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a b s t r a c t

Cork is a natural amorphous material with near-zero Poisson’s ratio that is ubiquitously used for
sealing glass bottles. It is an anisotropic, transversally isotropic, composite that can hardly be scaled
down. Here, we propose a new class of isotropic and reusable cork-like metamaterial that is designed
from a hybrid truss-lattice material to show an isotropic Poisson’s ratio close to zero. Optimization
is conducted using a multi-objective genetic algorithm, assisted by an elliptical basis function neural
network, and coupled with finite element simulations. The optimal micro-structured metamaterial,
fabricated by two-photon lithography with a lattice constant of 300 µm, has an almost isotropic
Poisson’s ratio smaller than 0.08 in all directions. It can recover 96.6% of its original shape after a
compressional test exceeding 20% strain.

© 2020 Published by Elsevier Ltd.
1. Introduction

Poisson’s ratio υ is defined as the negative ratio of transverse
o longitudinal strain [1]. For a stable, isotropic and linear elastic
aterial, Poisson’s ratio is bound to remain between −1 [2,3],
orresponding to ‘dilational’ or auxetic materials, and 0.5, a limit
efining the ‘incompressible’ solid set by a positive energy re-
uirement [4,5]. In nature, most conventional isotropic materials
ave a positive Poisson’s ratio. Rubber, as well as most liquids,
xhibits a Poisson’s ratio of nearly 0.5. Rigid metals and polymers
s a rule have a Poisson’s ratio ranging between 0.2 and 0.45 [2,6].
or other soft metals and polymers, Poisson’s ratio is usually
etween 0.33 and 0.5. By contrast, only a few natural materials
uch as bone have negative Poisson’s ratio [7].
Recent advances in topological structural design have enabled

he enlargement of the family of isotropic auxetics [8]. Carta
t al. utilized threefold symmetry of the arrangement of voids
o design a two-dimensional porous isotropic auxetic solid [9].
y embedding random re-entrant inclusions into a matrix, Hou
t al. developed 2D composite structures with isotropic negative
oisson’s ratio [10]. Combining the symmetry of a cubic lattice
nd that of additional diagonal elements, Cabras et al. presented
class of pin-jointed auxetic three-dimensional isotropic lattice
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352-4316/© 2020 Published by Elsevier Ltd.
material [11]. Furthermore, by adopting finite small connections,
Bückmann et al. designed, fabricated and characterized a three-
dimensional auxetic isotropic metamaterial reaching an ultimate
Poisson’s ratio of −0.8 [8]. Lately, Frenzel et al. used auxetics
combined with chirality to observe acoustical activity [12,13].

Isotropic structural materials with positive Poisson’s ratio
are generally designed for bearing different types of mechanical
loads [14–17] or absorbing energy [18]. The most popular way
to optimize isotropy is to combine different structures in order
to increase the number of equivalent directions and thus, via ge-
ometry increase, isotropy [15,19–22]. Gurtner et al. proposed the
first optimal and isotropic three-dimensional truss-lattice struc-
ture [15]. Tancogne et al. further formulated analytical conditions
on the lattice topology to achieve elastic isotropy [19] and studied
the effect of bending ratio to axial stiffness of the micro-strut on
structural isotropy [20]. Bonatti et al. recently reported a family of
elastically-isotropic shell-lattice materials whose Young’s modu-
lus is always higher than that of optimal isotropic truss-lattices
and approaches the Hashin–Shtrikman bound at high relative
densities [18]. Berger et al. presented a class of cubic–octet hybrid
closed foams achieving the Hashin–Shtrikman upper bounds on
isotropic elastic stiffness [16]. Tancogne et al. identified a class of
low-density plate-lattice metamaterial showing optimal isotropic
stiffness and nearly isotropic yield strength [17].

