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ABSTRACT
We demonstrate experimentally the manipulation of Lamb waves guided along reconfigurable phononic circuits created by defects composed
of threaded rods held with nuts in a perforated solid phononic crystal slab. Adjusting the free length of the rod, the resonant frequency of
the defect can be tuned, without any change in the supporting phononic crystal slab. Both straight and bent waveguides are fabricated and
measured in an aluminum sample with a lattice constant of 20 mm and a complete bandgap extending from 50 to 70 kHz. Guidance of Lamb
waves is clearly observed by a Doppler vibrometer, even after 90○ bends. The eigenmodes of guided waves are obtained using finite element
analysis to explain the tuning of resonances through a bending cantilever model. Numerical and experimental results are generally found to be
in fair agreement. They also suggest that the guiding frequency is rather independent of the details of the waveguides. They are of significance
for the design of reconfigurable phononic devices.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0056202

I. INTRODUCTION

Phononic crystals (PCs) are functional composites with spa-
tial periodicity.1 Their unique property is to exhibit bandgaps in a
certain frequency range, within which propagation of elastic waves
is prohibited. Thus, they have direct applications in noise isola-
tion and vibration reduction.2 When periodicity is broken, confined
defect modes appear. PCs are a basis on which to design novel elas-
tic wave devices, such as waveguides,3 splitters,4 or acoustic channel
drop filters.5 Moreover, their dispersive properties in passing bands
also result in promising phenomena, such as collimation or negative
refraction.6

Although PCs provide a promising pathway to the manipu-
lation of elastic waves, they have had few real-life applications so
far. Actually, most of them are characterized by a passive response
and operate in fixed frequency ranges. The topology or the mate-
rial parameters are hardly tunable or reconfigurable after fabrica-
tion. Tunable manipulation of acoustic or elastic waves has thus

become a fast developing topic.7 Since elastic wave propagation is
controlled mainly by material properties and geometry parameters,8
wave manipulation can generally be classified as based on either
tunability or reconfigurability.

For tunable PCs, physical or material properties are tuned using
an external control field. Such PCs may be composed of multiphys-
ical coupled components, such as piezoelectric,9–11 ferroelectric,12

or magnetoelastic13 materials. Dynamic control can be realized by
applying an external biased electric field,14,15 a magnetic field,16,17

and so on. Piezoelectric materials are commonly used18 and can
be implemented either on the surface of or inside PC units. The
resonance or Bragg scattering characteristics of the periodic struc-
ture can be tuned by an external circuit so as to dynamically reg-
ulate wave propagation. When a feedback electronic control cir-
cuit is added,19 active or even smart control of wave propagation
can be expected. Moreover, the response can self-adapt to changes
in the surrounding environment, such as an incident aerodynamic
flow.20
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For reconfigurable PCs, the geometry or the layout is changed
in a mechanical way. For instance, tunable manipulation can be
realized continuously based on the reconfigurability of fluid/solid
systems: rotating or removing the solid scatterers in a fluid matrix3,21

or filling a fluid in a solid matrix containing cavities.22–24 Appli-
cation of pre-stress can change the phononic properties of solid
systems.25–27 Soft materials can exhibit large deformations28,29 so
that their geometry or even topology can be changed owing to the
bulking instability,30,31 leading to a significant change in wave dis-
persion. Thermal expansion of a solid material can also be used to
control wave propagation to a certain extent.32 Bistable or multi-
steady states of shape memory materials, including shape memory
alloys33 and polymers, can be used for the conversion of different
wave characteristics.

Recently, PC slabs have received increasing interest for the
manipulation of Lamb waves.23,34–36 Investigations are focused on
flat slabs decorated with holes37 or solid inclusions38 or grafted
with pillars39 or resonators.40 Various devices, such as waveguides,41

splitters42 and filters,43 have been designed and verified experimen-
tally. However, manipulation of Lamb waves remains a difficult
task.23,44,45 In the present work, we demonstrate experimentally a
simple way to reconfigure easily waveguides in perforated PC slabs.
Threaded rods, held in dry mechanical contact with the slab using
nuts, are added at chosen holes. Adjusting the free length of the
rods, the resonance frequency of bending modes of the rods can
be adjusted continuously within the complete phononic bandgap.
Straight waveguides and 90○ bent coupled-resonator waveguides are
formed experimentally in an aluminum PC slab. To explore the
physical mechanism behind waveguiding, numerical simulations by
using finite element analysis are performed. Numerical and exper-
imental results generally agree fairly well, with slight frequency
shifts of resonances. This work is of significance for the design of
reconfigurable elastic wave devices.

