27]. This approach provides us with both the
frequency response and the spatial distribution of the QNMs.

The stochastic excitation technique considers a time-
harmonic and spatially random body force applied to the solid
rod, with zero spatial mean [18]. Appendix B summarizes the
equations that are solved. Since QNMs constitute a complete
basis for solutions of the time-harmonic wave equation, the
response to the random excitation contains the contributions
of all QNMs. In practice, the total elastic energy of the solid
rod is plotted as the forcing angular frequency is tuned con-
tinuously and all resonances of the system are revealed. The
responses for nylon and steel in water are plotted in Fig. 4.
No resonance is observed for steel in water, whereas three
distinct resonances are observed for nylon in water in the
considered frequency range. The difference between steel and
nylon is apparent in Table I: the shear wave velocity for nylon
is smaller than the longitudinal velocity for pressure waves in
water, even though the longitudinal wave velocity in nylon
remains larger. In-plane vibrations of the rod have mixed
shear and longitudinal displacements, leading to their partial
spatial confinement. As a note, steel rods in water also support
QNMs, but at frequencies larger than those considered in the
band structures presented in this paper; see Appendix B.

The stochastic excitation method also provides us with
approximations of the quasinormal modes when they are
nondegenerate [18]. When the forcing frequency matches a
resonance, the mixture of eigenmodes forming the solution
indeed converges to the nearest QNM. Furthermore, the real
part of the eigenfrequency is approximated by the frequency
of the maximum and its imaginary part can be estimated from
the quality factor of the resonance by Q = Re(ω)/[2 Im(ω)].
The solutions at the three resonant peaks for nylon in wa-
ter are illustrated in Fig. 4. Eigenmode R1 [Re(ω)a/(2π ) ≈
733 m/s; Q ≈ 14] has quadrupolar symmetry. Eigenmode R2
[Re(ω)a/(2π ) ≈ 1162 m/s; Q ≈ 21] has hexapolar symme-
try. Eigenmode R3 [Re(ω)a/(2π ) ≈ 1336 m/s; Q ≈ 88] has
dipolar symmetry.

Because of the circular symmetry of the rod, the resonant
modes in Fig. 4(b) can be freely rotated. If they hybridize to
form Bloch waves of the crystal, however, they must respect

FIG. 4. (a) Stochastic response of a single nylon (solid line) or
steel (dashed line) rod in water. The plot shows the total elastic
energy as a function of the forcing reduced frequency ωa/(2π ), with
the lattice constant a having the same value as for the phononic
crystal. (b) The resonant modes at the three resonant peaks are shown
for the nylon rod. The color scale represents the pressure from neg-
ative (blue) to positive (red) maximum amplitude. The thin arrows
indicate the displacement vectors. The external annular domain is
the perfectly matched layer (see text). Modal symmetry is either
quadrupolar (Q), hexapolar (H), or dipolar (D).

the even or odd symmetry with respect to the direction of
propagation. We hypothesize that the Bloch waves in Fig. 3
can be approximated by such hybridizations with one resonant
mode. Specifically, we mean that the approximation for Bloch
wave BWn is a linear superposition of the form

uBWn ≈ αniui + βn juR j, (5)

with complex numbers αni and βn j weighting the mixture of
a nonresonant Bloch wave ui similar to those found for steel
rods (i = 1 or 2; see Fig. 2) and a resonant mode uR j [ j =
1, 2, or 3; see Fig. 4(b)]. According to such a model, the
features of the resonant modes should be apparent in the Bloch
waves whenever βn j is not negligible compared to αni.

Applying the above classification, the Bloch waves in
Fig. 3 are labeled BWn, n = 1 to 8, with increasing frequency.
The symmetry (E for even; O for odd) is indicated at the
bottom left corner of each distribution. The resonant mode
when easily recognized is indicated at the top right corner (Q
for the quadrupolar mode R1, H for the hexapolar mode R2,
and D for the dipolar mode R3). At the M point, each of the
resonant modes appears at most twice, for either even or odd
symmetry of the Bloch wave. Furthermore, Bloch waves BW3
(respectively, BW5) look similar to nonresonant Bloch wave
u1 (respectively, u2), consistently with their interpretation as
entrance and exit points of the Bragg band gap. The interpre-
tation of Bloch waves for point K is similar as for point M.
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IV. HYBRIDIZATIONS IN THE COMPLEX
BAND STRUCTURE

The complex band structure has been shown to be a valu-
able tool to study local resonances in phononic crystals and
metamaterials [19,28,29]. Evanescent Bloch waves indeed
form a complete basis for the solutions of the time-harmonic
elastodynamic equation and the number of complex bands
k(ω) is conserved as a function of frequency [30], in contrast
to the classical band structure ω(k) for which the number of
propagating bands generally increases with frequency. The
finite element formulation we use to obtain the complex band
structure considering acoustoelastic interaction is summarized
in Appendix C.

