Experimental observations of topologically guided water waves within non-hexagonal structures

Mehul P. Makwana, Nicolas Laforge, Richard V. Craster, Guillaume Dupont, Sébastien Guenneau, Vincent Laude, and Muamer Kadic

COLLECTIONS

This paper was selected as Featured
We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry-protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media. Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measurements, viewed using a high-speed camera under stroboscopic illumination, unambiguously demonstrate the valley-locked transport of water waves within a non-hexagonal structure. Due to the tunability of the energy’s directionality by geometry, our results could be used for developing highly efficient energy harvesters, filters, and beam-splitters within dispersive media.

Considerable recent activity in wave phenomena is motivated through topological effects and focused on identifying situations where topological protection occurs that can enhance, or create, robust wave guidance along edges or interfaces. Remarkably, the core concepts that gave rise to topological insulators, originating within quantum mechanics, are carried across, in part, to classical wave systems. Topological insulators can be divided into two broad categories: those that preserve time-reversal symmetry (TRS) and those which break it. We concentrate upon the former due to the simplicity of their construction that solely requires passive elements. By leveraging the discrete valley degrees of freedom, arising from degenerate extrema in Fourier space, we are able to create robust symmetry-protected waveguides. These valley states are connected to the quantum valley-Hall effect, and hence, this research area has been named valleytronics. Here, we extend the earlier research by examining a highly dispersive physical system, i.e., water waves, and move away from hexagonal structures. The topological protection afforded by these valley states is attributed to, both, the orthogonality of the pseudospins and the Fourier separation between the two valleys. The vast majority of valleytronics literature, inspired by graphene, opts to use hexagonal structures. However, a negative that emerges with these, especially when dealing with complex topological domains, is that certain propagation directions are restricted due to mismatches in chirality between incoming and outgoing modes. Notably, this has led to hexagonal structures being prohibited from partitioning energy in more than two directions.

In this Letter, we demonstrate experimentally how a strategically designed square structure also allows for the emergence of valley-Hall...
edge states and for the excitation of modes that are not ordinarily
ignited within hexagonal valley-Hall structures. Additionally, the
system chosen differs from the vast majority of earlier literature26–29 that
has focused on an idealized situation in which the dispersion of the
host medium has been avoided. This assumption restricts the applica-
tility of the earlier studies to a small subset of, potentially useful, physical
platforms that could host topological properties. Most notably, this
assumption does not hold for water wave systems, which generally
indicate differentiation with respect to x and no-flow boundary con-
ditions on the vertical rigid cylinders: taking $n = \{ n_1, n_2 \}$ as the unit
outward normal to the square tubes’ surface, $\partial \phi / \partial n = 0$ on each of
them.

When the problem is posed in terms of the reduced potential, ϕ, as the Helmholtz equation, with periodically arranged inclusions (the
tubes), this directly maps across to the phononic crystal literature.
Recognizing the periodicity guides us to $\phi(x_i, x_j) = \phi_{\text{p}}(x_i, x_j)$
where this equation holds at the mean free surface and the subscript
x_{p} indicates differentiation with respect to x and no-flow boundary con-
Figure 1: Experimental setup: A crystal is assembled using square shaped aluminum
tubes with a height of 7 cm arranged in a square array with different orientations
using a plastic positioning frame at the bottom of the tank (80 x 80 cm2 with 60°
oblique edges made of soft polystyrene to mimic PMLs). A mechanical straight pad-
die holding a small plastic cylinder is used to generate water waves. The tank is
continuously illuminated, and images of water waves are recorded using a high
speed camera placed on the top. A black and white random pattern is placed under
the tank to provide the water elevation measurement using an image cross correla-
tion algorithm. The experimental setup was inspired by the work of Moisy et al.1

\[
\left(gk + \frac{\alpha^2 k^2}{\rho} \right) \tanh(\Theta \kappa) = \frac{\omega^2}{\rho},
\]

is used as a proxy for the frequency;22 in Eq. (2), $g = 9.81 \text{ m s}^{-2}$ is the
gravitational acceleration, $\sigma = 0.07 \text{ N m}^{-1}$ is the surface tension
between air and water, and $\rho = 10^{3} \text{ kg m}^{-3}$ is the water density. Then
ϕ, the reduced potential, satisfies the Helmholtz equation,

\[
(\nabla^2 + k^2) \phi(x) = 0,
\]

where this equation holds at the mean free surface and the subscript
$	ext{x}$ indicates differentiation with respect to x and no-flow boundary con-

\[
\Phi(x, t) = \text{Re} \left[\phi(x) \cosh(k(x_3 + h)) \exp(-i\omega t) \right],
\]

where ω denotes the angular frequency. The wavenumber, k, the real
positive solution of the dispersion relation,
which itself can be classed as a topological integer. From this, we can apply the bulk-boundary correspondence for certain edge terminations, thereby guaranteeing the existence of valley-Hall edge states.