Cork, a conventional natural material, is emblematic among
near-zero Poisson’s ratio materials [23–25]. It shows very little
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Fig. 1. Principle of the truss lattice material with near-zero Poisson’s ratio. (a) Artistic illustration of a truss lattice bottle stopper and (b) corresponding representative
nit cell with geometrical parameters indicated.
i
f
o

ateral expansion when compressed and is widely used to seal
ottles, especially for wine. As a composite, it is almost transver-
ally isotropic and its Poisson’s ratio is indeed a symmetric tensor.
ndependent Poisson’s ratio constants υ12 = 0.097, υ13 = 0.064,
nd υ23 = 0.26 have been reported for cork [24]. Polymeric
oams may have been the earliest case for lightweight isotropic
aterial with a Poisson’s ratio smaller than 0.1 in modulus [6,26].
heir fabrication technique, however, differs significantly from
urrent 3D printing technologies. With the new additive manu-
acturing techniques it is extremely difficult to program and print
andom structures such as foams and periodic motifs are hence
referred [27–36]. Recently, some efforts were made to design
sotropic zero Poisson’s ratio materials. Based on truss or thin
rame beam theory, Sigmund presented a three dimensional opti-
al structure with zero Poisson’s ratio [37]. Starting from a differ-
nt structure, Guth et al. proposed another kind of 3D pin-jointed
tructure [38]. However, those well-designed isotropic struc-
ures have not been validated experimentally thus far. Moreover,
ubject to limitations of numerical algorithms, the effect of the
odal overlapping volume was not considered, which we find se-
iously influences mechanical properties, including isotropy and
oisson’s ratio.
In this paper, we aim at designing an isotropic near-zero Pois-

on’s ratio material based on a periodic microstructure with cubic
ymmetry, that can be scaled easily and fabricated additively. We
ase our design on the hybrid truss lattice structure of Fig. 1 that
as first presented by Sigmund [37]. The unit cell follows simple
ubic symmetry. Isotropy and near-zero Poisson’s ratio are set
s goals of a multi-objective optimization procedure where the
adii of the struts are the optimized parameters. Optimization
esults in an almost isotropic design with Poisson’s ratio less
han 0.08 in all directions. Samples are printed using two-photon
olymerization at a lattice constant of 300 µm in two different
rystallographic directions, [100] and [110]. Uniaxial compression
ests confirm the isotropic near-zero Poisson’s ratio but also the
ecovery of the material after enduring strains up to 20%. Such a
echanical behavior thus makes it potentially attractive for prod-
ct protection and goods packaging. When suffering from impact
oading, limiting stress can pass through the protection toward
he product. The layer-by-layer buckling failure mode will further
nhance this protection ability. Moreover, the recovery ability
an save space for packaging which is important in aerospace
pplications.
2

2. Evaluation of isotropy and Poisson’s ratio

The constitutive law of linear elasticity of three-dimensional
composites relates the stress tensor σ to the strain tensor ϵ via
an effective order-4 symmetric stiffness tensor C as

σ = C : ϵ, (1)

where Cijkl = Cklij = Cjilk. For lattice materials with simple-cubic
symmetry [8,39], the effective stiffness tensor has only three in-
dependent elements and can be rewritten in Voigt notation [40],

C =

⎡⎢⎢⎢⎢⎢⎣
C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

C44 0 0
sym C44 0

C44

⎤⎥⎥⎥⎥⎥⎦ . (2)

Using the Christoffel equation for elastic waves [41,42], the
ndependent stiffness elements can be expressed using the ef-
ective mass density and phase velocities in selected directions
f propagation. The effective mass density ρ is defined as the

product of volume filling fraction f by the mass density ρ0 of
the constituent material [43]. Only three phase velocities v are
required to identify all three independent stiffness constants. We
consider the three bulk waves in direction [110]. One is a pure-
shear wave S1 polarized along direction [001], the other two
are quasi-longitudinal L and quasi-shear S2 waves with mixed
polarization in the (x, y) plane. For propagation in direction [110],
the Christoffel equation leads to [8,44]

C44 = ρv2
S1, (3)

C12 = ρv2
L − ρv2

S1 − ρv2
S2, (4)

C11 = ρv2
L − ρv2

S1 + ρv2
S2. (5)

For propagation along direction [100], Eq. (3) would be un-
changed whereas Eq. (5) would give C11 = ρv2

L . Isotropy requires
velocity to be independent of the direction of propagation and
hence implies

vS1 = vS2 along direction [110]. (6)

Reciprocally, if Eq. (6) holds then there are only two indepen-
dent stiffness constants instead of three and the stiffness tensor
is isotropic. As a whole, Eq. (6) is a necessary and sufficient
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Fig. 2. Detailed flowchart for optimization assisted by an elliptical basis function neural network and coupled with finite element simulations.
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condition for isotropy. Poisson’s ratio for compression along the
principal axes can be expressed as [45,46]

υ =
C12

C11 + C12
. (7)

Hence, we can estimate Poisson’s ratio in direction [110] using
he following formula

=
v2
L − v2

S1 − v2
S2

2(v2
L − v2

S1)
, (8)

where velocities are measured along direction [110]. If isotropy
is simultaneously achieved, formula (8) is valid for all directions
of propagation.

