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Complex dispersion relation of Rayleigh-Bloch waves trapped by slow inclusions
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Rayleigh-Bloch waves are guided acoustic waves propagating along a periodic line of inclusions placed inside
an open, infinite medium. Below the sound cone, they are transversely evanescent on both sides of the line
of inclusions. Guidance is then achieved without any cladding surrounding the segmented core. Inclusions
usually impose definite boundary conditions, resulting in a single guided band. We consider instead the case
of permeable, slow inclusions inside a fast medium. Introducing the concept of guided quasinormal modes, we
obtain the complex dispersion relation taking into account radiation at infinity. We thus show that multiple bands
of leaky Rayleigh-Bloch waves appear and that guided bound states in the continuum arise as a result of the
combination of symmetry and periodicity.
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Introduction. Rayleigh-Bloch (RB) waves are waves
guided along a periodic chain of scatterers or inclusions inside
an open, infinite, host medium [Fig. 1(a)] [1]. The signif-
icance of such an arrangement is that the chain acts as a
guide and confines waves in space even though there is no
physical boundary to contain them. In essence, the dispersion
of Rayleigh-Bloch waves is not determined by boundary con-
ditions but by the periodic distribution of inclusions. Denoting
x the periodic axis (Fig. 1), guided modes of propagation are
Bloch waves of the form p(x, y) exp[ı(ωt − kx)], with k the
Bloch wave number and p(x, y) a wave field periodic along
axis x that decays exponentially in the positive and negative y
direction. Strictly speaking, the dispersion of Rayleigh-Bloch
waves lies only under the sound cone, the region of dispersion
space for which waves have a phase velocity smaller than that
of any bulk wave in the host medium. Rayleigh-Bloch waves
have been discussed for many different physical systems, in-
cluding surface water waves [2–5], thin elastic plates [6], and
a one-dimensional infinite array of point masses on an infi-
nite, thin elastic plate [7], whispering gallery modes [8], lines
of acoustic resonators inside a thick plate [9], and acoustic
diffraction gratings in air [10].

There have been several discussions of the relation of
Rayleigh-Bloch waves to the trapped modes that appear
due to rigid obstacles placed symmetrically in between par-
allel walls having either Neumann or Dirichlet conditions
[3,11–13]. The obvious difference is indeed the boundary
condition at infinity being replaced by a boundary condition
at a finite distance, hence the similarity remains limited to the
perfectly evanescent RB waves whose dispersion lies below
the sound cone. The two-dimensional problem of acoustic
scattering of an incident plane wave by a semi-infinite array
of either rigid or soft circular scatterers [1,2,14–16] reveals
the existence of complex eigenfrequencies, corresponding to
leaky, radiating wave solutions, whose dispersion extends in-
side the sound cone [17]. It is the purpose of this Letter to
show that leaky Rayleigh-Bloch waves can be guided inside
the sound cone and that guided bound states in the contin-
uum arise, as a result of the combination of symmetry and

periodicity. The concept of guided quasinormal modes
(QNMs) is proposed to obtain the complex dispersion relation
of leaky Rayleigh-Bloch waves [18] and the case of slow
inclusions placed inside a fast medium is shown to be of
particular interest.

Velocity or impedance contrast? We consider in the fol-
lowing that the time-harmonic wave field satisfies a scalar
Helmholtz equation, which includes the case of acoustic
waves and of surface waves on water, for instance. It is hence
representative of the simplest wave models and could be ex-
tended to vector elastic waves in the future. For concreteness
of the discussion, we use acoustic notations in the following.
The wave equation is written

−(∇ − ıkx̂) · [ρ̄−1(∇ − ıkx̂)p] − ω2B̄−1 p = σ, (1)

with ρ̄ = ρ/ρ0 the mass density relative to the host medium;
similarly, B̄ = B/B0 is the relative elastic modulus. Both
dimensionless quantities are functions of space coordinates
(Fig. 1). σ is a body source term. The wave field has the de-
pendence p(x, y) exp[ı(ωt − kx)], with p(x, y) periodic along
axis x and the primitive unit cell depicted in Fig. 1.