II. EXPERIMENTAL AND NUMERICAL METHODS
The manufactured square-lattice PC slab sample is shown

in Fig. 1(a). It is machined in an aluminum plate. It consists
of perforated square lumps connected by thin bars. In finite ele-
ment computations, aluminum is considered isotropic (mass density
ρs = 2700 kg/m3, Poisson’s ratio υ = 0.33, and Young’s modulus

FIG. 1. (a) Photograph of the PC slab sample. A linear waveguide is formed by a
sequence of threaded rods clamped with nuts to the perforated square lumps. The
inset is a close-up view of the rods and nuts used. (b) Unit cell of the PC slab and
definition of geometrical dimensions.

E = 6.89 GPa). The lattice constant is a = 20 mm, and the thickness
of the slab is h1 = a/4. The width of the perforated square lumps is
c = 0.8a, and the width of the connecting bar is b = 0.1a. The radius
of the central hole is r = 0.1a. With those values, the PC slab pos-
sesses a wide complete phononic bandgap, as shown in Fig. 2 (see
Sec. III for a discussion).

Reconfigurability is implemented by the addition of threaded
steel rods inside selected holes of the PC slab. The rods are clamped
to the lumps by steel nuts placed symmetrically on both sides of
the plate. The consideration of nuts is not required, in principle.
We observed experimentally, however, that the unfastened rods had
almost no influence on the transmission properties because the rods
are not clamped enough to the PC slab in this case and they can
vibrate rather freely. Furthermore, the fastening force applied on
each nut was kept sufficiently small to avoid deformations of the
supporting PC slab. In numerical computations, steel is consid-
ered isotropic (mass density ρs = 6750 kg/m3, Poisson’s ratio υ = 0.3,
and Young’s modulus E = 206 GPa). The thickness of the nuts is
h2 = 0.15a. The total length of the rods is L = 1.5a and their radius is
r = 0.1a. As discussed in Sec. III, the effective length of the rod (le),
including both the length from nut to free end (l) and the contri-
bution of the nut, defines its resonance frequencies. By symmetry,
we need to only consider the length l of the rod above the plate [see
Fig. 1(b)]. The length of the rod below the plate is L − h1 − 2h2 − l.

Lamb waves are excited via a piezoelectric patch. Propagat-
ing Lamb waves are detected and imaged using a Polytec PSV-500
scanning vibrometer. Harmonic signals with either stepped or fixed
frequencies are chosen for the measurement of transmission and dis-
placement distribution, respectively. The excitation signal is ampli-
fied before it is applied to the piezoelectric patch bonded to one side
of the slab. The patch is polarized vertically.

Numerical simulations are performed with a 3D finite ele-
ment method for a better understanding of experimental results and
the related physical mechanisms. Band structures are calculated by
applying Bloch boundary conditions on the lateral sides of a sin-
gle unit cell or of a super-cell, depending on the distribution of
rods and nuts. Transmission properties are evaluated by consider-
ing a finite PC slab, as shown in Fig. 1(a). Note that the pre-stress
resulting from the fastening of the nuts is not taken into account in

FIG. 2. (a) Band structure of the perfect PC slab and (b) transmission properties of
the perfect PC obtained from simulation (dashed line) and experiment (solid line).
The light-gray parts mark the passing band for out-of-plane modes. The color bar
represents the polarization from 0 (blue) to 1 (red).
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numerical simulations. An out-of-plane wave source with unit
amplitude (U0 = 1) is applied on one side (S1) of the waveguide.
By sweeping the frequency, we evaluate the frequency response
function (FRF) in decibel units by