In practice, velocities are obtained numerically using a fi-
nite element model of the unit cell in Fig. 1(b) subjected to
Bloch periodic boundary conditions. A small wavenumber k =

/(100L) is considered along direction [110] and eigenfrequen-
ies are obtained. The three lowest eigenfrequencies, when di-
ided by k, give velocities vS1, vS2 and vL; they are readily classi-
ied as longitudinal or shear by comparing the polarization of the
igenfunctions.
We note another useful expression for the Poisson’s ratio

or cubic symmetry that is valid for an arbitrary compression
irection [8,47,48].

(φ, θ ) = −
Ar12 + B(r44 − 2)

16[C + D(2r12 + r44)]
(9)

with

r12 =
S12
S11

, (10)

r44 =
S44
S11

, (11)

A = 2[53 + 4 cos(2θ ) + 7 cos(4θ )

+ 8 cos(4φ) sin4(θ )], (12)
B = −11 + 4 cos(2θ ) + 7 cos(4θ )

+ 8 cos(4φ) sin4(θ ), (13)

C = 8 cos4(θ ) + 6 sin4(θ )

+ 2 cos(4φ) sin4(θ ), (14)
3

D = 2[sin2(2θ ) + sin4(θ ) + sin4(2φ)], (15)

where (θ, φ) are the azimuthal and polar angles in spherical
coordinates. The compliance tensor S is the inverse of the stiffness
tensor C .

. Optimization of the structure

.1. Optimization strategy

The cubic-symmetry truss lattice structure of Fig. 1 was se-
ected for optimization. The corresponding representative unit
ell model contains 64 struts of four different types. The unit
ell length L being fixed to 300µm, there are four geometrical
parameters, (r1, r2, r3, r4), available for optimization. The ranges
f the design parameters were fixed as 14µm ≤ r1 ≤ 16µm,

4µm ≤ r2 ≤ 6µm, 4µm ≤ r3 ≤ 6µm, and 2µm ≤ r4 ≤ 4µm.
ote that we adopt a geometry type similar to Sigmund’s [37],
ut with completely different geometrical parameters. The ranges
f the parameters are selected to satisfy the requirement of
lastic buckling and the limitations of the 3D printer (Direct Laser
riting by Nanoscribe). Compared with the structure originally
roposed by Sigmund, we consider larger values for r1 but smaller
alues for r2, r3, and r4.
Fig. 2 illustrates the detailed flowchart for optimization. The

ptimization problem aims at simultaneously imposing the
sotropy condition (6) and minimizing Poisson’s ratio (8). The
bjective functions to be minimized are thus selected as

so(r1, r2, r3, r4) = |vS1 − vS2|, (16)

υ(r1, r2, r3, r4) =

⏐⏐⏐⏐v2
L − v2

S1 − v2
S2

2(v2
L − v2

S1)

⏐⏐⏐⏐ . (17)

Eigenfrequency study, performed by a commercial finite ele-
ment software package (COMSOL Multiphysics), was adopted to
calculate the required velocities. To ensure convergence of sim-
ulations, the truss lattice structures were modeled with several
hundred of thousands of linear tetrahedral finite elements (type
C3D10M). For the thinnest strut, there exist at least 10 elements
around the circumferential direction. Bloch-periodic boundary
conditions were imposed onto the representative unit cell shown
in Fig. 1. The constituent material chosen is assumed isotropic and
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Fig. 3. Comparison of velocities predicted by EBFNN with velocities obtained by
FEM.

