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Abstract. Metamaterials are rationally designed composites made of building blocks which are composed of
one or more constituent materials. Metamaterial properties can go beyond those of the ingredient materi-
als, both qualitatively and quantitatively. In addition, their properties can be mapped on some generalized
continuum model. We present the general procedure of designing elastic metamaterials based on masses
and springs. We show that using this simple approach we can design any set of effective properties includ-
ing linear elastic metamaterials,—defined by bulk modulus, shear modulus, mass density—and nonlinear
metamaterials,—with instabilities or programmable parts. We present designs and corresponding numerical
calculations to illustrate their constitutive behavior. Finally, we discuss the addition of a thermal stimulus to
mechanical metamaterials.

Résumé. Les métamatériaux sont des composites de conception rationnelle constitués de briques élé-
mentaires qui sont composées d’un ou plusieurs matériaux constitutifs. Les propriétés des métamatériaux
peuvent aller au-delà de celles des matériaux constitutifs, à la fois qualitativement et quantitativement. En
outre, leurs propriétés peuvent être mises en correspondance avec certains modèles de milieux continus
généralisés. Nous présentons une procédure générale de conception de métamatériaux élastiques à base de
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systèmes de type masses et de ressorts. Nous montrons quavec cette approche simple, nous pouvons conce-
voir tout un ensemble de propriétés effectives, y compris celles de métamatériaux élastiques non linéaires
avec instabilités ou parties programmables — définis par un module de masse, de cisaillement et une masse
volumique. Nous présentons des designs et calculs numériques afin dillustrer les lois de comportement. En-
fin, nous discutons de l’apport d’un stimulus thermique aux métamatériaux mécaniques.

Keywords. Metamaterials, Effective parameters, Elasticity, Anisotropy, Waves, Cauchy elasticity, Navier equa-
tion.

Mots-clés. Métamatériaux, Paramètres effectifs, Élasticité, Anisotropie, Ondes, Élasticité de Cauchy, Équation
de Navier.

2020 Mathematics Subject Classification. 00-01,99-00.

1. Introduction

For the last 50 years, a huge deal of effort has been made to design novel materials by chemical
synthesis (graphene [1–3], carbon nanotubes [4, 5]), by structuration (composites, fibrous mate-
rials, multilayers) [6–8], or by topology optimization in quasi-static conditions [9] or for dynami-
cal Bloch waves (phononic crystals) [10]. The ultimate goal has been to reach an improvement in
stiffness or toughness, increase or decrease in the mass density, or to absorb/reflect or transmit
energy [9, 11, 12]. Indeed, in aeronautics and the automotive industry for instance, it was neces-
sary to decrease the weight of all parts leading to a fundamental change from metals to only alu-
minum, alloys and composites. It is, for example, almost impossible to find a car bumper made
of metal today thanks to composites (mainly fibrous). The quest for a dynamical design response
(sound and vibration absorption), firstly questioned by Brillouin, was deeply expanded after pi-
oneering works by Yablonovitch [13, 14], Monkhorst [15], and Bloch [16]. Later, the introduction
of functionalities designed by transformational elastodynamics and the wish of mapping more
complex media onto generalized continua motivated the expansion from Cauchy elasticity to
micropolar, micromorphic or Cosserat models (an effort started in the sixties by Eringen, Maugin
and other precursors [17,18]) led to the higher order gradient theories of elasticity [19] and to the
modification of the Newton’s second law by Willis and Milton [20].

In this paper, we revisit these innovations from the perspective of metamaterial designs taken
from the literature. First, we summarize for newcomers the different models used in elasticity.
Second, we focus on linear elasticity and show that using masses and spring all mechanical prop-
erties can be independently designed. Third, we present an extension of linear metamaterials
toward their use for non-linear wave absorption.

2. Elasticity equations

In this section we review the complexity of the description of mechanical materials and of their
constitutive laws [21].

