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We study the propagation of Lamb waves in a one-dimensional tunable phononic metastrip com-

posed of a periodic sequence of hollow pillars that can be selectively filled with water. Band struc-

tures and transmission properties are computed numerically for metastrips with different fluid

fillings by using the finite element method. Good agreement is observed with experimental results

obtained with an aluminum metastrip. In particular, it is found that the frequency range of bandgaps

and passbands can be controlled through fluid filling. Our results imply that Lamb waves in the

solid metastrip can be harnessed through changing the properties of the pillars via fluid-solid inter-

action. The work in this paper is relevant to practical design of tunable acoustic devices. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4985167]

Phononic crystals (PCs) are a kind of functional com-

posite possessing some form of spatial periodicity.1,2 It may

generate bandgaps, within which the propagation of acous-

tic/elastic waves is completely forbidden. During the last

decade, a great deal of effort has been made to control the

propagation of elastic waves in PCs.3 PCs are found to have

a variety of potential applications,4 such as filters,5 sen-

sors,6,7 waveguides,8 or high frequency resonators.9,10

In recent years, there has been growing interest in one-

dimensional (1D) phononic strips possessing a wide bandgap

at low frequencies.11 Wave propagation in a 1D strip is

indeed different from that in a 2D PC thin plate, due to the

fact that there are additional free boundaries along the

strip.12 Actually, these structures present a potential for use

as anchor loss reduction in resonators,13 vibration isolation,14

or multi-frequency Lamb wave filters.15 Hsu et al.16 investi-

gated the effects of different ways of cutting the strip on the

band structures and transmission properties. Pennec et al.17

investigated strips sustaining dual phononic and phononic

bandgaps; Hatanaka et al.18 demonstrated the ability to

switch the mechanical vibration from the strip to a cavity;

Coffy et al.19 showed evidence of a broad bandgap at low

frequencies originating from the vibration of pillars con-

nected to the strip via a soft layer. Although these works pro-

vide a promising approach to control the propagation of

elastic waves, the resulting structures and material parame-

ters can hardly be changed.20,21 In other words, a solid pho-

nonic strip is hardly tunable or reconfigurable. In the field of

PCs, numerous works have been devoted to the design and

development of tunable PCs, for example, by using material,

geometric nonlinearity,22 or external field control,23 though

such approaches require components with active properties

and power consumption. Tunability, in contrast, is more eas-

ily realized by using solid/fluid PCs or sonic crystals.24 The

propagation of acoustic waves in a fluid medium has for

instance been controlled through changing the properties of

the solid inclusions.25 Conversely, elastic waves in a solid-

matrix system can be manipulated through changing the proper-

ties of fluid fillings.26,27 However, almost all investigations in

this direction have been limited to numerical demonstrations.

In the present work, we fabricate a phononic metastrip

consisting of a periodic sequence of hollow pillars grafted

onto a strip perforated with periodic rectangular holes.

Tunability is realized by filling the hollow pillars selectively

with a fluid. First, we investigate the dispersion relations and

the transmission properties of metastrips whose pillars are

either empty or fully filled. We show that transmission in

certain frequency ranges can be switched on and off by fluid

filling, i.e., the position of passbands and stopbands can be

adjusted. Next, we focus on the point-defect fluid-filled cav-

ity. It is found that the resonating cavity can quench energy

transmission through the strip. Finally, we examine the mod-

ification of spectral transmission as the number of fluid-filled

cavities is increased.

The manufactured sample is shown in Fig. 1(a). The

chosen solid and fluid materials are isotropic aluminum 6061

(mass density qs¼ 2700 kg/m3, Poisson’s ratio t¼ 0.33, and

Young’s modulus E¼ 68.9 GPa) and water (mass density

qf¼ 1000 kg/m3 and sound velocity c¼ 1490 m/s), respec-

tively. The unit cell is composed of one pillar grafted onto a

perforated plate forming a strip, as depicted in Fig. 1(b).

This phononic strip generates complete bandgaps in the rela-

tively low frequency range.28 Measurements are conducted

by using a Polytec-PSV-500 scanning vibrometer, as illus-

trated by Fig. 1(c). A periodic chirp is chosen as the source

waveform. It is amplified by the power amplifier before it is

applied to the sample. The amplified signal is transformed to

a displacement vibration signal via a piezoelectric patch

bonded on one side of the sample. The transmitted vertical

displacement signal is recorded by the vibrometer at the

other side of the sample.

To evaluate numerically the transmission properties, we

built a 3D finite element model. Acoustic-structure boundary

conditions are applied at the interface between fluid and

solid, and a sound-soft boundary condition is applied on the

top surface of the liquid column when fluid is filled.

