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ABSTRACT

A two-dimensional cross-like phoxonic crystal (PxC) model is proposed, which exhibits simultaneously large complete photonic crystal
(PtC) and phononic crystal (PnC) bandgaps. The most salient trait of the structure is the wide range of geometrical parameters compatible
with large complete bandgaps. After geometrical optimization, photonic and phononic bandgaps with gap-to-midgap ratios of 11.5% and
90.7% are obtained, respectively. These values are close to the best topology-optimized reported values but are obtained with simple shapes
compatible with nanoscale fabrication technology. These characteristics make the convex–concave topology a promising candidate for PxC
devices. A cavity is then introduced by filling up one cross-like hole in the 7 × 7 super-cell. PtC and PnC bands with defects appear in the
respective large complete bandgaps, confining phonons and photons in the same cavity. Acousto-optic (AO) coupling between photonic
and phononic defect modes is further investigated by the finite element method, taking both photoelastic and moving interface mechanisms
into consideration. The symmetries of both photonic and phononic modes play a dominant role in the coupling strength. Results show that
the strongest linear coupling between a photonic transverse magnetic mode and phononic breathing mode is obtained due to the in-phase
superposition in the x and y directions. A quadratic nonlinear coupling is observed when photonic modes are coupled with the phononic
stretching mode due to the inverse superposition of x and y directions. Finally, the optomechanical coupling rates relative to zero-point
motion are estimated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060412

I. INTRODUCTION

Because of their distinct advantages in enhancing acousto-
optic interactions at the micro- and nanoscale, optomechanical1–4

or phoxonic crystals (PxCs)5–10 have attracted attention in recent
years. Based on the combined concepts of PtCs11 and PnCs,12,13

PxCs introduce a spatial periodicity in both refractive index and
acoustic impedance and then exhibit simultaneous photonic and
phononic bandgaps. PxCs thus provide a systematic way into which

point and linear defects can be engineered that break periodicity
locally and give rise to cavities5,6,14 and waveguides,15,16 ultimately
supporting the confinement and coupling of light and sound waves.
In virtue of their unique traits, PxCs have become a powerful para-
digm for optomechanical systems and acousto-optic devices.

A prerequisite for the simultaneous localization of light and
sound is the presence of both photonic and phononic bandgaps,
ideally complete, within which the propagation of light and sound
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is forbidden whatever be the polarization and the wave vector.
Compared with their 3D counterparts,7 1D and 2D PxCs have
received the most attention since they are easier to model as well as
to manufacture. We focus on 2D infinite PxCs in the following.

As observed in previous related works,11,17 for the photonic
bandgaps in the 2D case, connectivity of high-ε region (ε denotes
dielectric permittivity) is conducive to transverse electric (TE)
bandgaps, whereas isolated patches of high-ε regions lead to trans-
verse magnetic (TM) bandgaps. For instance, TM bandgaps prefer
lattices of airholes in a dielectric matrix and TE bandgaps favor lat-
tices of dielectric columns in air. Therefore, the complete photonic
bandgap is the result of a compromise between two conflicting
objectives. On the other hand, for holey PnCs, heavy masses and
slim connections are generally necessary for the unit cell to open a
wide bandgap for both in-plane and out-of-plane modes.18–21 As a
whole, the optimal strategy of PxCs design is to find out a structure
that possesses all these geometrical attributes or at least achieves a
good balance between them.

One should also be aware of some obvious distinctions
between PtCs and PnCs. For example, the triangular lattice of cir-
cular air columns in a dielectric matrix is not appropriate for the
generation of phononic bandgaps, whereas it is the most widely
used in PtC devices. As another example, the width of photonic
bandgaps is conditioned by the contrast in the refractive index
between the airholes and the matrix. The choice of material is
hence vital for PtCs. The case of PnCs is different, however, since
the presence of air can be neglected and elastic contrast is given by
the traction-free boundaries of the holes. Such boundary conditions
are independent of the choice of the material.

During the past few decades, many interesting PtCs and PnCs
have been reported for efficiently modulating electromagnetic, acous-
tic, and elastic waves. The simultaneous existence of photonic and
phononic bandgaps have also been disclosed in a variety of PxCs
with different materials,22–26 periodicity,15,24 dimensions,7,9,27–29 and
topologies.8,30–33 However, even though abundant types of PxCs
have been considered in the literature, it is still a challenge to
broaden simultaneously photonic and phononic bandgaps according
to practical application demands. Because of technological con-
straints of fabrication at the micro- or nanoscale, the unit cell is
quite often limited to a topology with simple shapes. A too compli-
cated topology means that it could be difficult to fabricate even
though the bandgaps are very wide. Moreover, other parameters like
the tolerable amount of feature rounding and filet sizes are more
important. Hence, the smallest feature width is extremely challenging
even for cutting edge nano-fabrication techniques.

For two-dimensional (2D) PxCs, several works have reported
the simultaneous existence of photonic and phononic bandgaps.
Maldovan and Thomas22 reported that phoxonic bandgaps can be
obtained in a 2D square or hexagonal lattice crystals made of air-
holes in a silicon matrix. Sadat-Saleh et al.23 and Bria et al.24

reported the influence of the choice of lattice and filling fraction on
bandgaps in 2D systems, considering LiNbO3 (lithium niobate) for
the former and sapphire/silicon for the later. Recently, Dong
et al.31 investigated the opening of phoxonic bandgaps by topology
optimization. On the one hand, simple conventional topologies,
like circular holes in a square lattice,22–24 can hardly open large
simultaneous bandgaps. On the other hand, topologies obtained

from topology optimization are always complex and are quite diffi-
cult to manufacture, even though they theoretically achieve large
simultaneous bandgaps.