2.1. Hooke’s spring law

In the seventeenth century, Robert Hooke formulated the first constitutive law in mechanics that
states that the force, F , needed to extend or compress a spring by a distance d is given by F = k d ,
where k is a constant (the stiffness). This law can obviously be generalized to a vectorial force F
connecting a general vector elongation in 3D space d = (d1,d2,d3) by a matrix of spring constants
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Figure 1. Under uniaxial tension, the deformations of (a) a linear spring, (b) a nonlinear
spring, (c) an homogeneous cube, and (d) a geometrically nonlinear spring are depicted,
respectively. The color scale measures the vertical displacement, from blue (no displace-
ment) to red (maximum displacement). For the finite element computations, the bottom
surface is clamped and a force F directed upward is applied at the top surface. The thin
lines are for the structures at rest. Under each panel, a schematic force-elongation curve is
displayed.

k as F = k d. It is well known that in the general case, the spring constant is a constant scalar (or
a constant matrix), but that its magnitude can change depending on the load in a nonlinear way
(either monotonically or not; see the section on nonlinear mechanics). In Figure 1 we illustrate
the principles of linear and nonlinear springs and continua, a concept that we will more clearly
describe later on. The scalar Hooke’s law primarily relates linearly the tension of an homogeneous
spring to its elongation (Figure 1(a)). If the spring is made inhomogeneous along its length, such
as in Figure 1(b), then the relationship becomes nonlinear. Similarly, the homogeneous cube of
Figure 1(c) can often be modelled with the linear Hooke’s law, but a structural spring such as
depicted in Figure 1(d) must be described using a nonlinear stiffness under large deformations.
In the figure, the color scale represents the local vertical displacement with respect to the
static equilibrium position under zero tension. The elongation d is the difference of the top
displacement and the bottom displacement. Whereas in the first three cases the displacement
field is basically a simple vertical gradient, in the structural spring case the displacement field
varies in a more complex fashion.

Clearly, Hooke’s approach can be justified only for simple spring-like geometries and for long
bars. When all dimensions (pushing and lateral) of a material are comparable then this approach
does not reflect properly the deformation of the body. Thus, a more general theory is required.
It is called Cauchy elasticity from the contribution of Louis Cauchy to the definition of the stress
tensor replacing the simple applied force by a quantity homogeneous to a force per surface area
(thus with the units of pressure). Figure 2 illustrates the different components of the Cauchy stress
tensor exerted on an infinitesimal cubic volume.

The stress tensor defined graphically in Figure 2 obeys the fundamental law of conservation

C. R. Physique, 2020, 21, n 7-8, 751-765
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Figure 2. Illustration of the elements of the Cauchy tensor and of the orientation conven-
tion. In a Cartesian coordinate system, the stress vectors applying on each elemental plane,
T (e1), T (e2), and T (e3) can be decomposed into a normal component and two shear compo-
nents measured along the three principal axes.

of linear momentum. Combined with the conservation of angular momentum, the stress tensor
takes a symmetric form with only six independent parameters, rather than nine, and may thus be
written: σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

=
σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 (1)

where the diagonal entries σ1, σ2 and σ3 are the normal stresses, and the off-diagonal entries
σ12 =σ6, σ13 =σ5 and σ23 =σ4 are the orthogonal shear stresses.

Next, the infinitesimal strain tensor for a displacement field u is defined by:

ε= 1
2 [∇u+ (∇u)T ].

By construction this tensor is also symmetric. In component form, it writes as

εi j = 1
2 (ui , j +u j ,i ), i , j = 1,2,3,

and the notation ui , j = ∂ui /∂x j . Therefore, the displacement gradient can alternatively be
expressed as

∇u = ε+γ
with a skew symmetric tensor γ also called the rotation tensor:

γ= 1
2 [∇u− (∇u)T ].

Finally the constitutive equation between stress and stain tensors is given by the generalized
Hooke’s law as

σ=C : ε,

with σ Cauchy’s stress tensor, ε the infinitesimal strain tensor, and C a fourth-order elasticity
tensor. The latter must obey certain properties of tensors such as symmetries and positive
definiteness.

Sometimes it is difficult to model lattice metamaterials with continuum mechanics, especially
if bars get very thin and numerous. For this purpose, it is important to note that simplified
theories exist, e.g. Timoshenko’s and Euler–Bernouilli beam theories. However, in the quest of an
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efficient implementation they are not practical compared to finite element models. Anyway, an
extensive and specific literature exists and has been used for the design of metamaterials [22–26].