Dispersion curves are then calculated by using Bloch-Floquet
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periodic boundary conditions. Numerical transmission is fur-

ther calculated by considering a finite metastrip with ten unit

cells, sandwiched between an ingoing and an outgoing homo-

geneous medium. Perfectly matched layers (PMLs) are added

to both ends of the metastrip to avoid reflections. A wave

source of z-polarization with displacement amplitude Uz0 is

applied on the left homogeneous part of the metastrip. The

transmitted displacements are recorded on the right homoge-

neous part. We then evaluate the transmission by considering

the ratio of the z-component of the displacements integrated

over the two homogeneous parts.

Numerical and experimental results for the hollow pillars

either all empty or all filled with water are shown in Fig. 2.

The figure presents the band structures for the infinite and

periodic strip, the transmissions computed for a 10-pillar

long strip, and the transmissions measured with the sample

of Fig. 1. Color information was added to the band structures

to represent the polarization amount of the z-component of

the displacement.29 Particular frequency ranges where trans-

mission can be switched on and off by fluid filling are

highlighted in grey. In order to allow for a fair comparison

between numerical and experimental transmission, a “noise

floor” was added to the numerical results in order to limit the

minimum of transmission to �86 dB.

Lamb waves in the phononic strip are confined in the

supporting plate, are periodically loaded with the fluid, and

hybridize with internal resonances of the unit-cell.

Consequently, band structures are composed of both disper-

sive bands and nearly flat bands. It should be noted that reso-

nances can be concentrated either on the pillar or on the four

corners of the supporting plate, as shown in Fig. 2(c1).

Numerical results indicate that flat bands can cause sharp

transmission peaks, but these are only faintly present in the

experiment. This discrepancy may be caused by the absence

of loss in the finite element model, which may lead to

damped resonances. Furthermore, the numerical model does

not take account of the exact properties of the actual sample.

For example, the support of the metastrip during experiments

and the inhomogeneity of the excitation source are not con-

sidered. The passbands and bandgaps defined by dispersive

bands are in contrast clearly observed in the experimental

transmissions. They are globally consistent with the numeri-

cal transmissions, except for a slight frequency shift that can

be attributed a slightly inaccurate modelling of the sample

geometry and material properties. In addition, nearly no

qualitative change appears in the transmission if a symmetric

excitation is applied, as we checked experimentally. As a

FIG. 2. Phononic band structure of a metastrip (a1) without and (a2) with water filling the hollow pillars. (b1) Numerical and (b2) experimental transmission

spectra for a finite metastrip with 10 pillars without (black line) or with (red line) water. The gray and light gray frequency ranges highlight particular bandgaps

and passbands discussed in the text. The color scale is for the polarization amount of the z-component of displacement. Eigenmodes at selected points are

shown (c1) without and (c2) with water filling. The total displacement is shown in both cases and pressure is added in the case of water filling. Blue (red) corre-

sponds to zero (maximum) amplitude for the displacement field but to negative (positive) amplitude for the case of pressure.

FIG. 1. (a) A finite 1D phononic metastrip aluminum sample consisting of

ten hollow pillars bonded on a strip. (b) Schematic of the PC unit cell.

Geometrical parameters used in this paper are a¼ 2 cm, h¼ 0.8a, b¼ c1

¼ 0.1a, r1 ¼ 0.38a, r2 ¼ 0.33a, and c2 ¼ 0.11a. (c) Photograph of the exper-

imental setup.
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note, since the structure in not symmetrical with respect to a

horizontal plane, bending and torsional modes are always

coupled.

The dispersion of passing bands is strongly affected by

the presence or absence of water inside the pillars. In gen-

eral, it is observed that the band structure is compressed, i.e.,

all bands shift down to lower frequencies. In order to under-

stand this phenomenon, we consider specifically the in-plane

bands a, b, c, d, e, and f in Fig. 2. By in-plane bands, we

mean that the displacements for the corresponding Bloch

waves are mostly in the plane of the supporting strip. The

modifications introduced by the addition of water can be

tracked by observing modal shapes. Indeed, considering

vibration modes at points D2
s and D2

f of band e, for example,

it can be observed that the displacement distributions in the

solid part are almost the same, while elasto-acoustic cou-

pling with the second resonance of the water column brings

the frequency down. As a consequence of the frequency

downshift, bandgaps become narrower and their central fre-

quencies decrease. Remarkably, the introduction of water

enhances the propagation of Lamb waves in the frequency

range from 58.5 kHz to 66 kHz where a bandgap was initially

present. Concurrently, a bandgap appears in the frequency

range from 79.4 kHz to 82.5 kHz where transmission was

previously permitted by the presence of the dispersive band

labelled f. Observing the modal shapes, it can be concluded

that the downshift of band f in the presence of water is

indeed the cause of the interchange of bandgaps and pass-

bands. This effect suggests potential applications to the tun-

ing of Lamb wave bandgaps.