Rayleigh-Bloch waves are most often considered in the
case of hard-wall boundaries inside a fluid medium. In this
case a Neumann boundary condition along the edge of the in-
clusion applies (vanishing normal derivative of the wave field;
∂n p = 0); alternatively, the Dirichlet boundary condition can
also be considered (vanishing wave field; p = 0). Figure 2(a)
displays the dispersion relation computed using the resolvent
formalism [17]. The diagram shows the local density of states
(LDOS) estimated from the response to a stochastic source
σ in Eq. (1), for every point (k, ω) in dispersion space. In
order to include scaling effects, the reduced wave number
k̄ = ka/(2π ) and the reduced frequency ω̄ = ωa/(2πv0) are
used, with v0 = √

B0/ρ0 the velocity in the host medium.
As a note, in the different panels of Fig. 2 there is a slight
asymmetry in LDOS values with respect to the X point; this
spurious imbalance in the response results numerically from
the limited resolution of the finite-element mesh used. Be-
low the sound cone, i.e., within the nonradiative region of

2469-9950/2025/111(22)/L220101(6) L220101-1 ©2025 American Physical Society

https://orcid.org/0000-0001-8930-8797
https://ror.org/02dn7x778
https://crossmark.crossref.org/dialog/?doi=10.1103/195c-gy6f&domain=pdf&date_stamp=2025-06-20
https://doi.org/10.1103/195c-gy6f


VINCENT LAUDE PHYSICAL REVIEW B 111, L220101 (2025)

FIG. 1. Waveguide composed of a line of periodic inclusions in
an open, infinite, host medium. The central portion shows the primi-
tive unit cell with lattice constant a, terminated at the top and bottom
by perfectly matched layers (PMLs). The diameter of cylindrical
inclusions is d = 0.6a.

dispersion space, there is a single band giving the dispersion
relation for Rayleigh-Bloch waves, for hollow inclusions with
a hard-wall boundary. This is the usual solution considered
in most papers on RB waves. The single band is folded at
the X point of the Brillouin zone because of periodicity. A
Bragg band gap opens for frequencies above it, but the upper
band that closes this band gap is not apparent. We show in the
following that it actually locates inside the sound cone and is
strongly subject to radiation loss, so that it does not leave a
visible trace in the resolvent band structure.

We now consider that the inclusions are filled with an-
other fluid instead of being hollow. Heuristically, it can be
understood that letting the dimensionless mass density of the

inclusion tend to infinity results in a vanishing normal gradient
of the wave field along the inclusion boundary [19]. Hence,
we can consider a fictitious medium such that both ρ̄ and
B̄ become very large in the same proportion. As a result
the dimensionless acoustic velocity v̄ =

√
B̄/ρ̄ = 1 remains

constant whereas the dimensionless acoustic impedance Z̄ =√
ρ̄B̄ increases in proportion. It can be checked that the disper-

sion relation for ρ̄ = 100 and B̄ = 100 in Fig. 2(b) is actually
very close to the hollow inclusion case of Fig. 2(a). It is further
instructive to test a case with ρ̄ = B̄ not too large, in which
case there is no velocity contrast but a moderate impedance
contrast [v̄ = 1 and Z̄ = 2; see Fig. 2(c)]. There is still a
single band, but the Bragg band gap tends to close toward
the crossing point of right and left sound lines. It is generally
observed that the dispersion of Rayleigh-Bloch waves follows
closely the sound lines when v̄ = 1 and that the Bragg opening
under the sound cone scales with the impedance contrast.

The situation changes if the inclusions are allowed to be
slower than the host medium, in which case the dispersion
of Rayleigh-Bloch waves shifts down in frequency as they
localize more inside the inclusions [see Figs. 2(d)–2(f)]. Sig-
nificantly, the second band above the Bragg band gap now
appears clearly and extends inside the sound cone, i.e., inside
the radiative region of dispersion space. The Bragg band gap
itself exists even if the impedance contrast vanishes [case of
Fig. 2(e)] and its opening is favored for Z̄ < 1 [Fig. 2(d)] as
compared to the inverse setting Z̄ > 1 [Fig. 2(f)].