Figures 5 and 6 show the complex band structures for steel
in water and nylon in water in the �M and the �K directions,
respectively. For comparison, the classical band structures
of Figs. 2 and 3 are superimposed. As usual the real bands
in the complex band structure match those of the real band
structure, though flat bands are hardly caught by the k(ω)
representation. The even or odd symmetry of Bloch waves is
quantitatively evaluated by considering a boundary integration
of the periodic pressure solution p̄k(r). Odd Bloch waves are
also termed deaf since they cannot be excited by a symmetric
plane source [31].

In the �M direction (Fig. 5), Bragg gaps are characterized
by smooth and nonzero imaginary parts as well as constant
real parts. Around the frequencies of the different resonant
modes of nylon in water, however, the complex bands are
varying sharply in the complex plane. For instance, a resonant
gap appears around resonant mode R1 for even Bloch waves,
with the lower and the upper propagating bands connected
by evanescent waves with nonzero real and imaginary parts.
The even propagating band holding the Bloch wave labeled
A indeed interacts with the even complex band holding the
Bloch wave labeled B to create that resonant gap. In contrast,
the odd imaginary band holding the Bloch wave labeled C
is the origin of an independent system of odd complex bands.
The quadrupolar symmetry of eigenmode R1 appears clearly
in Bloch wave C and continues at least up to BW2. An odd
Bragg gap then opens up to BW4, at which point the hexapolar
symmetry of R2 is now dominant. The next odd Bloch wave
at the M point is BW7, with the dipolar symmetry of R3. As
a note, the two complex bands B and C starting at the zero
frequency are subdiffractive. They do not arise from frustrated
orders of diffraction in the crystal [30], but because of the
existence of resonant mode R1. They appear only for the first
resonant mode, since the total number of complex bands is
generally preserved with frequency.

Per the above discussion, it appears that in the �M di-
rection resonant modes dominate the mixture described by
Eq. (5) in the formation of odd Bloch waves. In the case of
even Bloch waves, the mixture is more balanced in favor of the
initially nonresonant propagating waves, with the exception of
BW6 that clearly displays the hexapolar symmetry of resonant
mode R2. Anyway, each of the resonant modes creates an even
resonant band gap in the complex band structure. Since there
are two independent groups of Bloch waves (even or odd),
each group can hybridize independently if the (adequately
rotated) free mode respects the even/odd symmetry.

FIG. 5. Complex band structure of the two-dimensional hexago-
nal phononic crystal in the �M direction for (a) steel in water and
(b) nylon in water. In either case, the left and right panels show the
variation of reduced frequency versus the real or imaginary part of
the wave vector, respectively. The solid lines are for the classical
band structure. Even-symmetric Bloch waves appear in red; odd-
symmetric Bloch waves appear in blue. The black points in between
the panels of (b) mark the resonant frequencies for nylon in water.
(c) Modal field patterns (periodic part only) are displayed at points
A, B, and C. The thick arrows indicate the direction of propagation
of Bloch waves.

In the �K direction (Fig. 6), similar observations can be
made. We only focus on the main differences with the �M
direction for brevity. The first nonresonant band is still even
but the second one starting at the Dirac point is now odd, as
the case of steel in water illustrates [8]. For nylon in water,
the first resonant band gap for R1 is even, R2 induces both an
even and an odd resonant band gap, and R3 induces an odd
resonant band gap. The Bloch waves labeled A, B, and C now
all clearly display the quadrupolar symmetry of R1. The Dirac
point, originally quite close to R2, is strongly affected by the
different hybridizations. The condition of a pair of degenerate
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FIG. 6. Complex band structure of the two-dimensional hexag-
onal phononic crystal in the �K direction for (a) steel in water and
(b) nylon in water. In either case, the left and right panels show the
variation of reduced frequency versus the real or imaginary part of
the wave vector, respectively. The solid lines are for the classical
band structure. Even-symmetric Bloch waves appear in red; odd-
symmetric Bloch waves appear in blue. The black points in between
the panels of (b) mark the resonant frequencies for nylon in water.
(c) Modal field patterns (periodic part only) are displayed at points
A, B, and C. The thick arrows indicate the direction of propagation
of Bloch waves.