2.2. Navier’s equation

Once a rigid or deformable body is in motion, Newton’s second law can be written as follows
(omitting possible external forces):

∇·σ= ρ ∂
2u

∂t 2 (2)

with ρ the mass density and t the time variable. If the elastic body is isotropic, then

Ci j kl =λδi jδkl +2µδi j , (3)

where Lamé’s parameters λ and µ can be expressed in terms of Poisson’s ratio ν and Young’s
modulus E as

λ= Eν

(1+ν)(1−2ν)
, µ= E(1−ν)

(1+ν) (1−2ν)
. (4)

In the time-harmonic regime Navier’s equation at angular frequency ω is

∇·σ=−ρω2 u. (5)

3. Linear mechanical metamaterials

3.1. Isotropic metamaterials

In the isotropic case, the effective elasticity tensor that describes the elastic properties of a
solid metamaterial is very simple and in fact can be decomposed in a form with only two
eigenvalues (see Milton [27] and Banerjee [28]). Here, we describe how to design the most simple
isotropic mechanical metamaterial (as a remark, isotropy in mechanics is not as simple as in
crystallography, since space groups must be considered instead of point groups in order to
describe symmetry). We start from the ideal pentamode metamaterials introduced by Milton
and Cherkaev [27], as shown in Figure 3. Pentamodes are expected to avoid the coupling of
compression and shear waves due to their extremely large bulk modulus, B , in comparison with
the shear modulus, G [27,29]. However, it is almost impossible to fabricate such ideal pentamodes
due to infinitely small connections between cones. In 2012, Kadic et al. realized pentamodes
experimentally by modifying the diameter of thin and thick ends of double cones [29]. They
investigated the effect of the overlap volume on the ratio B/G . They found that increasing the
overlap volume stabilizes the structures, yet at the same time decreasing the ratio.

Figures 3(b) and (c) show 3D view and magnified front view electron micrographs of an
optimal pentamode truss micro-lattice metamaterial fabricated by dip-in three-dimensional
direct-laser-writing (DLW) optical lithography. These structures are experimentally validated to
possess an extremely large B/G ratio which can be also observed in Figure 5(a). Figure 4 and
Figure 5(b) illustrate how to independently control the bulk modulus B by connecting the middle
part of double cones with soft loose springs. One can also fulfill the goal to control density by
using parallel springs while enlarging the diameter d . By replacing loose springs with dense
springs, it is easy to keep the bulk modulus B and to enhance the capacity to resist shear
loading.

Actually, we can make pentamode metamaterials isotropic by adapting the optimal method
presented by Buckmann et al. [31]. We can relate the elastic modulus, the shear modulus and
Poisson’s ratio to three phase velocities v of the pentamode material, which are chosen either
purely longitudinally or transversely polarized, in the M direction or [110] direction. We thus get
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Figure 3. (a) An ideal periodic unit cell of a pentamode metamaterial with constant length
a and a modified pentamode with a smaller diameter, d , at connecting parts of the double-
cone strut, and a bigger diameter, D , of the middle part. 3D view (b) and magnified front
view (c) electron micrograph of a pentamode truss micro-lattice metamaterial fabricated
by dip-in three-dimensional direct-laser-writing (DLW) optical lithography. Front view
electron micrograph (d) of an unit cell of the metamaterial part which is highlighted with a
red square in (c). The samples chosen reproduce those discussed originally in Ref. [29].

a sufficient condition for isotropy as vL
110 = vT,x y

110 . This condition can be undertood as follows:
the phase velocity of the longitudinal wave along the crystallographic direction [110] equals the
phase velocity of the transverse wave along the same direction. The condition can be achieved by
adjusting geometrical parameters or by adding additional springs. All in all, we obtain a possible
way to control the 3 independent mechanical parameters and to make pentamodes isotropic by
adjusting different parts of the periodic unit cell.