From the above observations, it can be concluded that the
point in dispersion space around which the Bragg band gap
opens for Rayleigh-Bloch waves can be moved down under
the sound cone using slow inclusions (v̄ < 1). This results in

FIG. 2. Maps of the dispersion relation of Rayleigh-Bloch waves, computed using the resolvent band-structure method [17]. The color scale
is for the local density of states (LDOS) estimated from the response to a stochastic source term. Panels are for (a) hollow inclusions satisfying
a Neumann boundary condition along their edge, (b) inclusions with ρ̄ = B̄ = 100 (v̄ = 1 and Z̄ = 100), (c) inclusions with ρ̄ = B̄ = 2 (v̄ = 1
and Z̄ = 2), (d) inclusions with ρ̄ = 1 and B̄ = 1/4 (v̄ = 1/2 and Z̄ = 1/2), (e) inclusions with ρ̄ = 2 and B̄ = 1/2 (v̄ = 1/2 and Z̄ = 1), and
(f) inclusions with ρ̄ = 4 and B̄ = 1 (v̄ = 1/2 and Z̄ = 2).
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FIG. 3. Complex dispersion relation for leaky Rayleigh-Bloch waves treated as guided quasinormal modes. The color scale is for the
inverse of the quality factor. (a) For hollow inclusions [same conditions as in Fig. 2(a)] the first band is guided but the second band, extending
inside the sound cone, is always strongly leaky. (b) For filled inclusions with ρ̄ = 1 and B̄ = 1/4 [same conditions as in Fig. 2(d)] the dispersion
of the second band is lossless at both the X and the � points. The latter solution is a bound state in the continuum (BIC) whereas the former is
a guided wave. The real part of the pressure field of guided QNM solutions is shown within the primitive unit cell at high-symmetry points.

the second or folded band to be much less leaky than in the
usual case of hollow inclusions. The opening of the Bragg
band gap is then favored by decreasing the relative acoustic
impedance of the inclusions (Z̄ < 1).

Complex dispersion relation. We now attempt to describe
leaky RB waves that are partially guided along the chain of
inclusions. The concept of quasinormal mode (QNM) [20,21]
is used to quantify the effect of radiation loss of a phononic
resonator in an open medium [22]. For a QNM with a complex
frequency ω, in particular, the quality factor of the reso-
nance is defined as Q = Re(ω)/2 Im(ω). Bloch waves are the
eigenfunctions of a periodic, lossless medium and the band
structure is composed of their dispersion relation. Here, we
describe damped resonances in the resolvent band structure
as quasinormal Bloch waves, their complex eigenfrequencies
defining complex bands ωn(k). The practical algorithm de-
scribed in Ref. [22] to obtain a single QNM is here modified
to track the complex dispersion relation of guided QNMs as a
function of the wave number. Consider a discrete sequence
(ki, i = 0 · · · m) sampling the k axis. Starting from a given
point (ki, ωi ) of dispersion space, the iteration converges fast

toward the closest QNM at fixed ki, yielding an estimate of
the complex frequency ωn(ki ) as well as of the field pn(x; ki )
of the QNM of interest. If i = 0, the starting frequency has to
be guessed from the resolvent band structure and a stochastic
source is chosen for initialization. For step i > 0, the starting
frequency and the QNM candidate can be chosen as ωn(ki−1)
and pn(x; ki−1), and the iteration will converge to ωn(ki ) and
pn(x; ki ). Repeating this elementary step, the complex band
is easily and efficiently obtained, since each iteration requires
the solution of only a few linear systems.

