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1 Description of cristals

1.1 Properties

The attenuation of elastic waves is smallest for the most ordered states of
matter:

� In air (in a gas), the practical limit is a few 100 kHz;

� In water (in liquids), the practical limit is a few 100 MHz;

� With solid-state crystals, the practical limit is a few 10 GHz, at least.
The piezoelectric effect can be used to generate and detect elastic waves
at those frequencies.

The symmetry of crystals directly dictates the anisotropic properties of elastic
waves. Crystals can be classified according to their orientation symmetry. The
microscopic symmetry reflects in the macroscopic physical properties.
A crystal is homogeneous: the behaviors of different samples with the same ori-
entation and obtained from the same crystal are identical.
The concept of tensor is the natural mathematical language to describe physical
properties and their relations with symmetry.
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1.2 Crystal array (lattice)

There exist an infinity of nodes, or points
that are images in an elementary
translation:

OM=ma+nb+pc with m;n;p indices
All nodes have the same
atomic environment. b

a

M

O
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1.3 Unit cell
The periodic array (=lattice) can be seen as a stack of unit cells, parallelograms
whose vertices are nodes.
A unit cell built from 3 basis vectors is primitive (it contains a single node).

Face centered cubic lattice:
an additional node appears at the centre
of each face of the cube.
The cubic unit cell is 4 times too wide.
The primitive unit cell is a rhomboedron
(a polyhedron whose faces are
rhombuses).
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1.4 Basis

A basis is a set of atoms positioned at the nodes of the lattice.

� The basis can be composed of a single atom

! face centered cubic (fcc): Cu, Ag, Al, Ni, Pt...

! centered cubic (cc): Li, Na, K, Cr...

� The basis can be composed of a repetition of the same atom

! diamond: fcc lattice + 1 atom at 1/4;1/4;1/4 (Si, Ge...)

� The basis can be composed of different atoms (ZnS, AsGa)

1/4, 1/4, 1/4

0,0,0
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2 Orientation symmetry

2.1 The 14 Bravais lattices

� The 14 Bravais lattices are the only possible manners to distribute in 3D
spaces an infinite array of nodes having the same environment.

� There are conventionally 7 lattice systems.

� They are further separated into possibly 3 lattice centerings:

! centered (I)

! one node on two opposite faces (C)

! face centered (F)

6



7



2.2 The 32 point groups (point symmetry classes)

� Adjoining the basis at each node, the overall symmetry of the crystal is
possibily reduced.

� A crystal is not necessarily centro-symmetric (piezoelectric crystals, for
instance).

� The 32 point groups of crystals imply the anisotropy of the material con-
stants, and hence the anisotropy of propagation velocity (see Section 5).
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3 Examples of structures

3.1 Compact hexagonal structure

3.2 Face centered cubic (fcc)
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3.3 ZnO, AlN, CdS: hexagonal system, 6mm symmetry

3.4 LiNbO3 and LiTaO3: trigonal system, 3m symmetry
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4 Introduction to tensors

4.1 Linear relations in anisotropic media

Inside a crystal, a cause applied in a given direction generally induces an effect
oriented in another direction. For instance, the relation between electrical polar-
ization and electric field is

D="E ou

0@D1

D2

D3

1A=
0BB@ "11 "12 "13

"21 "22 "23
"31 "32 "33

1CCA
0@E1
E2
E3

1A or Di="ijEj (1)

The first two notations make use of vectors and matrices. The last one is tenso-
rial and uses the implied summation convention on repeated indices (or Einstein
convention).
Di and Ej are order 1 tensors; "ij is an order 2 tensor. The order is the number
of indices.
Giving the components of a tensor is not sufficient in order to determine it. It is
furthermore necessary to specify how the tensor transforms in a given transfor-
mation of the reference frame: the physical significance does not change when
axes are rotated, only the representation of the tensor is changed!
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4.2 Reference frame transform matrix

Let e1;e2;e3 and e10 ;e20 ;e30 be two reference frames. The components of the new
reference frame in the old reference frame form a matrix � such that (a matrix,
not a tensor!)

ei
0=�ikek with �=

0BB@ �1
1 �1

2 �1
3

�2
1 �2

2 �2
3

�3
1 �3

2 �3
3

1CCA (2)

Reciprocally ek =�k
j ej
0 with �i

k �k
j =�ij and �ij the Kronecker symbol. If the ref-

erence frames are orthonormal then �=�T (T : transposition operator).