Bloch waves with orthogonal symmetry is met three times, for
BW1-BW2, BW4-BW5, and BW7-BW8. These points thus
respect symmetry conditions similar to those of Dirac points,
but they are not Dirac points since a band gap does not open
concurrently along the �M direction.

V. CONCLUSION

We have investigated phononic crystals composed of solid
inclusions distributed periodically in a fluid matrix. Taking
into account acoustoelastic coupling at the boundary of inclu-
sions, it was observed that the existence of resonances internal

to the unit cell critically affects the Bloch waves of the crystal.
Indeed, the phononic band structure is populated by additional
hybridization bands that are absent otherwise. The resonant
modes (or quasinormal modes) of a single solid rod immersed
in water were obtained by applying a stochastic excitation
technique and could be recognized in certain hybridized Bloch
waves. Complex band structures considering acoustoelastic
coupling were obtained and were shown to characterize the
hybridization process between resonant modes and the ini-
tially present nonresonant Bloch waves. In the particular case
of hexagonal acousto-elastic phononic crystals considered, we
observed that the acoustic Dirac cone centered at K points
of the first Brillouin zone can be severely affected without
breaking the symmetry of the crystal. This work could be
extended to nonhexagonal and to three-dimensional acoustoe-
lastic phononic crystals. Generally speaking, we emphasize
that acoustoelastic coupling should not be neglected or over-
looked in actual experiments with solid crystals immersed in
a fluid matrix.

ACKNOWLEDGMENTS

Financial support by the National Natural Science Foun-
dation of China (Grants No. 11702017, No. 11991032, No.
11991031, No. 11532001, and No. 12021002), the Agence
Nationale de la Recherche (Grant No. ANR-17-EURE-0002),
and the Young Elite Scientists Sponsorship Program by CAST
(Grant No. YESS20170022) is gratefully acknowledged. This
work was supported by the EIPHI Graduate School.

APPENDIX A: WEAK FORM OF ACOUSTO/ELASTIC
WAVE INTERACTION

We consider the two-dimensional hexagonal phononic
crystal shown in Fig. 1, composed of periodically arranged
solid rods embedded in a fluid matrix. Waves in the fluid
and solid parts are coupled at the fluid/solid interface by
Eqs. (3) and (4). Acoustic waves in the fluid are governed
by Eq. (1), whereas elastic waves in the solid satisfy Eq. (2).
A mixed finite element formulation of the problem can be
obtained as, for instance, detailed in Ref. [2]. We multiply (1)
by test function p′ living in the same finite element space as
p and (2) by vector test function u′

i (i = 1, 2, 3) living in the
same finite element space as ui, and integrate independently
over the fluid and the solid domains. Further applying Green’s
formula to both domains and inserting the coupling boundary
conditions (3) and (4) leads to the coupled system

ω2

(∫
� f

p′ 1

B
p +

∫
σ

p′un

)
=

∫
� f

p′
,i

1

ρ f
p,i, (A1)

ω2
∫

�s

u′
iρsui =

∫
σ

pu′
n +

∫
�s

u′
i, jci jkl uk,l . (A2)

In order to obtain the band structure, the inclusion of the
wave vector dependence follows the application of Bloch’s
theorem. Practically, it is sufficient to make the following
replacements in the pair of equations above:

p,i = p̄,i − jki p, p′
,i = p̄′

,i + jkiq̄, (A3)

uk,l = ūk,l − jkl ūk, u′
i, j = ū′

i, j + jk j ū
′
i. (A4)
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Equations (A1) and (A2) then form a generalized eigenvalue
problem for ω2 that can be solved as a function of k. The
eigenvector is composed of the periodic parts of the pressure
and displacement fields, ( p̄, ūi ).

APPENDIX B: WEAK FORM FOR STOCHASTIC
EXCITATION OF RESONANT MODES

In the stochastic excitation method [18], a spatially random
body force f is applied to the solid rod so that Eq. (A2)
becomes

ω2
∫

�s

u′
iρsui =

∫
σ

pu′
n +

∫
�s

u′
i, jci jkl uk,l −

∫
�s

u′
i fi. (B1)

Equation (A1) is further modified to include a perfectly
matched layer as

ω2

(∫
� f

det(J )p′ 1

B
p +

∫
σ

p′un

)

=
∫

� f

det(J )J−t∇p′ 1

ρ f
J−t∇p. (B2)

In this expression, J is the Jacobian matrix of a complex coor-
dinate transform. For the cylindrical PML considered in this
paper, the expression of the inverse and transposed Jacobian
matrix is [2]

det(J ) = 1 + i

ω
σ (r) = α−1, (B3)

J−t =
(

(αx2 + y2)/r2 (α − 1)xy/r2

(α − 1)xy/r2 (αy2 + x2)/r2

)
, (B4)

with σ (r) a loss function that is zero outside the PML and is
continuously increasing inside it.

