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Nodal points can be artificially synthesized using glide-reflection symmetries at crystal interfaces. This property was first demon-
strated for a square-lattice phononic crystal at the X point of the first Brillouin zone (wavenumber k = ±π/a with a the lattice
constant), for a half-lattice-constant glide. Here we show that the nodal point can be moved to the Γ point (k = 0) considering
quarter-lattice-constant glide-reflection symmetry. Applying a continuous grading along the x-axis is further shown to leave the
band structure mostly unaffected. In particular, the topological interface waves survive in the case that glide-reflection symmetry
is only locally valid around the graded interface. As a result, the glide dislocation can be compensated for over a distance of a
few crystal rows, to recover an apparently periodic crystal.
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1. Introduction

Topological metamaterials have recently arisen as novel av-
enues for tailoring the properties of artificial crystals, includ-
ing photonic and phononic crystals [1-7]. Mathematically,
the topological properties that characterize different phases
of a crystal are derived from Bloch waves, or eigenvectors,
including their Berry phases [8, 9]. The Berry phase, a ge-
ometrical phase defined for periodic systems, complements
the usual phase of the eigenvalue, that depends on the Bloch
wavevector k defined in the first Brillouin zone. Edge waves
can be obtained along domain walls separating two topolog-
ically different phases of the same crystal [10-15].

In this paper, we consider the case of time-reflection sym-
metric (TRS) waveguides created by a glide dislocation in a
two-dimensional (2D) phononic crystal [16]. Because of the
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dislocations, these systems have only one periodicity (1D)
left, but they still inherit the phononic band properties of
the parent 2D crystal, hence constituting the bulk crystal
from which the boundary, or interface, is created. The space
group of a 1D periodic structure is also known as a frieze
group. There are a total of 7 frieze groups, among which only
the two groups p11g and p2mg possess a half-lattice glide-
reflection symmetry (GRS). Recently, it has been shown that
crystal interfaces belonging to these two frieze groups sup-
port a pair of non-interacting, or backscattering-free, guided
waves with a smooth dispersion covering a large part of the
2D phononic band gap [16]. The band structure topology
of those crystal interfaces is protected by the GRS. Glide-
reflection symmetry belongs to nonsymmorphic symmetries,
i.e., symmetries that do not leave a fixed point invariant in-
side the unit cell. Band inversion is obtained at the X point of
the first Brillouin zone, i.e., at its edges. The crossing-point
of the two guided bands is one example of a nodal point of
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the 1D band structure, similar to Dirac points in 2D and two-
dimensional (3D) crystals.

In this paper, we further extend the theory of the glide-
reflection symmetric phononic crystal interface in two dif-
ferent directions. First, we show that the nodal point can
be moved from the X point to the Γ point of the first Bril-
louin zone, by introducing a quarter-lattice-constant glide-
reflection symmetry, when the 2D crystal unit cell is extended
by a factor two along the interface direction (the extended
lattice constant ax = 2a, with a the original lattice constant).
The extended unit cell contains two different inclusions per
unit cell, separated by a, such that taken separately they both
lead to a similar complete phononic band gap range. Mov-
ing the nodal point to the Γ point, that is to a zero or integer
value of the reciprocal lattice constant, may find applications
for normal incidence excitation of the 1D waveguide. Sec-
ond, we discuss the locality of the constraint of GRS of the
crystal interface and show that it can be deformed continu-
ously to compensate for the glide dislocation away from the
interface, while keeping in an approximate and local sense
the topological properties of a buried GRS interface.

2. Quarter-lattice-constant glide-reflection
symmetry

Let us first recall a few facts regarding the half-lattice-
constant glide-reflection symmetric crystal interface. Fig-
ure 1a depicts the spatial arrangement of the crystal inter-
face. The glide-reflection symmetry acts on coordinates as
(x, y) → (x + a/2,−y). Applied twice, it results in a transla-
tion of the crystal structure by exactly one lattice constant a,
or

Ga/2 ◦Ga/2 = Ta (1)

in terms of symmetry operators. The latter property is the ori-
gin of the degeneracy at the X point of the first Brillouin zone
(k = π/a). Indeed, in reciprocal space Ga/2(k)2 = exp(ika)
with k the Bloch wavevector, so that

Ga/2(π/a)2 = −1. (2)

Hence the eigenvalues of the GRS operator are ±i with
complex-conjugated eigenvectors u and u∗. Since the GRS
operator and the (real-valued) dynamic operator for elasto-
dynamics commute, they share common eigenvectors and we
conclude that bands are degenerate by pairs at the X point.