Table 1
Accuracy measures of the EBFNN surrogate models.
Velocity RMSE R2

vS1 0.01546 0.99534
vS2 0.0403 0.96955
vL 0.00591 0.99934

linearly elastic with Young’s modulus E0 = 2 GPa, υ0 = 0.4, and
ass density ρ0 = 1000 kg m−3.
The parameter space was sampled in order to reduce the

omputational burden during optimization. Toward this end, a
urrogate model was created from a finite number of parameter
pace samples. One hundred sample points were first generated
ccording to optimal Latin-hypercube design (OLD). This method
as used to distribute sample points so that they are well spread
ver the design region without replicated coordinate values, often
ymmetric, and nearly optimal [49]. The generated sample points
re listed in Table S1 of the Supplemental Material. A surrogate
odel was then generated and optimization was performed on

he reduced parameter space, as described next.

.2. Surrogate models

The elliptical basis function neural network (EBFNN) technique
as proven effective in approximating a continuous function of n
ariables in very complex cases [50–52]. A detailed introduction
o EBF is given in Ref. [53]. From the parameter space samples,
EBFNN was constructed to generate approximate surrogate
odels of the three velocities vS1, vS2 and vL.
The coefficient of determination (R2) and the root mean square

error (RMSE) are used to evaluate the reliability of the surrogate
models. These estimators are defined as

R2
= 1 −

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
, (18)

MSE =

√1
n

n∑
i=1

(yi − ŷi)2. (19)
t

4

Fig. 4. Three dimensional polar plot of the Poisson’s ratio following by Eq. (9)
for (a) the initial structure and (b) the optimal isotropic structure 1.

In these expressions, n is the number of samples, yi are the actual
values of objective function at the sample points, ŷi are the values
redicted by the objective function, and ȳ is the mean value
f objective function over all sample points. All sample points
efined by OLD are used for cross-validation error analysis. The
loser R2 is to 1 and RMSE is to 0, the more accurate the model.
or all surrogate models, R2 is larger than 0.969 and RMSE is
maller than 4%, as listed in Table 1. These values indicate that the
urrogate models have high credibility. Fig. 3 compares the veloc-
ties predicted by the surrogate models with the actual velocities,
or all sample points. It can also be observed that the prediction
rror remains small in all cases. Of course, the usefulness of the
urrogate models is to produce smooth estimates of the velocities
or any continuous value of the quadruplet (r1, r2, r3, r4).

.3. Optimization

Non-dominated sorting genetic algorithm (NSGA-II) [54] is
sed to find solutions to the optimization problem. Fig. 2 displays
he optimization flowchart we follow. The current population
f individuals contains two parts, the elite and the offspring
oints. In our case, its size is 12. As nondominated points, elites,
hat constitute not more than 50% of the population, are always
nherited from the previous generation. In contrast, the offspring
oints are used for selection, crossover and mutation to generate

he next generation. The probability of crossover and mutation
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Table 2
Optimization results. Geometrical parameters, angular velocities in the [110) direction, and minimal and maximal values of Poisson’s
ratio υ for all compression directions are given for the initial and selected optimized designs.
Structure r1 (µm) r2 (µm) r3 (µm) r4 (µm) vs1 (µm/s) vs2 (µm/s) vL (µm/s) υmin υmax

Initial 14.444 4.040 5.111 3.677 207.483 283.900 383.421 0.112 0.239
Optimum 1 15.000 4.500 5.100 2.400 218.590 219.256 323.220 0.076 0.077
Optimum 2 15.960 4.707 4.303 2.485 211.481 211.703 314.556 0.086 0.087
Optimum 3 15.535 4.121 4.909 2.222 198.819 201.040 293.675 0.067 0.073
Optimum 4 15.000 4.300 4.850 2.350 211.037 213.036 313.001 0.075 0.080
Fig. 5. Unit cell models of the isotropic truss lattice material for (a) the [100] direction and (b) the [110] direction. Electron micrographs are shown for (c) the [100]
abricated sample with 4 × 4 × 4 unit cells and (d) the [110] fabricated sample with 4 × 4 × 3 unit cells.
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re 0.9 and 0.1, respectively. Once the population is generated,
fitness evaluation is adopted to decide where design points
o. Population update is continued until the maximum iteration
umber of 2000 is attained. To account for possible errors caused
y the surrogate models, not only the optimum solution but also
ome local minima were extracted. By comparing simulations
nd optimization results, we picked up the four optimum designs
isted in Table 2. Velocities and Poisson’s ratios are estimated by
onducting finite element simulations again after optimization.
Fig. 4 plots Poisson’s ratio in spherical coordinates for both