The coordinates of a vector obey the transformation law:

xi
0=�ki xk with x=xkek=xi0 ei0 (3)

In case the reference frames are orthonormal, then the coordinates of a vector
obey the same transformation law as the basis vectors: xi0=�ikxk.
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4.3 Definition of a tensor
� Any scalar physical quantity (temperature, energy, etc.) is invariant of the

chosen reference frame: f(x1;x2;x3)=f(x10 ;x20 ;x30 ); it is an order 0 tensor.

� An order 1 tensor (i.e. a vector) transforms in a reference frame change as
the basis vectors, or

Ai
0=�ikAk (4)

� An order 2 tensor is a set of 9 components Aij that transforms according
to

Aij
0 =�ik�jlAkl (5)

� The definition extends smoothly to an arbitrary order, for instance at
order 3:

Aijk
0 =�il�j

p�k
qAlpq (6)

� The gradient of a vector, @Ai/@xk, is an order 2 tensor.

� The trace Aii of an order 2 tensor, Aij ; is an order 0 tensor (a scalar).

� The linear relation between two tensors is also a tensor. For instance
Di="ijEj implies that "ij is an order 2 tensor.
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5 Elasticity

5.1 Deformations

Consider a point x with coordinates x1;x2;x3. Displacements u are a function of
x, hence ui(xj+dxj) =ui(xj) +

@ui
@xj

dxj to first order. @ui
@xj

, the displacement gra-
dient, is an order 2 tensor.
This gradient is separated into a symmetric part (the strain tensor Sij) and an
antisymmetric part

@ui
@xj

=Sij+
ij with Sij=
1
2

�
@ui
@xj

+ @uj
@xi

�
and 
ij=

1
2

�
@ui
@xj
¡ @uj
@xi

�
(7)

Only the symmetric part of the displacement gradient actually measures of local
volume change of the lattice. The antisymmetric part measures local rotations.
The dilation (i.e. the local variation of the volume) is Sii=S11+S22+S33=r:u,
that is the trace of the displacement tensor.
For elastic waves, the diagonal components S11;S22;S33 are linked to longitudinal
motion, whereas the non-diagonal components Sij ; i=/ j are linked to shear
motion.
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5.2 Stress
Contrary to fluids, shear forces in solids are transmitted through a surface.
Three independent forces apply to a surface: a traction-compression force and 2
shear forces.
On the face orthogonal to axis x1 of an elementary cube, the force per unit sur-
face (i.e. the mechanical traction) is T11 +T21 +T31 (with similar formulas for
faces orthogonal to axes x2 and x3).
Tij is a symmetrical order 2 tensor, the stress tensor. For an arbitrary elemen-
tary surface with normal l, the mechanical traction is Tik lk.

x

x

x

T

T21
2

3

1

11

T31

The elastodynamic equation is (with fi some body forces)

@Tik
@xk

+fi=�
@2ui
@t2

(8)
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5.3 Hooke's law

Experiment indicates that the elastic behavior of most solids in the limit of small
deformations follows Hooke's law :

Tij=cijklSkl (9)

This amounts to stating that stress is a linear function of strain.

cijkl is the elastic tensor, of order 4. It has a priori 34 =81 components. The
symmetry of both Tij et Skl, however, implies

cjikl=cijkl and cijlk=cijkl (10)

There are thus 36 independent components at most. Moreover, it can be shown
that the elastic tensor is symmetric, cijkl=cklij, hence 21 independent components
remain.

As a whole, the actual number of independent components (or independent con-
stants) is a function of the symmetry of the crystal.
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5.4 Contracted notation (or matrix notation)
Thanks to the symmetry relations we note

(11) !1 ; (22) !2 ; (33) !3
(23)=(32) !4 ; (31)=(13) !5 ; (12)=(21) !6 (11)

Tij=TI ; cijkl=cIJ ; TI=cIJSJ
S1=S11 ;S2=S22 ;S3=S33 ;S4=2S23 ;S5=2S31 ;S6=2S12 (12)

