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ARTICLE INFO ABSTRACT

Keywords: We study numerically and experimentally acoustoelastic wave propagation in a two-dimensional phononic
Phononic crystal metaplate consisting of a periodic array of cups sitting on a thin epoxy plate that is perforated with cross
Reconfigurable waveguide holes. When all cups are filled with water, the metaplate possesses a complete band gap. Reconfigurable

Coupled-resonator acoustoelastic waveguides coupled-resonator acoustoelastic waveguides (CRAEWSs) are created by locally emptying certain cups, thus

introducing local resonances that are evanescently coupled. Straight and 90° bent periodic waveguides are
considered, together with an aperiodic chain of 11 coupled resonators. The aperiodic chain has no definite
spatial periodicity but supports collective resonances resulting from the coupling of nearest resonators. Lamb
waves are experimentally excited by a piezoelectric patch and received by a scanning optical vibrometer.
Experimental results for acoustoelastic wave propagation along both periodic and aperiodic CRAEWs are
compared to a three-dimensional finite element model taking fluid-structure interaction into account. The
propagation of confined acoustoelastic waves in the 90° bent waveguides and the collective resonances of the
aperiodic chain of defected resonators are observed experimentally. Reconfigurability are realized based on
the coupling of acoustoelastic waves in a phononic metaplate. Our results show plenty of potential possibilities
for the practical design of reconfigurable and programmable elastic wave devices.

1. Introduction . .
of defects [12-14], as the most commonly used guidance mechanism,

are thus formed to channel waves at selected frequencies in the band
gap with strong confinement [15,16], promising a variety of poten-
tial applications [17-19] such as sensing [20-25], filtering [26], or
waveguiding [14,27,28].

The concept of the coupled-resonator optical waveguide (CROW)
defined in a photonic crystal [29,30] has been extended in recent years
to the field of phononic crystals. Overall, the propagation of waves
in evanescently coupled waveguides stands as simple and efficient
among the various physical mechanisms for guiding waves in artificial
crystals. In contrast to linear-defect waveguides, the coupled-resonator
waveguide is based on the evanescent coupling of defect cavities or
resonators [5,6], permitting the design of rather arbitrary acoustic
circuits [31,32]. The coupling between neighboring defect cavities or
resonators creates a propagating dispersion band with a small slope
(slow sound) appearing around the flat band generated by the isolated

Phononic crystal (PC) is a new type of periodic functional composite
material [1,2] possessing frequency band gaps within which the prop-
agation of acoustic/elastic waves is completely forbidden [3]. Stated
otherwise, Bloch waves become evanescent inside band gaps [4]. A
coupling mechanism for the vibrations of chains of masses connected
by springs [5,6] or of coupled-resonator waveguides [7] is provided by
those evanescent waves. Furthermore, strong localization of waves in
the phononic band gap can be achieved. [8-10]. When the periodicity
of a perfect phononic crystal is destroyed locally, defect states appear.
Waves within the band gap are confined into the defects [11] and
decay rapidly far away from them. The guidance of acoustic or elastic
waves can thus be realized by designing defects in a perfect phononic
crystal. The introduction of defects provides new ideas to manipulate
waves, and to design and manufacture novel acoustic devices with
phononic crystals, and has attracted widespread attention. Linear lines
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point defect. If the frequency of the defect state is inside a complete
band gap of the perfect structure, the defect state is completely local-
ized. The field beyond the defect is evanescent, decaying exponentially
away from the defect. Waveguides based on linear chains of coupled
cavities have been shown theoretically to allow simultaneously for
very strong wave confinement [8-10] and for low group velocity
transmission [32]. It is conducive to design new and efficient acoustic
devices. In fact, as long as the distance between resonators remains
limited and the resonance frequencies are the same, any defect chain
of defect cavities or resonators can form a waveguide [33]. This is
the basic idea of a coupled-resonator waveguide. Coupled-resonator
waveguides do not only manipulate wave propagation by changing
the length of the waveguides [34], they also regulate the dispersion
relation by changing the distance between adjacent resonators [35],
the number of resonators along the circuit, or the coupling coefficient
between resonators.