The total energy E in the solid rod is used to evaluate the
response of the system and is calculated as

E = 1

2

∫
�s

u∗
i, jci jkl uk,l + 1

2
ω2

∫
�s

ρsu
∗
i ui. (B5)

This expression was used to plot the stochastic response of
Fig. 4(a). Extending the frequency range in Fig. 7, it can be
checked that the steel rod also supports resonant modes, but
at higher frequencies compared to the nylon rod. The QNM
at a reduced frequency of about 3600 m/s has a quadrupolar
modal shape similar to that of R1. Its resonant frequencies
could be decreased by increasing the radius of the rod. In a
hexagonal crystal, however, the value of the radius is limited
to a maximum given by the close-packing condition (r =
a/2). Even for that radius, the frequency of the first QNM for
steel in water thus remains above the Bragg band gap.

APPENDIX C: COMPLEX BAND STRUCTURE WITH
ACOUSTOELASTIC COUPLING

According to Bloch’s theorem, the displacement and pres-
sure fields in a periodic system can be expressed as

p(r) = e−ı(k·r) p̄(r), ui(r) = e−ı(k·r)ūi(r), (C1)

FIG. 7. Stochastic response of a single steel rod in water. The
plot shows the total elastic energy as a function of the forcing reduced
frequency ωa/(2π ), with the lattice constant a having the same value
as for the phononic crystal.

where k is the wave vector whose real part is restricted to
the first Brillouin zone of the reciprocal lattice and p̄ and
ūi are periodical functions with the same periodicity as the
crystal lattice. In the complex band structure, one considers
a direction of propagation along unit vector α and defines
k = kα with k the (complex) wave number. The goal is to find
the dispersion relation k(ω) in a given direction [30].

For both the acoustic and the elastic problem, it is useful
to consider first-order differential equations of motion instead
of the second-order equations (1) and (2). This consideration
leads to a mixed formulation with variables (φ, p̄) and (τi, ūi ),
where φ = −ω2α · ū is the normal acceleration and τi = α j T̄i j

are the stress components in the direction of propagation.
Combining the weak forms for the acoustic and the elastic
complex band structure leads to a generalized eigenvalue
problem of the form

[A11 A12

A21 A22

]⎡⎢⎣
φ

p̄
τi

ūi

⎤
⎥⎦ = ık

[B11 0
0 B22

]⎡⎢⎣
φ

p̄
τi

ūi

⎤
⎥⎦. (C2)

The block matrices A11 and B11 account for the acoustic part
of the problem. They are obtained from the finite element
expressions [2]

∫
� f

A11(φ′, p̄′; φ, p̄),
∫

� f

B11(φ′, p̄′; φ, p̄), (C3)
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with (φ′, p̄′) vectors test functions and

A11(φ′, p̄′; φ, p̄) = φ′φ + φ′ 1

ρ
(α · ∇ p̄) + ω2 p̄′ 1

B
p̄

− (∇ p̄′)t 1

ρ
∇ p̄, (C4)

B11(φ′, p̄′; φ, p̄) = φ′ 1

ρ
p̄ − (α · ∇ p̄′)

1

ρ
p̄ − p̄′φ. (C5)

Similarly, the block matrices A22 and B22 account for the
elastic part of the problem. They are obtained from the finite
element expressions [2]

∫
�s

dr A22(τ ′, ū′; τ, ū),
∫

�s

dr B22(τ ′, ū′; τ, ū), (C6)

with (τ ′, ū′) vectors test functions and

A22(τ ′, ū′; τ, ū) = (τ ′)iτi − ci jklα j (τ
′)iūk,l

+ ρω2(ū′)iūi − ci jkl (ū
′)i, j ūk,l , (C7)

B22(τ ′, ū′; τ, ū) = −ci jklα jαl (τ
′)iūk

− ci jkl (ū
′)i, jαl ūk + (ū′)iτi. (C8)

Coupling between the acoustic and the elastic domains occurs
thanks to block matrices A12 and B21. They are obtained re-
spectively from the boundary integrals∫

σ

−ω2 p̄′ūn (C9)

and ∫
σ

p̄ū′
n. (C10)
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