Let us now elaborate the quarter-lattice-constant glide-
reflection symmetric crystal interface from the previous con-
figuration. Figure 1b depicts a unit-cell extended by a fac-
tor two in the x-direction, composed of the previous inclu-
sion (labelled A) and of a slightly different inclusion labelled
A′. We assume that the complete phononic band gap is al-
most preserved when changing the inclusion from A to A′,
in an adiabatic sense. As an example, we consider in Fig.
2a the square lattice crystal of steel rods in water, with di-
ameter d = 0.9a for inclusion A and d′ = 0.8a for inclusion
A′. Inclusion A is exactly the same as in Ref. [16] whereas
inclusion A′ is slightly reduced while essentially preserving
the band gap width. When combined together in the dou-
ble unit cell without any glide, inclusions A and A′ lead to
a fully opened complete band gap. When the glide parame-
ter is set to g = ax/2, as shown in Fig. 2b, degeneracy of all
bands by pairs at the point X is obtained. Since the number
of bands has been doubled, however, there are no really prac-
tically usable guided waves appearing inside the band gap.
When the glide parameter is set to g = ax/4, a quarter of the
new lattice constant, nodal points appear at the Γ point of the
Brillouin zone, as Fig. 2c shows. In particular, there is a pair
of non-interacting guided waves, whose bands cross near the

Figure 1 Schematic representation of GRS crystal interfaces, with a the lattice constant of the initial 2D crystal and g the glide parameter. a half-lattice-
constant GRS interface and b quarter-lattice-constant GRS interface.
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center of the complete band gap. In the latter case, the glide
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Figure 2 Glide-reflection symmetric crystal interface created by extend-
ing the unit-cell of a square-lattice phononic crystal of steel rods in water.
The unit-cell extended along the x-axis contains an inclusion with diameter
d = 0.9a and an inclusion with diameter d′ = 0.8a. The rectangular extended
unit-cell has horizontal length ax = 2a. Periodic boundary conditions relate
the left and right sides of the unit-cell. There are 10 steel rods along the y di-
rection. a When the glide parameter g = 0, a large complete phononic band
gap extends essentially over the phononic band gap with a single inclusion.
b When g = ax/2, all bands are degenerate by pair at the X point of the first
Brillouin zone. c When g = ax/4, half the bands are degenerate by pair at
the Γ point whereas the other half are not.

operator must be applied four times to result in a translation
of the crystal structure by exactly one lattice constant ax. In
reciprocal space, we then have Gax/4(k)4 = exp(ikax). At the
Γ point,

Gax/4(0)4 = 1, (3)

so that there are four eigenvalues, (±1,±i). The first two
eigenvalues do not lead to a degeneracy, so that half of the
bands remain non degenerate in Fig. 2c. The last two eigen-
values, however, again lead to a degeneracy by pairs of bands
(symmetric/antisymmetric with respect to the GRS). Degen-
eracy occurs for k = 0 or an integer number of reciprocal
lattice constants, hence at the Γ point. This pair of guided
interface waves is perfectly usable for single-mode guidance.
The corresponding modal shapes are shown for the pressure
part of the Bloch waves in Fig. 3. In particular, the lower
guided band (A label) holds a GSR anti-symmetric guided
wave, whereas the upper guided band (B label) holds a GSR
symmetric guided wave. The band with label C is non de-
generate and almost flat.

As a note, the quarter-lattice-constant GRS identifies with
the half-lattice-constant GRS when d = d′, which is also con-
sistent with the fact that ax/4 = a/2. Hence, the topological
invariant that is behind the appearance of guided waves along
the interface is the same, the π jump of the 2D Zak phase
[17, 18] of Bloch bands of the initial 2D crystal. In practice,
moving the nodal point from the X to the Γ point of the first
Brillouin zone could be useful for the external excitation of
the crystal interface under normal incidence.

Figure 3 Real part of the normalized modal shapes for pressure, for the
guided Bloch waves marked A, B, and C in Fig. 2c. The colorbar varies from
blue (minimum) to red (maximum).
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3. Graded GRS crystal

Symmetry protection by the glide-reflection ensures that the
band structure is not strongly affected under a limited contin-
uous deformation of the crystal lattice. In Ref. [16] the con-
tinuous transition from the square lattice to the oblique lattice
was considered as an illustration of this principle, that goes
far beyond resistance to crystal disorder. Of course, the con-
tinuous deformation should also preserve mostly the com-
plete phononic band gap, for the spectral range of appearance
of the guided interface waves to remain in operation.