4. Nonlinear mechanical metamaterials

In the regime of large deformations, the stress–strain response of mechanical metamateri-
als [32–34] always goes through a sequence of increases [35, 36] or decreases [37, 38], and
steady [39–41] or damping [42,43] variations. Globally, the part of the graph extending beyond the
initial elastic region describes the mechanical nonlinearity. Scientists usually pay much attention
to the elastic region for load-bearing mechanical metamaterials [38, 43], whereas nonlinearity is
important for energy absorption mechanical metamaterials [39,43] and programmable metama-
terials [11, 44]. Nonlinearity arises from two aspects, either geometrical (structural) nonlinearity
or the nonlinearity of the parent materials used for building the metamaterial [45]. Geometrical
nonlinearity, which is mainly determined by the topological structure and geometrical parame-
ters, exists in systems that sustain large deformations. Geometrical structures, such as truss lat-
tices [35, 40], shell lattices [42, 43] and plate lattices [46, 47] have to abide by two different defor-
mation criteria: stretching dominated or bending dominated [48]. Different geometrical param-
eters will yield different failure modes, including stiffening or softening plastic yield [38], plastic
collapse [35], linear and nonlinear buckling [39, 43], and so on. In a similar way, the mechanical
properties, especially in the nonlinear region, of the parent materials also affect the failure modes

C. R. Physique, 2020, 21, n 7-8, 751-765
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Figure 4. Illustration of optimal pentamodes with (a) a larger diameter D and additional
loose springs, (b) additional loose springs, (c) a larger diameter d and additional dense
springs and (d) a larger diameter d and additional loose springs.

of mechanical metamaterials. Material nonlinearity works only after the deformation of the par-
ent materials has gone beyond the elastic region. Plastic yield will dominate the failure of most
metals and polymers. However, brittle failure will be most common for ceramics, composite ma-
terials, and other ceramic-like materials. Material properties and the topological structure to-
gether with geometrical parameters decide the failure models, that is the nonlinear response, of
mechanical metamaterials.

Viscous materials, for which the relationship between stress and strain depends on time, pro-
vide another possibility to design energy absorption, energy dissipation, and vibration suppres-
sion metamaterials. Their energy dissipation capacity highly depends on the angular frequency.
Several mathematical models have been proposed to describe such dispersive relationships. The
Maxwell loss model [49, 50] is probably the oldest viscoelastic model and can be represented by
a purely viscous damper and a purely elastic spring connected in series, as shown in Figure 6(a).
The dynamic modulus E∗(ω) = E ′+ iE ′′ is obtained following the rules for admittance in equiva-
lent circuits. In the case of the Maxwell model,

1

E∗ = 1

E
+ 1

iωη
(6)

which yields

E ′ = τ2ω2

τ2ω2 +1
E , E ′′ = τω

τ2ω2 +1
E , (7)

C. R. Physique, 2020, 21, n 7-8, 751-765
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Figure 5. Milton’s maps of (a) pentamode metamaterials and (b), (c) optimal pentamode
metamaterials with different geometrical parameters. Ashby’s map (d) of optimal penta-
mode metamaterials. This figure is inspired by Ref. [30].

with τ = η/E . If we connect elastic and viscous elements in parallel, as in Figure 6(b), we get the
generalized Kelvin–Voigt model [49, 50]

E∗ = E + iωη. (8)

Then obviously E ′ = E and E ′′ =ωη. Combining a serial Maxwell branch in parallel with a purely
elastic branch, the more realistic model of the standard linear solid is obtained, as depicted in
Figure 6(c). The model contains two independent elastic elements, E1 and E2, and a viscous
element η, and is also known as the Zener model [49–51]. The complex dynamic modulus is

E∗(ω) =
(

1

E1
+ 1

iωη

)−1

+E2, (9)

leading to

E ′(ω) = τ2ω2

τ2ω2 +1
E1 +E2, (10)

E ′′(ω) = τω

τ2ω2 +1
E1. (11)

Figure 6 depicts the three previous elastic-viscous models and the corresponding relationships
between dynamics modulus and vibration frequency. The equations are simple enough but
often prove insufficient. For instance, the Maxwell model successfully captures the evolution of
the imaginary dynamic modulus as a function of vibration frequency, but fails to describe the
dependence of the real part on frequency. It should be noted that any solid material must have
a non zero elastic modulus in the absence of vibrations, i.e. at the zero frequency. Hence, the

C. R. Physique, 2020, 21, n 7-8, 751-765
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Figure 6. (a) Maxwell, (b) Voigt and (c) the standard linear solid simplified elastic-viscous
models are depicted in analogy with equivalent electrical circuits. Young’s modulus E is
analogous to a real-valued admittance, whereas viscosity contributes a iωη admittance
similar to a capacitance. The resulting relationship between dynamic modulus and angular
frequency is depicted below each equivalent circuit model (see text for their expressions).