F( f ) = 20 log10(
∫S2

Uds

∫S1
U0ds

), (1)

where U is the total displacement collected over a receiver segment
(S2) placed at the exit side of the waveguide. It should be noted that
both the source and the receiver are located inside the phononic
crystal. With this setting, for all frequencies within the complete
phononic bandgap, we avoid the interference of guided waves with
waves reflecting on the external boundary of the finite structure. To
differentiate the polarization of different modes, we further compute
the proportion of the out-of-plane displacement in the squared total
displacement via

pz = ∫ ∣w∣2dV
∫ (∣u∣2 + ∣v∣2 + ∣w∣2)dV

, (2)

with (u, v,w) being the three components of displacement in the
reference frame of Fig. 1(b). Experimental and numerical results are
compared in detail in Sec. III.

III. RESULTS AND DISCUSSION
In this section, we discuss the band structures and the frequency

response of different phononic circuits.

A. Bare phononic crystal slab
For comparison, we first consider the phononic properties of

the perfect PC slab summarized in Fig. 2. With the color scale in
the phononic band structure varying from in-plane (blue) to out-of-
plane polarized (red), it is seen that both polarizations are effectively
separated, as results for the mid-plane symmetry of the PC slab. Two
bandgaps for out-of-plane Lamb waves are observed in the band
structure, covering the frequency ranges between 43.15 and 46.37,
and 49.15 and 70.08 kHz. The second, larger, bandgap is mostly
considered in the following. The measured frequency response is
generally in agreement with the computed band structure and fre-
quency response, though a slight upward frequency shift is observed
at the entrance of the bandgap. This difference may be due to the
neglection of the presence of threaded holes in the slab, effectively
leading to an overestimation of the mass of the perforated lumps.
Significantly, the measured bandgap is wide enough for the prepa-
ration of different waveguides operating between 50 and 70 kHz,
typically.

B. Defect modes with rods and nuts
The addition of threaded rods and a pair of nuts allows for the

design of reconfigurable waveguides formed from coupled defects.
We consider three different values of length l: (A) l = 0, (B) l = 0.15a,
and (C) l = 0.3a. The respective supercells are shown in the first
column of Fig. 3. Phononic band structures are shown in the sec-
ond column of the figure. As a remark, when defects are added, the
structure loses the mid-plane symmetry and the separation between

in-plane and out-of-plane polarized elastic waves is lost. It can be
seen, however, that bands of the bare PC slab are still apparent with
unchanged polarization type. Additionally, defect bands appear.
Those have a color in between blue and red, meaning that their
polarization is mixed and all three displacements in space coexist.
Guiding bands induced by the presence of defect states are identi-
fied in dark gray in Fig. 3. Their frequency ranges are reported in
Table I.

Vibration modes around 50 kHz for defect A (l = 0) are shown
in Fig. 3. The bottom free end of the rod vibrates in a bending motion
typical of a clamped-free beam. The two modes of vibration depicted
are orthogonal and couple with flexural waves of the supporting slab.
Since those flexural waves are evanescent in the surrounding PC slab,
the defect modes are strongly confined spatially. Globally, one of the
pair of modes vibrates in the direction of the waveguide, x, whereas
the other vibrates in the lateral direction, y. Given the symmetry of
the excitation source with respect to the x axis in the experiment,
we expect the latter mode to be deaf and hence not to be excited. In
addition, another resonance appears around 65 kHz. This mode is
mostly polarized out-of-plane, but there is almost no coupled vibra-
tion in the rod. The displacement distribution is asymmetric with
respect to the x axis, so this mode is also expected to be deaf.

When length l is increased to 0.15a with defect B, the vibration
motion remains of the exact same type, but the resonance frequency
shifts upward to around 60 kHz. As argued below, the frequency
shift results from the decrease in the length of the bottom free end
of the rod. When length l is further increased to 0.3a with defect C,
the resonance frequency remains almost the same, around 59 kHz.
The top free end of the rod, however, is now vibrating instead of the
bottom end.