Moreover, it can be observed that additional modes are

created when water is added. An example is the band sup-

porting the Bloch wave labelled D2
f . The pressure distribu-

tion for this Bloch wave shown in Fig. 2(c2) reveals that

water undergoes vertical vibrations that are similar to that of

the first resonance of an isolated water cylinder. This exam-

ple also implies that different fluid resonances have different

coupling strengths with Lamb waves in the solid matrix.

We checked that the frequency shift of passbands that

we observe cannot be simply attributed to a local-resonance

mechanism. Hybridization of a local resonance with a propa-

gating band generally leads to the formation of avoided

crossings around the local resonance frequency but not to a

shift of the dispersion of the propagating band. In order to

verify this point, we replaced the fluid by an additional solid

mass distributed either only in the base of the pillar or in the

base of the pillar as well as in the pillar wall. The corre-

sponding dispersion curves are shown in Fig. 3. In the first

case, only avoided crossings appear; in the second case,

band shifts are produced as well, similarly to the case of fluid

filling. The two situations, distributed solid mass and distrib-

uted fluid load, are however not equivalent: even though the

added masses are the same, acoustoelastic coupling brings in

specific features, as we noted above. An important practical

difference, furthermore, is that continuously tuning the vol-

ume of a fluid is arguably easier than continuously tuning a

solid mass.

We explain the downshift of the propagating bands as

follows. Thanks to the fluid-solid boundary condition

inside the cup, Lamb waves in the solid strip are partly

converted to pressure waves in water. The pressure waves

in water decompose on the modes available at the particu-

lar frequency of excitation, as the volume of water is finite

and closed by definite boundary conditions. For most fre-

quencies, however, the conversion is not resonant. Back-

conversion to Lamb waves in the solid occurs with a cer-

tain delay, causing an apparent slowing down of the propa-

gation of Lamb waves along the strip. As the phase

velocity is reduced, the dispersion of propagating bands is

effectively shifted downward in frequency for a given

wavenumber.

Next, we focus on wave propagation in the metastrips

with a defect. A point-defect cavity is created by filling the

fifth pillar only with water. Figure 4 shows the modification

of the band structure and of the transmission when water is

added. It can be clearly observed that additional bands, cor-

responding to defect modes, appear inside the complete

bandgaps of the perfect system. Although there is apparently

only a slight change in the spectral transmission upon intro-

ducing one defect, transmission properties are quantitatively

affected. For example, the transmission at frequency 81 kHz,

labelled P in Fig. 4(a1), decreases by almost 20 dB when the

defect cavity is introduced. This transmission decrease

stands for nearly one order of magnitude decrease of the dis-

placement amplitude at the end of the metastrip.

Displacement fields in the perfect and defect metastrips are

displayed in Figs. 4(b) and 4(c), respectively. We observe

that all hollow pillars vibrate along the perfect metastrip, as

expected for a passing band in the dispersion curve. In con-

trast, wave propagation is quenched by the cavity in the

defect metastrip: the hollow pillars to the right of the cavity

are almost not vibrating. Reflection of incident Lamb waves

occurs near the cavity, as illustrated by the inset of Fig. 4(c).

FIG. 3. Modification of the phononic band structure of the metastrip under

different ways of adding the same amount of mass to the pillars. The band

structure is shown (a) without added mass, (b) for solid mass distributed in

the base of pillar, (c) for solid mass distributed in the base of the pillar as

well as in the pillar wall, and (d) for water filling the pillar. The insets in (b)

and (c) show the regions where mass is added.
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Finally, we increase the number of filled pillars in the

metastrip and observe the changes in the spectral transmis-

sion. Figure 5 compares the numerical and experimental trans-

missions for 0, 3, 7, and 10 filled pillars. With the increase in

the number of filled pillars, a transmission band gradually

appears in the frequency range [58.5 kHz–66 kHz], from high

to low frequencies. As a result, the bandgap switches to a

passband gradually. Concurrently, transmission is gradually

quenched in the frequency range [79.4 kHz–82.5 kHz] as

more pillars are filled. This gives rise to a transition from a

passband to a bandgap. Generally, tunability of the metastrip

properties by filling water into the hollow aluminum pillars is

observed to be a gradual process.

As a summary, we have demonstrated the tunability of a

phononic metastrip whose hollow pillars can be filled with a

fluid. Additional propagation modes are created owing to the

fluid-solid interaction within the pillars. Transformation of a

bandgap to a passband and the converse situation were both

observed. Experimental results were found to agree satisfac-

torily with numerical results. The present work paves the

way for the manipulation of Lamb waves.

The ideas in this letter can be directly extended to the

2D and 3D cases. Acoustic devices, such as coupled resona-

tor acoustic waveguides27,30 or even more complicated cir-

cuits, can be designed. Assuming that the properties of fluids

were tuned by external means,27 tunable phononic circuits

could be realized by filling the pillars with different fluids or

different levels or gradient levels of the same fluid. Active or

even smart manipulation of Lamb waves is thus expected.
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