he initial and the optimum structure 1. The original structure
roposed by Sigmund was indeed rather anisotropic, with the
oisson’s ratio obtained by FEM varying between 0.112 and 0.239
epending on the direction. This may be attributed to the fact that
he complex geometry of the nodes was not considered in the
umerical algorithms used. In this case, actually, traditional truss
r beam theories are not applicable. The mechanical properties
btained by such methods differ significantly from the FEM result.
oreover, the minimum Poisson’s ratio was larger than the upper
ound for cork, 0.1. After optimization, an almost isotropic value
≈ 0.08 is obtained for the four selected designs. The response of

he optimum structure is clearly much more isotropic than cork.
5

. Experiment

All experimental samples are made from the ’IP-Dip’ resin
sing the commercially available laser lithography system Pho-
onic Professional GT (Nanoscribe GmbH, Germany). A drop of
negative-tone photoresist is placed on top of a fused silica

ubstrate (25 × 25 × 0.7 mm3) and polymerized using a fem-
osecond pulsed laser with vacuum wavelength λ = 780 nm.
he laser beam is focused by using a dip-in ×63 objective lens
ith 1.4 numerical aperture. A Galvanometric scan speed of 10
/s was used for the whole fabrication process. After poly-
erization is achieved, the sample is developed in PGMEA (1-
ethoxy-2-propanol actetate) for 20 min to remove the unex-
osed photoresist.
Two different crystallographic directions are considered, [100]

nd [110]. Fig. 5 shows the unit cell models and the correspond-
ng additively manufactured samples. The [100] sample, which is
omposed of 4 × 4 × 4 unit cells, is constructed by stacking the
orresponding unit cell in the three principal directions. Noting
hat the Poisson’s ratio of lattice materials is mainly affected by
he aspect ratio of micro-struts rather than by other geometri-
al parameters [8], we adopted the aspect ratios obtained from
ptimization and scaled the unit cell length proportionally. The
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etailed geometrical parameters are: L = 125 µm, r1 = 6.3 µm,
2 = 1.9 µm, r3 = 2.1 µm, and r4 = 1 µm.

The [110] sample is generated by cutting out a [100] structure
× 2 × 1 along the vertical direction. The horizontal basis vectors
re then along directions [110] and [1̄10]. It should be noted that
he geometrical features of the [110] unit cell can be described
y that of the corresponding [100] unit cell. Here, geometrical
arameters are L = 150 µm, r1 = 7.6 µm, r2 = 2.3 µm, r3 = 2.5
m, and r4 = 1.2 µm. The [110] sample contains 4 × 3 × 4 unit
ells. The external dimensions are 848.4 µm × 636.3 µm × 450
m.
As shown in Fig. S1 of the supporting material, the samples

re placed between a fixed glass substrate and a flat loading
evice. The loading device is driven by a stepping motor with
n attached force sensor. Position is directly read from the linear
tage. The position is only used to monitor the fatigue of the
aterial. The true strain is obtained via image cross correlation.
o test the recovery ability of the samples, repeated compressive
xperiments are carried out at a speed of 0.001 mm/s, during
hich the applied displacement increases with loop number. A
igital camera equipped with a 20× objective lens facing the
ample is used to monitor the deformation of the lateral faces and
ence to measure Poisson’s ratio. Digital image correlation [55]
6

s used to track and analyze the displacement with sub-pixel
esolution. To reduce the influence of boundaries, Poisson’s ratio
s calculated from the average local strain and the average trans-
erse strain measured from 4 reference circles at the central row
f unit cells as depicted in Fig. 7. Fig. S2 details the measurement
f coordinates. Green stars and red stars stand respectively for
ndeformed and deformation coordinates. At the initial position,
reen stars overlap with red stars. Table S2 lists representative
ata obtained from DIC for samples 100 and 110, where x and y
tand for the original coordinates, and x′ and y′ are coordinates
fter deformation. The actual Poisson’s ratio is calculated from the
ollowing expression,

= −
(x′

2 − x′

1 + x′

4 − x′

3) − (x2 − x1 + x4 − x3)
(y1 − y3 + y2 − y4) − (y′

1 − y′

3 + y′

2 − y′

4)
. (20)

Global strain is determined by measuring the distance between
he reference lines.