In a recent work, we proposed a convex–concave combination
in a 2D square lattice PnC with a cross-like hole in the center of
the unit cell surrounded by four square holes at the corners,21

whose most notable advantage is the generation of ultra-wide
bandgaps in such a simple topology. In this work, we further inves-
tigate the optical characteristics of the convex–concave structure.
A comprehensive search of complete dual bandgaps is conducted.
In addition to the broad phononic bandgaps, large photonic bandg-
aps are also identified. The optimal gap-to-midgap ratios for the
complete photonic and phononic bandgaps are 11.5% and 90.7%,
respectively. In summary, the following advantages of the proposed
PxC are demonstrated: (i) simultaneous broad complete photonic
and phononic bandgaps and (ii) broad bandgaps that can be
obtained in a wide range of geometrical parameters, which provide
good tolerance for the technological realization and flexibility in
designing. These traits are beneficial to improve feasibility, applica-
bility, and reliability, making the proposed PxC as a potential can-
didate for practical applications.

Furthermore, with large complete bandgaps, the structure is
suitable for AO devices due to the following two reasons: (i) More
pure defect modes can be generated within the large bandgaps; (ii)
Photonic defect modes are unlikely to move out of the bandgap
even under strong AO coupling. Numerous approaches have been
proposed to study AO interaction in phoxonic crystals with defects
or cavities. The transfer matrix method34 and the layer-multiple-
scattering method35 were employed to investigate 1D PxCs with
defects. Transmittance and reflection of optical and acoustic defect
modes were calculated to search the shift of optical defect fre-
quency under AO coupling.36 1D PxCs with defects were also
studied by a Born series approach with Green’s function to derive
the expression of the electric field.36 It is worth noting that the
first-order and second-order effects can be determined by first-
order and second-order Born series, respectively. For 2D and 3D
PxCs with cavities, the linear AO coupling rates of the photoelastic
(PE) effect and the moving interface (MI) effect were obtained
from the first-order perturbation theory.6,37–39 The equation to
obtain the quadratic AO coupling was given,40 and the case of
degenerate modes was further included.41

In optomechanics, the shift of the optical frequency is given
by the product of the AO coupling rate and the zero-point fluctua-
tion amplitude of the mechanical oscillator xzpf that depends on
both the effective mass and the acoustic frequency.42 Obviously, the
effective mass depends on the thickness of the structure. Hence, the
results of the 2D model have to be compensated for by assuming a
given thickness. Furthermore, in order to ensure the safety of the
structure, a maximum strain in the cavity was limited to 1% or
0.1%. This can be achieved by setting the maximum modal dis-
placement. Certainly, for PE and MI effects, the maximum mode
displacement needs to be set the same in the calculation of optical
frequency shift.

In this work, owing to the large complete bandgaps, the AO
cavity coupling in the 2D PxC with combined convex and concave
holes is further investigated. The AO couplings for the PE and the
MI effects are studied by the first- and second-order perturbation
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methods and the finite element method (FEM). An appropriate
normalization on displacement is performed to estimate numeri-
cally the PE and the MI effects. Whether the acousto-optic cou-
pling belongs to linear coupling or quadratic regime is further
distinguished by FEM analysis. Moreover, optomechanical coupling
rates relative to the zero-point motion are studied by 2D and 3D
PxC models.

II. PXC MODEL AND THEORETICAL BASIS

As described in Fig. 1(b), a 2D square lattice PxC with a
convex–concave topology is proposed by considering a cross-like
hole in the center of the unit cell and four square convex holes at the
corners. Alternatively, the structure can also be regarded as a central
square surrounded by four L-shaped holes at the corners, as depicted
in Fig. 1(c). In either case, the unit cell is formed by four lumps con-
nected by four L-shaped connectors. Three independent parameters
(b, c, d, or their derivatives) are required to determine the structure.
The cross-like hole in the center is determined by b and c, while the
side length of the square hole at each corner is d/2. The width of the
connections is thus h = (a− c− d)/2. All these parameters are nor-
malized against the lattice constant a in the following calculations.
The chosen material is a single crystal silicon, with refractive index
n = 3.6,31 the mass density ρ = 2320 kg/m3, and the elastic constants

c11 = 165.7, c12 = 64.1, and c44 = 79.6 GPa. Transverse and longitudi-
nal speeds of sound are ct = 5840m/s and cl = 8433m/s, respectively.
The refractive index n of air in the holes is set to 1.

For electromagnetic waves propagating within the considered
2D infinite PxCs in the xy plane, Maxwell’s equations can be
decoupled into two scalar wave equations for transverse electric
(TE) and transverse magnetic (TM) polarizations,43,44

∇2Ez(x)þ ω

c0

� �2

ε(x)Ez(x) ¼ 0 for the TE mode,

∇ � 1
ε(x)

∇Hz(x)

� �
þ ω

c0

� �2

Hz(x) ¼ 0 for the TM mode,

(1)

where ∇ is the gradient operator, ω denotes the angular frequency,
and c0 represents the speed of light in a vacuum. The distribution
of the dielectric constant is periodic in the xy plane and uniform in
the z direction. It satisfies ε(x) = ε(x + a), where x = (x, y) is the
position vector and a is a lattice vector. The electric and magnetic
fields in the z direction Ez and Hz satisfy the Floquet–Bloch condi-
tions Ez(x + a) = exp(ik ⋅ a)Ek(x) and Hz(x + a) = exp(ik ⋅ a)Hk(x). Ek
and Hk are cell periodic fields and k is the Bloch wave vector
restricted to the first Brillouin zone. “i” is the imaginary unit.