Maxwell loss model is not physical in the limit of low frequencies. Finally, the Kelvin–Voigt model
is too ideal to describe nonlinear variations of the dynamic modulus.

4.1. Tailoring the stress–strain curve

A central issue of mechanical metamaterial design is indeed to tailor the stress–strain curve to
follow given shapes chosen in order to meet given requirements [35, 39, 46]. As outlined in the
previous section, the geometrical structure is one of most important factors in metamaterial
design. Here, we will give three examples to illustrate how to tailor the stress–strain curve by
optimizing the structure.

Let us start from a conventional spring which is the most basic elastic element in a mechanical
metamaterial. When a conventional spring is compressed or stretched from its rest position
(strained), a stress distribution appears along the length. Figure 1(a) illustrates the force versus
elongation curve. The spring constant is almost a constant as long as deformation does not go
beyond spring stoke. Under certain circumstances, however, a spring constant increasing with
applied strain is needed. In this case, replacing the constant spacing spring coils with graded
spacing spring coils, or replacing the constant major radius with an increasing major radius, a
progressive rate spring can be obtained, as Figure 1(b) depicts.

Second, the simple cubic solid structure, that is a base element in 3D mechanical metama-
terials, can be used to implement any geometrical structure by periodic repetition of a unit cell.
Figure 1(c) shows the deformation and the corresponding stress–strain curve of an homogeneous
cubic unit cell under tension. Clearly, Poisson’s ratio is positive and a conventional elastic–plastic
tensile response is obtained. However, the structure [32] shown in Figure 1(d), which is composed
of several relatively small simple cubic elements, has a totally different deformation behavior: it

C. R. Physique, 2020, 21, n 7-8, 751-765
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Figure 7. Body centered cubic (BCC) shell-lattice metamaterial. (a) A unit cell is depicted
along with its geometrical parameters. (b) Two different failure models can be observed for
the shell-lattice material, either plastic yield or buckling. The optimal designs obtained for
(c) energy absorption and (d) bearing load were fabricated by two-photon lithography.

is auxetic (Poisson’s ratio is negative). Moreover, the failure mode changes from elastic–plastic to
plastic bending. Note that such mechanical behavior is unusual in natural materials.

Third, we consider the control of the failure mode of mechanical metamaterials. The body cen-
tered cubic (BCC) shell-lattice metamaterial depicted in Figure 7 has high stiffness, high strength,
and large specific energy absorption at low relative density [52]. The compressive failure mode of
the metamaterial, either dominated by plastic yield or buckling, is affected by the geometrical
parameters defining the structure, including the spherical node radius R, the cylindrical strut
radius r , the smooth connecting shell radius r0, the cylindrical strut length l0, the total length
l , and thickness t1. These geometrical parameters are not independent: we have r0 = 2R − r and
l = l0+2

p
3(R−r ). Further fixing the total length of the shell strut and setting the relative density to

0.05, only two independent parameters are left, for instance the spherical node radius R and the
smooth connecting shell radius r0. After topology optimization, we obtained two different func-
tional shell metamaterials: a buckling dominated metamaterial (R/r = 2.3 and l0/(l − l0) = 0.1)
and a yield dominated metamaterial (R/r = 2.5 and l0/(l − l0) = 0.2). The buckling dominated
metamaterial can almost recover 92% of its original shape after compressions in excess of 60%
strain, which makes it a good candidate for energy absorption. The yield dominated metama-
terial has higher stiffness, higher strength and better load bearing capacity. These examples en-
courage one to make possible the impossible.