Here we consider a continuous deformation of the crystal
lattice that is added to the glide dislocation of the interface.
Specifically, the vertical sides of the supercell of the crystal
interface are transformed from xm = ma to xm = ma + h(y)
for y > 0. In the example considered in Fig. 4, function
h(y) = (g/2) sin2[πy/(2na)] with n the number of crystal
rows. In order to respect glide-reflection symmetry, one must
have h(−y) = h(y). As a result, the glide dislocation is con-
served vertically and the bottom and top sides of the supercell
are glided by g. As Fig. 4a illustrates, the band structure of
the graded GRS crystal interface is very similar to the origi-
nal one (i.e., compared to Fig. 2b of Ref. [16]). The modal
shapes for the guided Bloch waves are further similar to the
ungraded case and are not reproduced here.

Compensating for the glide away from the interface, for
instance to recover the original, perfectly periodic 2D crys-
tal, requires antisymmetry of the grading function: g(−y) =
−g(y). Indeed, for the example considered in this section,
we would have h(−na/2) = −g/2 and h(na/2) = +g/2, so
that the horizontal displacements at bottom and top cancel
the glide g. This choice, however, breaks glide-reflection
symmetry and should lead to the opening of a band gap for
guided waves at the X point of the first Brillouin zone. If the
slope of function h(y) is vertical along the interface, i.e., if
dh
dy (0) = 0, then the gap opening can be minimized, because
the interface still appears locally glide-reflection symetric, at
least for the first few crystal rows around the interface. In the
example of Fig. 4b, this property is verified.

Transmission through the finite graded crystal interface
was investigated numerically, as summarized in Fig. 5, to
check the above property. The entrance of the waveguide is
excited from a curved focusing line source, with prescribed
acceleration. The pressure at the exit of the waveguide is
collected on a similar, symmetrically placed curved line. A
radiation boundary condition is imposed on the outer circular
boundary enclosing the computation domain. The frequency
response function (FRF) is defined as the ratio of collected
to emitted pressure; it includes the effect of reflections at the
entrance and the exit of the waveguide, and the direct emis-
sion of pressure waves to the left of the line source. Notably,
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Figure 4 The phononic crystal interface is continuously graded along the x-
direction, in addition to the half-lattice constant dislocation. Periodic bound-
ary conditions relate the left and right sides of the unit-cell. There are 10
steel rods along the y direction. a In presence of the strict glide-reflection
symmetry, the band structure for the crystal interface is almost unchanged
compared to the non-graded crystal. b With a combination of inversion sym-
metry and half-lattice glide, but a vertical grading slope on the interface,
local glide-reflection symmetry applies only to the first few crystal rows but
the band structure is almost unaffected. The pair of guided interface waves
almost do not interfere at the X point of the first Brillouin zone.

it is found that the responses for strict and local glide-
reflection symmetry are almost coincident, except for the
spectral range around the X-point crossing of interface
waves, and that no wave cancellations occur as a function of
frequency. As a note, the non-zero reflection coefficients at
the entrance and the exit of the waveguide lead to spectral in-
terference and cause the appearance of a channeled spectrum
[19].

4. Conclusion

As noted in Ref. [16] the glide-reflection symmetric crystal
waveguide offers wide bandwidth, single mode operation,
and symmetry-protected backscattering immunity. In this
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Figure 5 Transmission through a phononic crystal interface is continu-
ously graded along the x-direction, in addition to the half-lattice constant
dislocation. The two cases of strict and local glide-reflection symmetry are
considered. Pressure waves in water are excited and detected along circles
of arc centered on the entrance and on the exit of the interface (S: source; R:
receiver). Continuous transmission is observed in either case. Pressure fields
are shown for four particular frequencies, in the local GRS case.

paper, we have further extended the concept in two di-
rections. First, we have shown that the nodal point cre-
ated by GRS can be moved from the X to the Γ point of
the first Brillouin zone considering quarter-lattice-constant
glide-reflection symmetry for a unit-cell twice extended in
the x-direction and containing two slightly different inclu-
sions. Second, applying a continuous variation along the x-
axis of the unit cell boundaries, it is further observed that the
band structure remains mostly unafected. In particular, inter-
face waves survive in the case that glide-reflection symmetry
is only valid locally around the graded interface. As a result,
the glide can be compensated for a few crystal rows away
from the dislocation.

Author contributions Vincent Laude, Muamer Kadic and Emil Prodan

designed the research and methodology. Julio Andrés Iglesias Martı́nez and
Nicolas Laforge designed computer programs. All authors analyzed the re-
sults. Vincent Laude wrote the first draft of the manuscript. All authors
revised and edited the final version.

Acknowledgements This work was supported by the EIPHI Gradu-
ate School (Grant No. ANR-17-EURE-0002) and the U.S. National Sci-
ence Foundation (Grant Nos. DMR-1823800, CMMI-2131760 and CMMI-
1930873). Finite element programming was performed using the open-
source software FreeFem++ [20]. Computer codes are available from the
authors upon reasonable request.

1 R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alú,
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