FIG. 1. Cross section of the proposed 2D square lattice PxC crystal: (a) an extended unit cell shows the arrangement of concave and convex holes; (b) and (c) show two
possible equivalent primitive unit cells, as outlined by the blue and the red dotted lines in (a). In (b), the primitive cell is centered on the concave cross-like hole surrounded
by four square holes placed at the corners. In (c), the primitive cell is centered on the convex square hole surrounded by four L-shaped holes placed at the corners. In (b)
and (c), the red and blue areas both represent lumps and L-shaped connections.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 123104 (2021); doi: 10.1063/5.0060412 130, 123104-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


Band structures are calculated by the finite element method
(FEM). Floquet periodic boundary conditions are imposed on pairs
of opposite external boundaries of the unit cell. All solutions are
obtained by sweeping the wave vector k along the edges of the first
irreducible Brillouin zone. In the band structures, normalized fre-
quencies (ɷa/2πc0 or ɷa/2πct) are functions of the reduced wave-
number (ka/2π). The width of a bandgap can be measured using
the gap-to-midgap ratio BG% = 200%(ftop − fbot)/(ftop + fbot), a non-
dimensional parameter that avoids frequency dependence, where

ftop and fbot are the bounding frequencies of the bandgap.
Generally, a higher BG% value means a better performance.

III. OPTIMIZED STRUCTURE FOR LARGE COMPLETE
PHOXONIC BANDGAPS

Figures 2(a) and 2(b) depict phononic and photonic band
structures for the proposed PxC, with geometrical parameters
b/a = 0.58, c/a = 0.32, and d/a = 0.62. Large complete phononic

FIG. 2. (a) PnC and (b) PtC band structures of the proposed PxC and the corresponding eigenmodes at edges of the bandgaps, for parameters b/a = 0.58, c/a = 0.32,
and d/a = 0.62. In (a), the color of bands represents the kinetic energetic ratio ex of the x-polarization of the elastic wave. The blue curves represent bands of the
out-of-plane mode, and the rest curves are bands of the in-plane mode. In (b), the blue and red lines denote the TM and TE polarizations, respectively.
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(90.7%) and photonic (11.5%) bandgaps are visible. The complete
photonic bandgap for normalized electromagnetic frequencies ɷa/
2πc0 ranges from 0.549 to 0.616, and the complete phononic
bandgap for normalized elastic frequencies ɷa/2πct is between
0.358 and 0.952. It is remarkable that although photonic and pho-
nonic bandgaps in PxCs occur at similar wavelengths of the order
of twice the crystal periodicity a, the frequencies of the photonic
and phononic gaps are very different since light and sound propa-
gation velocities in solids differ by several orders of the magnitude.
The dimensionless representation of the dispersion curve makes it
easy to choose the lattice constant based on wavelength and fre-
quency. For instance, if a PxC displays a photonic bandgap with
midgap frequency at about 200 THz (telecom wavelength
λ = 1550 nm), the lattice constant should be a = 875 nm. The
midgap frequency of the phononic bandgap is then 4.39 GHz.

A comparison of dual complete bandgaps with published 2D
PxCs is summarized in Table I to illustrate the advantages of the
proposed topology. For each case, Table I lists the filling fraction of
solid material, as well as the thickness of the connections h, which
is the smallest feature limiting the fabrication. For clarify, except
for the data directly quoted from Refs. 22 and 29, values are
obtained considering silicon to facilitate comparison. Obviously,
the proposed model has significant advantages over the first four
types of PxCs regarding complete bandgaps.

For PnCs, the forming mechanism of large bandgaps with
combined convex and concave holes was investigated previously.20

Regarding PtCs, TM and TE polarizations need to be discussed
separately. For the TM polarization, the magnetic energy of mode
M1 is mainly confined within the vacuum holes (low-ε) regions.
On the contrary, mode M2 is mainly concentrated in the solid
dielectric (high-ε) regions. Therefore, for the adjacent modes, the
dramatic change of the magnetic energy in the high-ε regions
results in a large TM bandgap. For the TE polarization, the electric
energy of both modes E3 and E4 distributes mostly in solid dielec-
tric (high-ε) regions. However, mode E3 concentrates on lumps,
whereas E4 concentrates on L-shape connections. Thus, the differ-
ence in the distribution of electric energy in the high-ε regions can
explain the formation of a large TE bandgap. As a result, the
upheaval of magnetic or electric fields in the high-ε regions
between consecutive bands forms a bandgap. Moreover, a larger
dielectric difference between regions opens a wider bandgap. This

result is in agreement with the previous idea that connectivity of
high-ε regions is conducive to TM gaps, whereas isolated patches
of high-ε regions lead to TE gaps.