Considering the case of Rayleigh-Bloch waves for hollow
inclusions in Fig. 2(a), the complex band tracking algorithm
readily produces the complex dispersion relation displayed in
Fig. 3(a). The first band, that was visible in the resolvent band
structure, is lossless (purely real) since it belongs to guided
modes under the sound cone. It is seen that the QNM tracking
algorithm does not function very well at low frequencies and
low wave numbers, since the solution extends laterally very
widely inside the PML. In this case, the QNM cannot be
clearly separated from PML eigenmodes and can be lost by
the tracking algorithm. Note that this limitation does not affect

FIG. 4. Dispersion relation of Rayleigh-Bloch waves for inclusions with ρ̄ = 1 and B̄ = 1/9 (v̄ = 1/3 and Z̄ = 1/3). (a) Map of the
dispersion relation computed using the resolvent band structure method [17]. The color scale is for the local density of states (LDOS) estimated
from the response to a stochastic source term. (b) Complex dispersion relation for leaky Rayleigh-Bloch waves treated as guided quasinormal
modes. The color scale is for the inverse of the quality factor. The real part of the pressure field of guided QNM solutions is shown within
the primitive unit cell at high-symmetry points. Examples of bound states in the continuum (BIC) are shown for bands 3 and 5 at the � point.
(c) The Rayleigh-Bloch wave of band 4 at ka/(2π ) ≈ 0.236 inside the first Brillouin zone is also a BIC.
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FIG. 5. Dispersion relation of Rayleigh-Bloch waves for inclusions with ρ̄ = 1 and B̄ = 1/16 (v̄ = 1/4 and Z̄ = 1/4). (a) Map of the
dispersion relation computed using the resolvent band structure method [17]. The color scale is for the local density of states (LDOS) estimated
from the response to a stochastic source term. (b) Complex dispersion relation for leaky Rayleigh-Bloch waves treated as guided quasinormal
modes. The color scale is for the inverse of the quality factor. The real part of the pressure field of guided QNM solutions is shown within the
primitive unit cell at high-symmetry points. Examples of bound states in the continuum (BIC) are shown for bands 3 and 5 at the � point, and
band 8 at the X point.

the computation of the resolvent band structure, anyway. The
second complex band has a low-quality factor for all wave
numbers and could not be seen in the resolvent band structure,
since its response is very low. Moving the excitation frequency
to the complex plane however makes it apparent.

Considering the slow inclusion case of Fig. 2(d), the
same procedure leads to the complex dispersion relation dis-
played in Fig. 3(b). The first complex band is similar to
the one in Fig. 3(a), though the wave field localizes on the
inclusions rather than in between them. Significantly, since
the second complex band has moved down in frequency,
it first appears as lossless after the folding at the X point
of the Brillouin zone [ka/(2π ) = 0.5] but becomes lossy
as it enters the sound cone. Surprisingly, loss tends to 0
(Q −→ ∞) at the � point [ka/(2π ) = 0] for this second
band. At this point, the QN Bloch wave becomes a bound
state in the continuum (BIC) [23–25], since it it lossless
although its dispersion lies inside the sound cone. The BIC
property here results from a combination of symmetry and
periodicity, as the QN Bloch wave is a collective vibration
state of the periodic, infinite chain of inclusions. This is in
contrast to band folding considered as the BIC generation
mechanism [26].

We next increase the material contrast in Fig. 4. The fre-
quency decrease of the dispersion of QN Bloch waves is
stronger and a total of five bands is observed in the fre-
quency range of interest, the first three of them being guided
Rayleigh-Bloch waves, i.e., extending below the sound cone.
Each new band is clearly associated with a particular res-
onance of the inclusion and has a definite symmetry, in
particular dictated by the azimuthal number m of isolated
QNMs discussed in the Appendix. Band 3 (m = 1) and band 5
(m = 2) both hold a BIC at the � point. Surprisingly, another
BIC occurs for band 4 for a k value in between the high-
symmetry points � and X , at ka/(2π ) ≈ 0.236. As Fig. 4(c)
shows, m = 2 for this BIC also.

Increasing again the material contrast in Fig. 5, the overall
trends are confirmed. There are now eight complex bands,
with the additional appearance of an m = 3 resonance leading
to a BIC at both the � and the X point (band 8). Band 4
again holds a BIC for a k value in between the high-symmetry

points � and X , at ka/(2π ) ≈ 0.172, again with m = 2. The
corresponding modal shape, not shown in Fig. 5, is very sim-
ilar to the one in Fig. 4(c).