As observed above, the resonance frequency can be tuned
experimentally by adjusting length l. The dynamic equation for a
homogeneous rod according to Euler–Bernoulli beam theory is46

∂2

∂y2 [EI
∂2v

∂y2 ] − ρAω2v = 0, (3)

where E is Young’s modulus, I is the second moment of area of the
beam, and A is the cross-sectional area. The natural frequency for a
clamped-free beam with an effective length le can be evaluated by

ωn = (βnle)2(EI/ml4
e)1/2, (4)

where n = 1, 2, . . . is the order of the vibration mode and m = ρA is
the mass density per unit length. The numerical value for the mode
constants of the first two normal modes are (β1le)2 = 3.5160 and
(β2le)2 = 22.0345. For defect C, the resonance can be identified with
the first or fundamental normal mode, whereas for defects A and B,
the resonance can be identified with the second normal mode. The
normal mode frequencies ωn vary with the inverse of the square of
the effective length of the rod. It should be stressed, however, that
the correspondence is mostly qualitative, since the precise geome-
try of the nuts is not taken into account in the homogeneous beam
model and the clamping boundary condition is only approximately
met because of the moderate tightening force that is applied to the
nuts. Anyway, this simple model explains the continuous tunability
of the resonance frequency by adjustment of the free length of the
rod.
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FIG. 3. Phononic properties of defects composed of threaded rods held with nuts in the perforated solid PC slab of Fig. 2. Three different defects are introduced, with the
varying value of the free length of rod l: (A) l = 0, (B) l = 0.15a, and (C) l = 0.3a. In each case, the band structure for the corresponding supercell is shown. The color scale
represents the contribution of out-of-plane displacements to the total polarization of elastic waves from 0 (blue) to 1 (red). The light-gray areas indicate the passing band for
the out-of-plane polarized waves in the perfect PC slab. The dark-gray areas indicate the considered waveguiding bands. Vibration modes at marked points are shown on
the right. The color scale represents the normalized amplitude of out-of-plane displacements from negative (blue) to positive (red).

C. Straight waveguides
In this subsection, we focus on the operation of straight waveg-

uides made from defects A, B, and C. The total length of the straight
waveguides is 6a in the experiments, i.e., they are composed of a
line of six defects. Numerical and experimental FRFs are shown in
Fig. 4. They are in fair agreement but show some differences. For
all three defects, the numerical FRF predicts some transmission in
a frequency band extending around 65 kHz that is not observed
experimentally. From the phononic band structure, this response
corresponds to mode P3 in Fig. 3 that should be deaf. The numerical
FRF is, however, quite small and may remain below the experimen-
tal detection baseline. More significant are the transmission bands

TABLE I. Guiding bands predicted from finite element computations and measured
for straight and bent waveguides. The frequency unit is kHz.

Type A B C

Numerical 49.3–51.4 60.7–61.7 59.5–61.0
Straight waveguide 52.6–56.0 54.6–63.2 57.6–61.2
Bent waveguide 52.7–55.5 59.0–61.3 60.3–62.0

highlighted in dark gray in Fig. 4. The numerical FRFs clearly corre-
spond to the resonant frequency ranges identified in Fig. 3 and listed
in Table I. The experimental FRFs appear to be shifted in frequency
compared to their numerical counterparts and to have a wider fre-
quency extension. Since it is known that the frequency bandwidth
of coupled-resonator waveguides is directly related to the coupling
strength between resonant defects,47 the observation indicates that
coupling may be underestimated in the finite element analysis. Fur-
thermore, clear channeled spectra are observed, with the number of
maxima within transmission bands of the order of the number of
defects in the coupled chain.41,48 The frequency shifts of the reso-
nances may be attributed to the difficulty of controlling precisely
the pre-stress applied to the nuts in the experimental sample. The
pre-stress is assumed to be zero in the numerical simulations. In the
experiment, a varying pre-stress is probably applied to each indi-
vidual defect. The consideration of pre-stress suggests an alternative
way of controlling wave propagation in the proposed system and is
left for future investigations.