A thorough geometrical optimization was carried out to reveal
the relationship between bandgaps and geometrical parameters.
Generally, it is preferable that the topology involves several geomet-
rical parameters, offering more possibilities to tune bandgaps.
For the proposed convex–concave PxC, three independent parame-
ters need to be considered. We take b, c, and w (w = a− 2h) as
those independent parameters. Parameter w is introduced as the
void ratio in the x or y direction and is not shown in Fig. 1. The
width of L-shaped connections h is critical for the generation of
bandgaps and is the smallest feature size limiting fabrication.
However, in order to display the geometric parameter range corre-
sponding to the maximum bandwidth on the front view of
Figs. 3(a) and 3(b), the ordinate represents w instead of h.

The effect of all geometrical parameters on phononic bandg-
aps are summarized in Fig. 3, in which the bandgap width BG% is
displayed as a function of b/a, c/a, and w/a. Figures 3(a) and 3(b)
present in-plane and out-of-plane modes, respectively. Hence, one
can easily have an insight into the influence of each parameter and
then their optimal combinations. Furthermore, ten slices taken for
fixed parameter w/a are extracted from Figs. 3(a) and 3(b) and are
shown in Figs. 3(c) and 3(d). Each slice demonstrates the depen-
dence of bandgaps on b/a and c/a for a given w/a, by which one
can understand variations more quantitatively and intuitively. At a
glance, Fig. 3 reveals some interesting regularities. The first and
perhaps most remarkable feature is that large bandgaps can exist
over a wide range of parameters. In Figs. 3(a) and 3(b), two large
bandgaps (BG%≥ 130% and BG%≥ 90%) appear as the two big
red kernels. Second, bandgaps for out-of-plane modes are mostly
contained in the bandgaps for in-plane modes, resulting in large
complete phononic bandgaps. Third, each parameter affects simi-
larly in-plane and out-of-plane bandgaps. More specifically, BG%
peaks at an intermediate value of b/a and decreases as b/a deviates
from this value when the other parameters are fixed, and a similar
trend is observed with c/a. However, BG% increases with w/a.

The same analysis was performed for photonic bandgaps.
The results are displayed in Fig. 4. Figures 4(a) and 4(b) show the
results for TM and TE polarizations, respectively. Figures 4(c)
and 4(d) display similar slices as in Figs. 3(c) and 3(d). Compared

TABLE I. Comparison of maximum relative bandgap widths for the proposed model and some published structures. h denotes the smallest size and Vf is the filling fraction of
the solid material.

PxCs h/a

Complete BG%

PnC (%) PtC (%) Vf

Square lattice of circular airholes22 1/40 44.5 No complete bandgaps 0.292
Triangular lattice11 0.01 No complete bandgaps 3.93 0.360
Honeycomb lattice23 <0.01 69.9 No complete bandgaps n.a.
Ref. 24 1/25 38.1 8.32 0.336
Dielectric circles connected by veins30 0.03 83.8 11.3 0.307
Topology optimization31 n.a. 94.2 14.7 >0.5
This work 0.03 90.7 11.5 0.347
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FIG. 3. The effect of geometrical parameters on (a) in-plane and (b) out-of-plane bandgaps, where BG% is illustrated by color as a function of b/a, c/a, and w/a. (c) and
(d) are slices extracted from (a) and (b), respectively, and each slice demonstrates the influence of b/a and c/a on the bandgaps for a given w/a.
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FIG. 4. The effect of geometrical parameters on (a) TM and (b) TE bandgaps, where BG% is illustrated by color as a function of b/a, c/a, and w/a. (c) and (d) are slices
extracted from (a) and (b), respectively, and each slice demonstrates the influence of b/a and c/a on the bandgaps for a given w/a.
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to Fig. 3, similar features are observed: large bandgaps exist for a
wide range of parameters, and the effect of the parameters on TE
bandgaps is similar to the phononic case. However, two significant
differences should be highlighted. One is that the regions of large
bandgaps for TE and TM polarizations only overlap partially, thus
reducing the complete bandgaps. Another difference is that the
effect of the parameters on TM bandgaps lacks regularity.

Figure 5 illustrates the formation of large complete phoxonic
bandgaps. Figures 5(a) and 5(b) show how the locations of pho-
nonic and photonic bandgaps vary with d/a, when b/a = 0.58 and
c/a = 0.32 are fixed. In-plane (or TM) and out-of-plane (or TE)
bandgaps are represented by blue and magenta regions, respec-
tively. Complete bandgaps appear when they overlap.
Comparatively, Fig. 5(b) shows a much more barren terrain.

IV. PHOXONIC CRYSTAL CAVITY DEFECT MODES

Once large complete phononic and photonic bandgaps have
been achieved simultaneously, a phoxonic defect cavity can be
introduced. The lattice constant a is fixed as 875 nm, for optical
operation around λ = 1550 nm in silicon. A 7 × 7 super-cell pro-
vides a good compromise between accuracy of the results and rea-
sonable computation time.6 As shown in Fig. 6(d), the defect cavity
is introduced by filling one cross-like hole in the center of the
super-cell with silicon, inducing simultaneous photonic and pho-
nonic cavity modes. Owing to the large complete bandgaps, the
phoxonic structure prevents photonic defect modes from moving
out of the frequency bandgaps even under strong modulation,
which is required for the design of acousto-optic coupling devices.
The acoustic and optical eigenfrequencies and eigenvectors of the
defective super-cell are calculated by FEM. The dispersion curves
for photonic and phononic defect modes in the bandgap range are
shown in Fig. 6.