Fig. 6(c) presents the measured Poisson’s ratio of the [100]
ample and the [110] sample. For both samples, experimental
ata are in fair agreement with simulation results of Table 2.
he measurements are generally found to be smaller than the
omputed value. The contrast between samples shows that the
roposed structure has a more isotropic response than cork and



X. Chen, J. Moughames, Q. Ji et al. Extreme Mechanics Letters 41 (2020) 101048
Fig. 7. (a–c) Views of the deformed [100] sample at 0%, 5% and 10% strain. (d–f) Views of the deformed [110] sample at 0%, 5% and 10% strain. The red dashed
square and the green solid square are the initial and the deformed shapes of samples, respectively. (g,h) Recovery ability of the [100] and the [110] samples and
maximum applied strain as a function of the loop number.
a much lower Poisson’s ratio than other nature and man-made
isotropic materials such as metals and Polymers. Moreover, the
number of loop loading has a limited impact on the value of the
Poisson’s ratio. Even though some micro-struts break at large ap-
plied strain, the measured initial Poisson’s ratio always fluctuates
around the designed value of 0.076. For both configurations, the
largest and the smallest Poisson’s ratio measured in our cyclic
experiments were about 0.08 and 0.025, respectively.
7

Fig. 7 summarizes the results of eleven cyclic compression
experiments. A large vertical deformation together with a very
small horizontal deformation are observed under compression,
indicating that the structural materials have a nearly zero global
Poisson’s ratio. For both samples, the maximum applied strain in-
creases almost linearly with the loop number. During the first and
the last loop, the maximum strains of the [100] sample are 2% and
20%, respectively. As long as the applied strain remains smaller
than 7%, the sample can recover completely after unloading (see
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upporting movies 1 and 2). This property may be attributed to
lastic buckling of the slender members in the micro-lattice.
hen the applied strain is increased above 7%, however, the

ecovery ability of sample weakens slightly. With a maximum
pplied strain of 20%, the sample can still recover almost 96.6%
f its original height (see Supporting movie 4). In principle, the
amples should possess even better recovery ability and should
ithstand larger strains. However, the slender micro-struts are
ery sensitive to flaws and imperfections. Hence the deformation
f the sample may not be homogeneous and failure may start
ithin any layer in the fashion of brittle break of the micro- struts
see Supporting movie 3). The compressive experiment validates
ur hypothesis. A similar trend regarding the recovery ability is
ound for the [110] sample (see Supporting movie 5). At large
train, brittle break of micro-struts is also the dominating failure
ode of the tested sample (see Supporting movies 6 and 7). The
nly difference is that the recovery ability is further weakening.
he [110] sample seems to be even more sensitive to flaws than
he [100] sample. With a maximum applied strain of 16%, the
110] sample can almost recover 98.5% of its original height.

Compared with the original structure proposed by Sigmund,
or which Poisson’s ratio varies between 0.118 and 0.213, our
tructure is more isotropic. It would for instance make our struc-
ure more suitable as a bottle stopper. Moreover, our structure
ecovers 96.6% of its original shape after the 11th compres-
ional test exceeding 20% strain. This mechanical behavior is
ttractive for product protection and goods packaging. When
uffering from impact loading, limited stress can pass through
he protection toward the product. The layer-by-layer buckling
ailure mode further enhances this protecting ability. Moreover,
he recovery ability can save space for packaging which is impor-
ant in aerospace applications. Compared with other traditional
ethods, our optimization method is simple and accurate. The
ptimization utilizing finite element simulation opens avenues
or the design of 3D structures with very complex geometrical
eatures, taking into account connected nodes, imperfections and
o on.

. Conclusion

A new class of isotropic reusable cork-like metamaterial with
ear-zero Poisson’s ratio was designed using a multi-objective
enetic algorithm assisted by an elliptical basis function neural
etwork combined with finite element simulations. We derived
n objective function for simultaneously imposing elastic isotropy
nd controlling the value of Poisson’s ratio. The optimal struc-
ures were fabricated and tested under repeated compression
xperiments. Results show that the samples fabricated using two-
hoton lithography have an almost isotropic near-zero Poisson’s
atio. Furthermore, they can almost recover 96.6% of their orig-
nal shape after the eleventh compressional test exceeding 20%
train. The number of loop loadings has a limited impact on the
alue of Poisson’s ratio. Even though some micro-struts break at
arge applied strain, the Poisson’s ratio still fluctuates around the
esigned value.
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