Motivated by this, we place a perturbed cellular structure, which contains a positively or negatively rotated inclusion, above its reflectional twin. This results in a pair of gapless edge modes that almost span the entirety of the bandgap, see Fig. 3. Here, we use “gapless” to refer to the crossing of the concave and convex (opposite parity) modes. This distinguishes valley-Hall systems, which are topological, from those that are not and have coupled edge states; for example, the armchair termination within hexagonal structures produces gapped edge states that are, in turn, less robust.

The gapless nature of the states, and in turn the applicability of the Gauss–Bonnet theorem, is contingent upon the termination chosen that contains projections of valleys with identical sign(C_v). Unique to this specific square structure, the different parity eigenmodes belong to the same interface (see Fig. 3), rather than different interfaces. Despite this, both, concave and convex states, have opposite parity and hence remain orthogonal. The relationship between the interfaces arises due to the mirror-symmetry relationship between the media on either side of the interface in Fig. 3. This also implies that a right-propagating mode along one of the interfaces is a left-propagating mode on the other. A numerical illustration of this phenomenon is found in Ref. 28, where decaying Hermite polynomials were used to oust a specific parity edge state, along both interfaces, non-simultaneously. This phenomenon does not occur for hexagonal structures where the different parity eigenmodes belong to different interfaces. This relationship between the two interfaces allows for propagation, within our square structure, which is ordinarily forbidden within graphene-like structures. Coupling between modes, which are hosted along different interfaces, is crucial for energy navigation around sharp corners and within complex topological domains. Further explanation for this phenomenon can be found in Refs. 27 and 28.

The propagation of water waves is imaged at the surface of the water tank shown in Fig. 1. A mechanical paddle holding a circular cylinder is shaken at a controllable frequency. Cylindrical waves originating from the monopolar source are observed numerically and experimentally in Figs. 4(a) and 4(e). The experimental setups for a topologically nontrivial interface, with two different lengths, are shown in Figs. 4(b) and 4(f); the upper/lower halves have square inclusions rotated clockwise/anti-clockwise in order to break the mirror symmetries and generate the valley-edge states required. Images were acquired using a high speed camera and post processed using a cross correlation algorithm each image was discretized into 360 areas each composed of 16 pixels.

Full-wave numerical simulations, performed using COMSOL Multiphysics (a commercial finite element scheme), for tightly confined valley-Hall edge states, Figs. 4(c) and 4(d), show excellent agreement with the experiments, Figs. 4(g) and 4(h), despite our model not taking into account contact-line effects that occur between the water and the solid pillars, viscosity or nonlinearity. These square structure valley-Hall edge states have longer-wavelengths than their hexagonal counterparts, and hence, the distance between the pillars is subwavelength. A frequency modulated monopolar source is generated, which ignites the even-parity valley-Hall edge state. The observed patterns

![Figure 2](image-url) **FIG. 2.** Geometry, band structure, and topological features: (a) periodic cell (physical space) of the square lattice with sidelength L showing a square inclusion of sidelength l inside it. Mirror-symmetry breaking rotation (arrows) and lines (dashed) are also shown. (b) In reciprocal space, the points Γ/X denote the extrema of the IBZ that we extend to $\Gamma/NX/\Lambda$ to show the two topologically inequivalent regions; the two distinct $\text{sgn}(C_v)$ values are indicated by \pm signs around the perimeter of the IBZ, and these are associated with the $+$ perturbation in panel (a) (the—perturbation would result in opposite $\text{sgn}(C_v)$’s, see Ref. 29). The $\text{sgn}(C_v)$ positions resemble those in Refs. 27 and 28. (c) Band diagram for the configuration in (a), with two circles marking the position of the strategically engineered Dirac cones, (d) Band diagram when the inclusions is rotated through an angle of 20°. A bandgap highlighted in green emerges from the symmetry breaking perturbation at Dirac points.