The phononic and photonic dispersion relations are depicted
only along the ΓΧ direction of the irreducible Brillouin zone, since

the bands associated with defect flat modes are flat and indepen-
dent of the wave vector. One can notice that some new flatbands
are born inside both phononic and photonic bandgaps after intro-
duction of the defect cavity into the super-cell. The flat in-plane
defect bands include 11 phononic bands (labeled with a, b, c, d, e,
f, g, h, l, m, and n) in Fig. 6(a), 3 TE photonic bands (labeled α, β,
and γ) in Fig. 6(b), and 3 TM photonic bands (α0, β0, and γ0) in
Fig. 6(c). It is worth mentioning that these six photonic defect
bands all occur within the complete photonic bandgap.

The modal shapes of the phononic cavity modes, magnified in
the center of the structure, and the photonic modal shapes are
displayed using displacements and electromagnetic fields in
Figs. 6(e)–6(g), respectively. The displacements are highly localized
in the cavity region. The electromagnetic fields also show a high
confinement inside the cavity. We notice that among the 11 pho-
nonic modes, three pairs are degenerate (b and c, g and h, m
and n). The same observation is also made for photonic TE modes
α and β. The occurrence of degenerate modes can be explained by
the cubic symmetry of silicon combined with the spatial symmetry
of the structure.

The symmetry of the phononic modes is indeed one of the
key factors governing the acousto-optic coupling strength.
Following Ref. 5, modes are classified as odd (o) or even (e) with
respect to the two symmetry axes P and P0 shown in Fig. 6(d). Both
modes d and f have ee symmetry. In details, the vibration of mode
d is a stretch-contract motion where the cavity stretches along sym-
metry axis P while it contracts along symmetry axis P0, and the
extension–contraction state alternates once during every acoustic
period. Mode f is a breathing mode that displays a breathing
motion without too much distortion of the cavity shape. Moreover,
the photonic TM modes α0 and β0 have ee symmetry, whereas
modes γ and γ0 have oo symmetry. The degenerate photonic
TE modes α and β have neither ee nor oo symmetry since they are
a mixture; they can be obtained from one another by 90° clockwise

FIG. 5. Variation of (a) PnC and (b) PtC bandgaps with the geometrical parameter d/a, for b/a = 0.58 and c/a = 0.32.
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and anticlockwise rotations, respectively. Moreover, compared with
the other symmetries of phononic modes, ee symmetric phononic
modes have a stronger effect on the AO coupling.10 Hence, we
focus on the AO coupling with modes d and f in the following.

V. ACOUSTO-OPTIC COUPLING STRENGTH

The frequencies of the photonic TE and TM defect modes
sustain a modulation around their initial values with a strength
given by the magnitude of the acoustic strain inside the cavity,
when that cavity is submitted to a periodic acoustic deformation.
The frequency modulation results from the sinusoidal variation
of the permittivity that is induced by the acoustic wave perturba-
tion. Two mechanisms are responsible for it: (1) The moving inter-
face (MI) effect45 or permittivity variation caused by the moving of

the interfaces and (2) The photoelastic (PE) effect46 or bulk permit-
tivity variation induced by the strain field. Both effects are taken
into consideration in the following calculations.

For Pockels effects, the variation of the relative permittivity
Δεij is determined by the strain distribution considered frozen in
time. Δεij are given for silicon by47

Δε11 ¼ �( p11S1 þ p12S2), Δε22 ¼ �( p12S1 þ p11S2),

Δε33 ¼ �p12(S1 þ S2), Δε12 ¼ Δε21 ¼ �p44S6,

Δε13 ¼ Δε23 ¼ Δε31 ¼ Δε32 ¼ 0,

(2)

where pij denote the photoelastic constants and Si are the acoustic
strains written in Voigt notation. For silicon, p11 =−0.1, p12 = 0.01,

FIG. 6. Dispersion curves of (a) PnC, (b) TE PtC, and (c) TM PtC cavity modes. Eleven PnC defect bands, three TE PtC defect bands, and three TM PtC defect bands
appear in bandgaps when the wave vector varies along the direction ΓX of the first Brillouin zone. (d) The 7 × 7 super-cell structure model and the irreducible Brillouin
zone. (e) Displacement field distribution of the defect PnC modes corresponding to the defect bands in (a). ( f ) Electric field distribution in the z direction (Ez) of the defect
TE PtC modes corresponding to the defect bands in (b). (g) Magnetic field distribution in the z direction (Hz) of the defect TM PtC modes corresponding to the defect
bands in (c).
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and p44 =−0.051.48 Thus, the symmetry of the strain field of the
acoustic modes are inherited by the permittivity variation.

A. Coupling with phononic breathing mode f

Generally, the acousto-optic coupling strength is measured by
the normalized optical frequency shift induced by a realistic acous-
tic wave perturbation. The maximum of the deformation umax

induced by acoustic wave perturbation is fixed as 1% of the lattice
constant a, i.e., umax = 0.01a, which is a reasonable choice that does
not exceed strength limit of the material. Figure 7 displays the
optical frequency modulations induced by the phononic breathing
mode f during one acoustic period (0 <Ωt < 2π) with the acoustic
angular frequency Ω and time t, which is obtained by FEM. The
contributions of the PE effect and MI effect are both illustrated.
Whether for PE effect or MI effect, the modulations all display a
sine function behavior representing linear coupling; in other words,
it corresponds to one-phonon absorption and emission process by
a photon. Specially, the degenerate photonic TE modes α and β
display a complete synchronized modulation. The contribution of
PE and MI can be in-phase and out-of-phase. In most cases, the
MI effect is dominant except for the phononic TM mode γ0.
The coupling for modes α, β, α0, and β0 is obviously larger than
for the other two modes γ and γ0. The reason is that for the former,
the electromagnetic field mainly distributes in the silicon area,
whereas for the latter, it distributes in both silicon and hole areas.
Moreover, the deformation induced by acoustic wave only affects
silicon. The fact that the electromagnetic field and the displacement
field highly overlap certainly enhances the coupling strength.