Material Class Elastic constants (1010 N/m2) � (103 kg/m3)
cubic ou isotropic c11 c12 c44
AsGa 4�3m 11.88 5.38 2.83 5.307
SiO2 isotrope 7.85 1.61 3.12 2.203
Si m3m 16.56 6.39 7.95 2.329
hexagonal c11 c12 c13 c33 c44
PZT-4 trans. iso. 13.9 7.8 7.4 11.5 2.6 7.5
ZnO 6mm 21.0 12.1 10.5 21.1 4.2 5.676
trigonal c11 c12 c13 c33 c44 c14
Al2O3 3�m 49.7 16.3 11.1 49.8 14.7 -2.3 3.986
LiNbO3 3m 20.3 5.3 7.5 24.5 6.0 0.9 4.7
quartz � (SiO2) 32 8.7 0.7 1.2 10.7 5.8 -1.8 2.648
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6 Piezoelectricity
6.1 Physical origin of piezoelectricity
Direct piezoelectric effect: if a stress or strain is applied, an electrical polar-
ization appears (i.e., a non symmetrical deformation of the atomic unit cell
and/or of the distribution of bound electrons).
Inverse piezoelectric effect (or Lippman effect): An applied electric field
induces a stress or strain.
The piezoelectric effect is only observed in non centrosymmetric crystals.

6.2 Constitutive relations
Considering the linear regime only, and choosing strain and electric field as the
state variables,

Tij = cijklSkl¡ekijEk (13)
Di = eiklSkl+"ijEj (14)

or in contracted notation for the mechanical part

TI = cIJSJ ¡ekIEk (15)
Di = eiJSJ+"ijEj (16)

Piezoelectric tensor eikl=eiJ is symmetrical vs. the last 2 indices only.
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6.3 Quasi-static approximation

As a consequence of piezoelectric coupling, an electromagnetic wave travels along
with the elastic wave. Maxwell's equations in a dielectric (or insulator) are :

r�E=¡ @B

@t
;r�H= @D

@t
; r:D=0 ; r:H=0 ;B=�0H (17)

The involved frequencies are quite small compared to optical waves, resulting in
negligible temporal derivatives:

r�E=¡ i!B' 0 and r�H=i!D'0

This approximation decouples electric and magnetic fields. In addition, as the
electric field is irrotational there exists a scalar potential � such that E=¡r�.
The constitutive relations become

TI = cIJSJ+ekI�;k (18)
Di = eiJSJ ¡"ij�;j (19)
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6.4 Matrix representation of constitutive relations

Grouping tensors in equations (15-16) into a table of constants:

c11 c12 : : : :
c12 c22 : : : :
: : : : : :
: : : : : :
: : : : : :
c16 : : : : c66

e11 e21 e31
e12 : :
: : :
: : :
: : :
e16 : e36

e11 e12 : : : e16
e21 : : : : :
e31 : : : : e36

"11 "12 "13
"12 : :
"13 : "33

This representation is quite handy to identify possible couplings given the crystal
symmetry, but also in order to represent � material constants � data in a numer-
ical simulation program.
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6.5 Boundary conditions
Mechanical boundary conditions

� For two rigidly bonded solids, the displacements are continuous at any
point of the boundarye � between media M and M' : ui =ui0. Likewise,
the traction is continuous: Tij lj=Tij0 lj with lj the normal to �.

� At a free surface, displacements are unspecified but Tij lj=0.

� At a clamped surface, stresses are unspecified but ui=0.

Electrical boundary conditions
Within the quasistatic approximation, they are similar to electrostatics.

� At an interface �, �=�0 and Et =Et0 (both the potential and the tangen-
tial electric field are continuous).

� If the surface is charged (case of a metal-dielectric interface) then
(Di

0 ¡Di) li =� (�: surface charge density). Across two dielectrics, the
normal component of D is continuous.

� If the surface is short-circuited (e.g. because a metal thin-film is
grounded) then �=0.
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6.6 Poynting's theorem and energy balance
Expressing the work of mechanical and electrical forces, Poynting's theorem for
piezoelectric media is obtained as:

dW
dt

= d
dt
(Ec+Ep)+

Z
�

Pj lj ds (20)

with

� kinetic energy Ec=
R
ec dV and energy density ec=

1

2
�vi

2

� potential energy Ep=
R
epdV and ep=

1

2
(SijTij+EkDk)

� Poynting's vector Pj=¡Tij vi+(E�H)j

As in the case of fluids, Poynting's theorem expresses the fact that work per-
formed by internal sources in volume V is partially stored as a combination of
kinetic and potential energy and partially radiated through boundary �. The
flux of Poynting's vector accounts for this radiated power.
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