C. R. Physique, 2020, 21, n 7-8, 751-765
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4.2. Material nonlinearities and their use for energy absorption

Nonlinear metamaterials are widely used in our daily life for energy absorption [53–56]. Aiming
at absorbing as much energy as possible, nonlinear metamaterials were usually designed to
obtain a relatively large peak force with large deformation [35, 55, 57]. Most metamaterials utilize
plastic deformation or brittle fracture of micro-struts [37], shell [43] or plate [46,47] to dissipate a
large amount of energy. Stretching dominated metamaterials [43, 46, 47], which are maybe the
most famous plastic yield metamaterials, have been proven to possess extraordinary loading
bear capacity and energy absorption at high relative density. In contrast, bending dominated
metamaterials [35, 41], which make use of plastic bending joint, allow for large deformation and
provide relatively large and nearly constant stress area in the nonlinear region at low relative
density. In addition, reusable energy metamaterials [39, 58, 59] were proposed to extend their
life span. By utilizing elastic buckling of shell, straight strut and curved beam, reusable energy
metamaterials were shown to present unusual features including mechanical multi-stability [60,
61], close to 100 percent recovery after unloading [39, 55, 58], and controllable mechanical
response [44].

5. Thermomechanical metamaterials

Systems placed in a thermal environment are sensitive to temperature changes of their surround-
ings. An ambient temperature change∆T will cause a thermal strainαi j∆T in an elastic solid due
to thermal expansion. Generally, thermal expansion is described by a symmetric tensor of rank
two

αi j =
α11 α12 α13

α12 α22 α23

α13 α23 α33

. (12)

For isotropic solids, the thermal expansion tensor is proportional to the identity matrix,αi j =αI ,
where I is the rank-two identity matrix and α is the thermal length expansion defined by

α= 1

L

∂L

∂T
. (13)

In the elastic stress–strain relation, thermal strain has to be subtracted from total strain, leading
to the relation

σi j =Ci j kl (εkl −αkl∆T ) (14)

or, in the case of isotropic solids,

σi j = 2µεi j +λεi jδi j − (2µ+3λ)α∆Tδi j . (15)

Note that the temperature dependence of the elastic constants was neglected in the above
equations.

Temperature variations can result both in thermal expansion and in geometry changes, which
can be problematic in temperature-sensitive applications that require thermal stability like
space frame trusses, satellite antennas and space crafts [62, 63]. Alternatively, thermal expansion
can also be tailored to achieve some required thermal deformation and behavior. Material
systems and structures can be deliberately designed to deform in a controllable manner in
response to a temperature stimulus. Applications based on this principle include morphing
structures [64], large reversible shape changing components [65], micro-actuators [66], self-
assembly systems [67], grippers for soft micro-robotics [68], biology devices [69], and so on.

Generally, those applications bring in demands on controllable coefficients of thermal expan-
sion (CTE), e.g. large, positive, negative or zero thermal expansion materials and structures. Many
efforts have been made to create architectured materials with tunable CTE using two constituents
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with widely different thermal expansion combined in space. Different concepts were proposed
under this approach and each has its working principle and specific advantages. One major con-
cept is utilizing the bending-dominated bi-material strip, based on which some researchers pro-
posed cellular solid structures with unbounded thermal expansion [70, 71]. Other concepts in-
clude stretch-dominated structures composed of nested double-parallel units with large stiff-
ness [71], flexure blade structures with high CTE tunability [72], and tetrahedron structure com-
bined with sizable CTE tunability and large stiffness [73,74]. Another major approach is to gener-
ate CTE tunability via topology optimization [75–77]. Structures obtained following this method
are generally more complicated. Finally, using 3D printing technologies, researchers have man-
aged to directly print metamaterials with controllable thermal expansion and have achieved
rather high but negative thermal expansion coefficients [72, 78, 79].

6. Conclusion

In this paper, we have presented general procedures to design mechanical metamaterials in
both the linear and the nonlinear regimes using an effective medium approach based on simple
mechanical models. We have emphasized the complexity and the opportunities in the nonlinear
case if one uses viscosity or plasticity. Finally, we have summarized proposals aiming at using an
external stimulus (variation of temperature) to change the shape of designed metamaterials.
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