The acousto-optic coupling can also be evaluated from pertur-
bation theory. The maximum deformation is chosen as the

perturbation parameter. Based on first-order perturbation theory,
the equation for non-degenerate phononic modes corresponding to
one-phonon processes is derived as45

Δω(1) ¼ �ω0

2
Ej(ΔεPE þ ΔεMI)jEh i

EjεjEh i , (3)

where EjεjEh i ¼ Ð
εjEj2dS.

The PE contribution has a different form for different polari-
zations of the phononic mode. For the TM polarization,

EjΔεPEjEh i ¼ �ε0n
4
ð
[2Re{E*

xEy}p44Sxy

þjExj2( p11Sxx þ p12Syy)þ jEyj2( p11Syy þ p12Sxx)]dS,

(4)

where n is the refractive index. Re denotes taking the real part.
Superscript * represents conjugation. For the TE polarization,

EjΔεPEjEh i ¼ �ε0n
4
ð
jEzj2p12(Sxx þ Syy)dS: (5)

The MI contribution of the PxC is given by

EjΔεMIjEh i ¼
ð
(U � n)(Δε � E2

jj � Δε�1 �D2
?)dl, (6)

where U is the modal displacement field. A maximum of the defor-
mation umax ¼ max (U) is defined as above. n is the outward

FIG. 7. Optical frequency modulation of (a) TE modes α, β, and γ and (b) TM modes α0, β0, and γ0, with reduced frequency during one period of PnC breathing mode f. The
moving interfaces (MI, red dashed lines), the photoelastic (PE, green dotted lines), and the full acousto-optic coupling (PE + MI, blue solid lines) are represented separately.
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normal unit vector of the surface. E and D denote electric field and
electric displacement field, respectively. The subscripts k and ?
represent the components parallel and perpendicular to the inter-
face between two dielectric materials, respectively. In our case,
Δε ¼ εSi � εair and Δε�1 ¼ ε�1

Si � ε�1
air .

For the two degenerate modes α and β, the frequency shift of a
twofold degeneracy is obtained by degenerate perturbation theory,41

Δω(1)+ ¼ ω0 �Γ11 þ Γ22

4
+

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Γ11 � Γ22)

2 þ 4Γ12Γ21

q� �
, (7)

where

Γij ¼
EijΔεjEj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EijεjEih i EjjεjEj

� �q : (8)

This explicit expression can be derived based on Eqs. (4)–(6).
E1 and E2 denote the electric fields of the degenerate modes, and
Δω(1)+ and Δω(1)− represent their frequency shifts.

The normalized frequency shifts (Δωa/2πc0) obtained by pertur-
bation theory are listed in Table II and agree well with the amplitude
of the modulations in Fig. 7. A symmetry analysis further clarifies the
result of perturbation theory. Because the deformation of the pho-
nonic breathing mode f in x and y directions is in-phase, the superpo-
sition of the integral in both directions is enhanced whatever the
symmetry of the photonic mode. Linear coupling is absolutely domi-
nant. For photonic degenerate modes α and β, Γ11 =Γ22 and Γij = 0
(i≠ j) because of rotational symmetry, which results in a synchronized
modulation according to Eq. (7). It is noteworthy that the degenerate
perturbation theory can be reduced to the non-degenerate perturba-
tion theory when Γij = 0 (i≠ j).

B. Coupling with phononic extension–contraction mode d

The optical frequency modulations of the six photonic defect
modes coupled with phononic extension–contraction mode d are
shown in Fig. 8. The modulation of the degenerate mode pair α and β
still shows a sine function behavior; however, it is not synchronized, just
as listed in Table II. This fact can be explained according to Eq. (7): we
have Γ11 =−Γ22 and Γij≠ 0 (i≠ j); therefore, the modulations have
opposite signs. Nevertheless, the other four photonic modes, γ, α0, β0,

and γ0, show a squared sine function behavior. The reasons are analyzed
as follows: The phononic extension–contraction mode d has
out-of-phase deformation in x and y directions. These four photonic
modes all have either ee or oo symmetry so that the term |E|2 always
has an ee symmetry. The integrals in the x and y directions cancel each
other according to Eqs. (4)–(6). As a result, between each one of these
four photonic modes and phononic mode d, linear coupling vanishes,
and quadratic coupling is dominant over higher-order nonlinear effect.
It is worth noting that quadratic coupling though weak has been pro-
posed as a means for realizing quantum nondemolition (QND) mea-
surement of the phonon number because of the square dependence
with the motion displacement.49–51