Conclusion. The complex dispersion relation of Rayleigh-
Bloch waves has been discussed for both the traditional case
of hollow inclusions and the case of slow inclusions in a
homogeneous propagation medium. The introduction of slow
inclusions, in particular, results in the appearance of localized
resonances whose frequencies down-shift when velocity de-
creases, leading to the formation of additional Rayleigh-Bloch
wave bands. The key to the description of leaky Bloch waves
that are partially guided along a periodic chain of inclusions
is here the concept of phononic quasinormal modes, that has
been extended to include the case of guided waves. For a fixed
real wave number, QNMs have a complex eigenfrequency that
can be estimated by a search inside the complex dispersion
plane. As a result, both the eigenmodes and the quality fac-
tor Q of the associated resonance are obtained. Interestingly,
for certain values of the wave number and as a result of its
symmetry, a guided QNM can uncouple from bulk radiation
modes, allowing to identify it as a bound state in the contin-
uum (BIC).

The material system considered in the present derivation—
a fluid in a fluid—may seem difficult to realize experimentally.
The reason for this choice was to handle the Helmholtz equa-
tion for scalar waves, one of the simplest among the class of
wave equations. The results discussed here, however, already
apply to the case of pure-shear out-of-plane elastic waves in
solids, for instance, or of transverse-electric and transverse-
magnetic electromagnetic waves. It remains to extend the
exposed method to vector Rayleigh-Bloch waves in solids and
in three dimensions, but the concept incidentally shines light
on previous experimental [27] and numerical [28] results for
surface acoustic waves (SAWs) guided along a chain of pillars
on a substrate.
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FIG. 6. Quasinormal modes of isolated slow inclusions with di-
ameter d = 0.6a. The labels refer to m and n, the azimuthal and radial
numbers. Quasinormal modes are computed for the case ρ̄ = 1, B̄ =
1/16 of Table I and their modulus is displayed after normalization.

Appendix: QNM symmetry. The numerical observations
made in the above section on the complex dispersion rela-
tion hint at the importance of quasinormal mode symmetry.
Rayleigh-Bloch waves, as a particular type of Bloch waves,
are collective, periodic excitations. As such they convey the
symmetry of both the primitive unit cell and of the periodic
lattice. In this Appendix we examine the symmetry of the
former, given here by the symmetry of the inclusion.

Consider a single inclusion embedded in an infinite sur-
rounding acoustic medium. It supports quasinormal modes

TABLE I. Properties of quasinormal modes of isolated slow in-
clusions with diameter d = 0.6a. m and n are the azimuthal and
radial numbers, respectively.

Contrast mn 00 10 20 01 30

ρ̄ = 1, B̄ = 1/4 ω̄ 0.39 0.59 0.96 1.26
Q 1.5 3.4 4.7 10.5

ρ̄ = 1, B̄ = 1/9 ω̄ 0.13 0.41 0.65 0.69 0.88
Q 1.6 3.4 16.1 5.1 50.3

ρ̄ = 1, B̄ = 1/16 ω̄ 0.11 0.30 0.49 0.53 0.67
Q 2.0 6.7 30.1 8.5 171.7

describing vibrations localized around the inclusion but radi-
ating energy away from it. This situation can be represented
numerically using a PML surrounding completely the inclu-
sion [22]. The first five QNMs that are found numerically in
the frequency range of interest are displayed in Fig. 6. Consid-
ering the central symmetry of the problem, the acoustic wave
equation separates in polar coordinates (r, θ ). As a result,
QNMs are indexed by an azimuthal number m and a radial
number n, so that pmn(r, θ ) = exp(ımθ )Pn(r). They are dou-
bly degenerate if m > 0. The numerical QNM solutions thus
converge to a superposition with azimuthal indices ±m in this
case. The result of the classification of QNMs is summarized
in Table I. Quality factors are either low or moderate, because
of radiation toward infinity, and improve with the azimuthal
number. The reduced QNM frequencies are in a clear cor-
respondence with the Rayleigh-Bloch bands of Figs. 3(b), 4,
and 5. The BICs discussed in the above section on the complex
dispersion relation are found for azimuthal numbers m > 0.
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