![Figure 3](image-url) **FIG. 3.** Valley-Hall edge states: band diagram for a ribbon with the upper/lower inclusions rotated clockwise/anti-clockwise. The real parts of the even and odd eigenmodes within the bandgap are shown (in red) as are several close-by ribbon modes (also in red); the values of the latter range between their max and min, and a.u is the vertical displacement of the surface. The blue curves are from Fig. 2(d), i.e., bulk modes along Γ/M. Numerically, using finite elements, we take a long ribbon of N inclusions, apply Dirichlet boundary conditions to top and bottom, and extract the modes decaying away from the interface.
are associated with the surface curvature where the colored regions are indicative of the vertical elevation of the water level. The localization of the topological edge state is clearly evident when comparing two interfaces of different lengths, i.e., four or eight squares in Figs. 4(c) and 4(f). Notably, the valley-Hall state that propagates across four columns, Fig. 4(c), radiates almost isotropically upon exit. In the absence of any rods, the energy would radiate isotropically away from the source. The broadbandedness of this effect is demonstrated via the experimental results shown in the supplementary material. The tight confinement of these dispersive water waves, within a strategically designed square structure, is a highly nontrivial and unique observation.

We now strategically extend our earlier design, Figs. 4(b) and 4(f), to engineer four structured quadrants, which results in a three-way topological energy-splitter, Fig. 5. We rotate the bottom-right and top-right inclusion sets anti-clockwise and clockwise, respectively, thereby creating four distinct domain walls upon which the valley-Hall states reside. The monopolar source triggers a wave, from the leftmost interface, into upward and downward modes along with continuous rightward propagation. Incidentally, the most pronounced displacement pattern is along the two geometrically distinct horizontal interfaces. This continuous rightward propagation is forbidden for hexagonal systems. For coupling between the incident mode and the right-sided mode, the chiralities must match and this does not happen for hexagonal structures. Contrastingly, this mismatch in chirality is overcome for the square structure as the right-sided interface is the reflectional partner of the left-sided interface. Hence, the incident mode needs only to couple to itself in order to continue its rightward propagation. This subtle relationship between the mirror-symmetry generated Dirac cones and the subsequent mirror-symmetry related interfaces allows for propagative behavior that is not readily found within the valleytronics literature, Fig. 5.

In the experiments, there are multiple loss mechanisms on the length scales that we are operating at, which are viscous attenuation, contact line losses associated with the frictional drag of the meniscus moving up and down the rigid pillars, i.e., contact angle hysteresis, Marangoni effects due to surface tension variations and their effect on capillary-gravity waves, and then the nonlinear inertial effects that are ignored through linearization of the Navier–Stokes equations. Inspecting Fig. 5, which is a simulation, we note that the amplitude of the interface modes propagating up and down is about 1/10 of that propagating left to right. In Fig. 5(b), we insert losses, by lumping them into a complex wave velocity, of just 2% (we choose this to be simply illustrative and to demonstrate that losses can, in an experiment, obscure the subtle effects often sought in topological systems), and this reduces the signal quite dramatically in the up and down interfaces; in experiments, the amplitudes were too small to be accurately measured, and we attribute this to the loss mechanisms that we describe above.

We have experimentally shown the existence of topological valley-Hall transport for gravity-capillary water waves within a non-hexagonal structure. We have also simulated a three-way topological multiplexer for the same highly dispersive system and cautioned that...
losses may lead to low amplitudes. These demonstrations open up a useful way for design in energy transport: the conventional symmetry constraints associated with hexagonal structures can be relaxed, leading to richer designs of waveguides and multiplexers within highly dispersive systems.

See the supplementary material for additional experimental images for valley-Hall edge states in crystals of different sizes. Also shown are images and simulations in the absence of the crystal. It also contains basic information about the finite element models used.

We acknowledge V. Pecheur, E. Carry, T. Daugey, and F. Chollet for the experimental part. This work was supported by the EIPHI Graduate School (Contract No. ANR-17-EUER-0002) and by the French Investissements d’Avenir program, project ISITE-BFC (Contract No. ANR-15-IDEX-03). R.V.C. and M.P.M. thank the UK EPSRC for their support through Grant Nos. EP/L024926/1 and EP/T002654/1.

REFERENCES