In order to distinguish whether coupling is linear or quadratic,
we further investigate the dependence of acousto-optic cavity coupling
on the acoustic displacement by FEM. The normalized frequency shift
of PE and MI as a function of the maximum of the deformation umax

is depicted in Fig. 9. Normalized frequencies of modes α and β both
shift proportionally to the maximum of the deformation. Thus, these
acousto-optic couplings are linear. Furthermore, for umax/u0 = 1, the
linear coupling hypothesis agrees with the conclusion drawn by the
perturbation theory, which is shown by optical frequency modulation
amplitude in Fig. 8(a) and is also listed in Table II. In contrast, for the
PE effect of modes γ, α0, β0 and γ0, and the MI effect of γ, α0 and β0,
normalized frequencies shift in proportion to the square of the
maximum of the deformation. Therefore, these acousto-optic cou-
plings are quadratic. Only the coupling for MI effect of mode γ’
doesn’t show a good linear or quadratic coupling. This may be caused
by calculation errors, which are brought by two aspects: one is the
weak coupling strength since the frequency shift is an order of magni-
tude smaller than other optical modes. The other is that the accurate
calculation of MI effect requires a highly dense mesh in the boundary
region to capture small deformation. Furthermore, as show in Fig. 9
and Fig. 8(b), the curves are close to that of quadratic coupling, and
its PE effect behaves as quadratic coupling. Therefore the coupling for
MI effect of mode γ’ can still be considered as quadratic coupling.

Based on second-order perturbation theory, the equation for
non-degenerate phononic modes corresponding to two-phonon
processes is derived as41

Δω(2)
i ¼ 3

8
ω(0)
i

E(0)
i jΔεPE þΔεMIjE(0)

i

D E

E(0)
i jε(0)jE(0)

i

D E
						

						
2

� 1
2

X
j=i

Xdj
k¼1

ω(0)3

i

ω(0)2

j �ω(0)2

i

E(0)
j,k jΔεPE þΔεMIjE(0)

i

D E			 			2
E(0)
j jε(0)jE(0)

j

D E
E(0)
i jε(0)jE(0)

i

D E , (9)

whereas for twofold degenerated modes,41

Δω(2)+
i ¼ +

3
8
ω(0)
i

E(0)+
i jΔεPE þ ΔεMIjE(0)+

i

D E

E(0)+
i jε(0)jE(0)+

i

D E
						

						
2

� 1
2

X
j=i

Xdj
k¼1

ω(0)3

i

ω(0)2

j � ω(0)2

i

E(0)
j,k jΔεPE þ ΔεMIjE(0)+

i

D E			 			2
E(0)
j jε(0)jE(0)

j

D E
E(0)+
i jε(0)jE(0)+

i

D E ,

(10)

TABLE II. Normalized frequency shift (×10−3) of linear coupling obtained by first-
order perturbation theory.

PtC modes ΔωPEa
2πc0

ΔωMIa
2πc0

ΔωPE& MIa
2πc0

Induced by the breathing mode f
TE α −0.288 61 3.3206 3.0320
TE β −0.288 65 3.3206 3.0320
TE γ −0.300 14 1.1909 0.89073
TM α0 1.2041 3.3670 4.5711
TM β0 0.85570 3.6800 4.5357
TM γ0 2.4520 −0.30 605 2.1460

Induced by the extension–contraction mode d
TE α −0.057 357 3.2933 3.3506
TE β 0.057 357 −3.2933 −3.3506
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where photonic mode j has different frequency with ωi. In general,
only those modes with frequency close to ωi and its electric field
are taken into consideration.

Furthermore, Table III lists the normalized frequency shifts of
quadratic coupling obtained by FEM and second-order perturba-
tion theory. It is worth noting that the second-order perturbation
theory has a large error compared with FEM in this case.
Meanwhile, the FEM results depicted in Fig. 9 have good linear
and quadratic effects, so the FEM results are reliable. Accordingly,
the quadratic coupling results obtained by the second-order pertur-
bation theory is regarded as unreliable.

C. Coupling rates relative to zero-point motion

In a quantum mechanical approach, the acousto-optic cou-
pling strength is quantified by the frequency shift imparted by the
zero-point motion of the mechanical resonator.1,2,52–55 For linear
coupling, g(1) = g0xzpf. For quadratic coupling, g(2) ¼ g 00x2zpf , where
g 0 and g 00 denote the coupling coefficients and xzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h/(2meffΩ)

p
is the zero-point motion amplitude of the mechanical resonator,
where meff ¼

Ð
ρ(U/umax)

2dV represents the effective motional
mass and Ω is the angular frequency of the acoustic mode. Since
the PnC defect modes are all in-plane modes in our 2D model, the

FIG. 8. Optical frequency modulation of (a) TE modes α, β, and γ and (b) TM modes α0, β0 , and γ0, with normalized frequency during one period of PnC extension–con-
traction mode d. The moving interfaces (MI, red dashed lines), the photoelastic (PE, green dotted lines), and the full acousto-optic coupling (PE + MI, blue solid lines) are
represented separately.

FIG. 9. Optical normalized frequencies shift as a function of the maximum of the deformation induced by acoustic extension–contraction mode d. (a) PE and (b) MI. The
results are calculated by FEM, where u0 = 0.01a is fixed.
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effective motional mass can be rewritten as
meff ¼ dt

Ð
ρ(U/umax)

2dS, where the thickness dt is fixed as 220 nm.
For the phononic breathing mode f, the effective motional mass
and zero-point motion are 129 fg and 4.21 fm, respectively. As for
the phononic extension–contraction mode d, the corresponding
values are 178 fg and 4.04 fm, respectively. Comparing with a full
3D model with meff ¼

Ð
ρ(U/umax)

2dV , the relative errors for meff

and xzpf of the 2D model with meff ¼ dt
Ð
ρ(U/umax)

2dS are smaller
than 4%. Regarding computation times, they are reduced from
20 min to 58 s when replacing the 3D model by its 2D approxima-
tion. To demonstrate that the bandgaps also exist in 3D structures,
photonic dispersion curves of the photonic slab are shown in
Fig. 10. Below the light cone, a TM-like bandgap is clearly visible,
which means the structure is practical to form defect modes or
guide modes.