Displacement fields at selected frequencies are measured over
the surface and displayed in the rightmost column of Fig. 4. Vibra-
tion modes appear to be a combination of the x and y polarized
modes in Fig. 3. Specifically, modes P1 and P2 degenerate for defect
A, modes P4 and P5 degenerate for defect B, and modes P6 and
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FIG. 4. Frequency response function (FRF) of straight waveguides. Numerical and
experimental FRFs are shown in panels (a) and (b). The light-gray areas indicate
the passing bands for out-of-plane polarized waves in the perfect PC slab. The
dark-gray areas indicate the waveguiding bands induced by each defect. The FRF
for the bare PC slab is plotted with a dashed line in (a) for comparison. Experimen-
tally measured displacement fields at selected frequencies are displayed in panel
(c). The color-scale indicates the amplitude of out-of-plane displacement from 0
(blue) to maximum (red).

P7 degenerate for defect C. Overall, Lamb waves are clearly guided
along the waveguides at different frequencies, thus verifying the
reconfigurability of the proposed system. As a note, no attempt was
made at adjusting the free length of the rods to match experimental
and numerical frequencies.

D. Bent waveguides
Beyond straight waveguides, the principle of coupled-

resonators also allows one to design more arbitrary chains,41

whereas for linear or topological waveguides, the angle of bends
is restricted by the symmetry of the lattice. The reconfigurability
principle, for instance, also applies to 90○ bent waveguides for
the square lattice, as we consider in this subsection. The total
length of the bent waveguides is 7a or a chain of seven coupled
defects. Numerical and experimental FRFs are shown in Fig. 5. The
numerical FRFs around the resonant bands have limited changes
compared to straight waveguides, although bent waveguides have

FIG. 5. Frequency response function (FRF) of bent waveguides. Numerical and
experimental FRFs are shown in panels (a) and (b). The light-gray areas indi-
cate the passing bands for out-of-plane polarized waves in the perfect PC slab.
The dark-gray areas indicate the waveguiding bands induced by each defect. The
FRFs for the corresponding straight waveguides are plotted with dashed lines in
(a) for comparison. Experimentally measured displacement fields at selected fre-
quencies are displayed in panel (c). The color scale indicates the amplitude of
out-of-plane displacement from 0 (blue) to maximum (red).

an additional defect and a sharp band after the fourth defect. Similar
observations were made for acoustic waves propagating along linear
waveguides.48 This observation suggests that waveguiding is very
efficient in theory and independent of the number of defects as well
as of the existence of bends. The experimental FRFs show more
changes, especially regarding the width of resonant bands but also
the amplitude of the response at the end of the chain of defects.

Displacement fields at selected frequencies are measured over
the surface and displayed in the rightmost column of Fig. 5. As in the
case of straight waveguides, the mixture of x and y polarized modes
identified in Fig. 3 explains how Lamb waves are guided along the
chain of defects, especially across the 90○ bend.

IV. CONCLUSION
In this paper, Lamb wave propagation in phononic circuits

formed by reconfigurable chains of defects has been investigated.

APL Mater. 9, 081110 (2021); doi: 10.1063/5.0056202 9, 081110-5

© Author(s) 2021

https://scitation.org/journal/apm


APL Materials ARTICLE scitation.org/journal/apm

Defects are introduced by attaching threaded rods with nuts to a
two-dimensional perforated square-lattice PC slab. The considera-
tion of threaded rods naturally provides reconfigurability by adjust-
ing continuously their free length and hence their natural resonance
frequencies. In addition, the solid PC slab is completely reusable and
unaltered when reconfiguring the phononic circuits. Both straight
and 90○ bent waveguides were designed and fabricated. As illus-
trated by a simple bending cantilever model, the central frequency
can span the available complete phononic bandgap. In numerical
simulations, the frequency response function is almost independent
of the length of the chain of defects and of the presence of bends.
Experimental results are generally in fair agreement with numer-
ical ones, although the mechanical reconfigurabilility provided by
a human experimenter remains somehow imprecise, including the
pre-stress applied when fastening the nuts. Mechanical robots with
force sensors may be considered to conduct precise control of wave
propagation. Other phononic circuits could also be designed as a
direct extension of the present work.
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