The coupling rates for six photonic defect modes coupled with
phononic modes d and f obtained by FEM are shown in Table IV.
Actually, these results can be obtained through a linear or quadratic
transformation from the results of the linear or quadratic effect in
Subsections V A and V B , respectively. Owing to its optical field
being highly confined in silicon and overlapping efficiently with
the displacement field, mode β0 has both maximum linear and qua-
dratic coupling rates. The largest linear coupling rate g(1)/2π is

TABLE III. Comparison of the normalized frequency shifts of quadratic coupling obtained by either FEM or second-order perturbation theory.

Nromalized frequency shift Δωa/
2πc0(×10

−3)
ΔωPEa
2πc0

ΔωMIa
2πc0

ΔωPE& MIa
2πc0

PnC–PtC FEM
Second

perturbation FEM
Second

perturbation FEM
Second

perturbation

d–γ −0.01686 −0.007 41 0.081 031 0.008 78 0.095 68 0.007 65
d–α0 0.005 591 −0.065 −0.2159 −0.555 −0.089 95 −0.220 58
d–β0 0.1052 0.083 0.4098 0.692 0.142 992 0.27 526
d–γ0 −0.054 93 −0.001 71 −0.004 89 −0.001 35 −0.056 02 −0.000 55

FIG. 10. Photonic dispersion curves of photonic slab with thickness of 220 nm.

TABLE IV. Linear and quadratic coupling rates g(1)/2π and g(2)/2π.

Mode pair
PE MI PE and MIPnC–PtC

Linear coupling rate g(1)/2π (kHz)
f–α −47 526 478
f–β −49 519 470
f–γ −52 191 139
f–α0 174 555 729
f–β0 150 610 760
f–γ0 424 −18 404
d–α 9 −499 −490
d–β −14 544 530

Quadratic coupling rate g(2)/2π (Hz)
d–γ −0.0013 0.0064 0.0070
d–α0 0.0004 −0.0158 −0.0066
d–β0 0.0077 0.0300 0.0105
d–γ0 −0.0040 −0.0004 −0.0041

TABLE V. Comparison of maximum linear and quadratic coupling coefficients for
the proposed model and some published structures.

Phoxonic crystal
cavities

Coupling coefficients

Methods

Linear
coupling g0

(GHz/nm)

Quadratic
coupling g00

(MHz/nm2)

Tilted membrane
within an optical
cavity56

0.0028 4.46 FEM and
experiment

Fiber cavity57 3 20000 Experiment
Snowflake
cavity33

17 n.a. Experiment

Waveguide with
air slot58

36 n.a. FEM

Paddle cavity40 n.a. 400 FEM
This work 181 643 FEM
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about 760 kHz for TM mode β0 coupling with phononic breathing
mode f. The largest quadratic coupling rate g(2)/2π is about 0.01 Hz
for TM mode β0 coupling with stretch-contract phononic mode d.
The corresponding coupling coefficients g0 and g00 are 181 GHz/nm
and 643MHz/nm2, respectively. Table V lists maximum linear and
quadratic coupling coefficients of some published structures and
this work. It can be noted that the structure proposed in this work
achieves the largest linear coupling coefficient and the second
largest quadratic coupling coefficient. For optical modes coupled
with acoustic modes of a few GHz, the coupling rate seems consid-
erable. Nevertheless, the lower acoustic frequency, the larger the
zero-point motion amplitude, and the larger the coupling rate,
especially for quadratic coupling.

VI. CONCLUSION

A convex–concave 2D square lattice PxC was designed on the
basis of a large phononic bandgap. Based on FEM and geometrical
optimization, a comprehensive investigation of bandgaps has been
performed. The results indicate that the convex–concave PxC can
open simultaneously large complete photonic and phononic bandg-
aps, while at the same time preserving a simple topology.
Moreover, large complete bandgaps can be achieved for a wide
range of parameters. Maximum complete bandgaps of up to 90.7%
for PnC and 11.5% for PtC are achieved after optimization. As a
combination of convex and concave holes, the topology constituted
by L-shaped connections and lumps is critical to induce dual
bandgaps. The present study starts a new path for the design of
PxCs. Moreover, with large complete bandgaps, the structure is a
suitable choice to design a PxC cavity. Several defect phononic
modes and photonic modes are obtained. Considering both the
photoelastic and the moving interface mechanisms, the acousto-
optic coupling was evaluated and the effect of symmetry on
acousto-optic coupling was analyzed. The coupling strength was
also investigated by FEM and first-order perturbation theory. The
results of both methods are in good agreement for linear coupling,
while second-order perturbation theory needs a correction to esti-
mate quadratic coupling. Finally, the optomechanical coupling rate
relative to zero-point motion was investigated by FEM. A photonic
TM mode is found to have both the largest linear and quadratic
coupling rates, in accordance with the optical field being strongly
confined in the central silicon defect.
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