To date, some works have focused experimentally on elastic or
acoustic wave guiding along coupled-resonator waveguides. Moham-
madi et al. realized an effective band-pass filter for wireless commu-
nication based on a coupled-resonator acoustic waveguide (CRAW)
designed in a phononic crystal plate [36]. Wang et al. investigated
coupled resonator elastic waveguides designed in a PC slab with cross
holes [27]. The transmission of strongly confined Lamb waves along
a straight waveguide and in a wave splitter circuit with 90° bends
were observed experimentally. However, the conventionally designed
and fabricated structures can hardly have tunable (or reconfigurable)
topologies or material parameters, limiting the manipulation of waves.

Many researchers have devoted a lot of efforts to the design, devel-
opment, and demonstration of tunable PCs and metamaterials resulting
in an emerging revolution for tunable, active, or even smart control
of acoustic or elastic waves. Tunable or active ways of manipulating
waves either based on multifield coupling effects [37-39] or by me-
chanical means [27,40] are investigated. Li et al. tuned the propagation
direction of the flexural wave by active control system behaved as
the piezoelectric patches on a plate with T-shaped waveguide [41].
Pennec et al. confined and guided sound and light waves with certain
frequencies in the associated band gaps by engineering the point and
linear defects [42]. Hu et al. investigated the temperature effects on the
defect states by changing the temperature of the central rod of the two-
dimensional ferroelectric ceramic plate and realize the manipulation of
elastic waves in the band gaps [43]. Mazzotti et al. investigated the
effect of a generic state of prestress on the passbands and bandgaps of
a phononic crystal plate [44].

Among the means for tunable or active manipulation of waves,
fluid-solid coupling is a rather easy way to realize reconfigurability
for a phononic crystal [45,46]. Fluid-solid coupling is also suitable
to achieve active and smart control of acoustic/elastic waves. How
to realize reconfigurability of coupled resonator waveguides is still
an urgent problem to be solved. In general, almost all works tack-
ling this problem are limited to numerical simulations and a small
amount of theoretical analysis, and lack experimental verification.
In previous researches, some unnecessary limitations to the periodic
array of resonator chains were set on the design of coupled resonator
waveguides [31,32]. However, evanescent coupling of waves across
a band gap is omnidirectional, decreasing exponentially away from a
resonator. Therefore, evanescent waves suitably couple adjacent res-
onators placed along a rather arbitrary path, forming an aperiodic
coupled-resonator chain [47].

In this paper, we aim at investigating two-dimensional phononic
metaplates consisting of a periodic array of cups sitting on a thin epoxy
plate that is perforated with periodic cross holes [48,49]. When all cups
are filled with water, the metaplate possesses a complete band gap. Re-
configurable coupled-resonator acoustoelastic waveguides (CRAEWSs)
are created by locally emptying certain cups, thus introducing local
resonances that are evanescently coupled. We first discuss the disper-
sion relation of the bare phononic crystal. Then, different waveguides
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are designed by emptying selected cups. An aperiodic negative chain
with 11 coupled resonators is formed respecting an equal-coupling
scheme. 3D finite element computations accounting for fluid—structure
interaction are compared with experimental measurements. In general,
Numerical and experimental results are found to be in good agreement
with a slight resonance frequency shifts. Strong acoustoelastic waves
confinement is effectively observed in all cases.

2. Methods

In this work, the unit cell of the metaplate consists of a single cup
grafted onto a plate with periodic cross holes, as shown in Fig. 1(a).
Following Ref. [46], geometrical parameters of the unit cell are a=5 cm,
h=0.8a, b=0.2a, ¢;=0.1qa, r;=0.384, r,=0.334, and ¢,=0.11a. With this
set of parameters, certainly wide band gap is obtained. The epoxy
metaplate sample shown in Fig. 1(b) is processed by 3D printing
technique.

Wave propagation is measured at the bottom surface of the epoxy
metaplate by Polytec PSV-500 scanning vibrometer, associating with
the periodic chirp as the source waveform. Then the vertical displace-
ment vibration is formed by a vertically polarized piezoelectric patch
bonded to the sample. Experimental transmissions and displacement
distributions are finally integrated by detecting and averaging the
vertical displacements around the scan points at the bottom side of the
sample.

To evaluate numerically the transmission properties of the consid-
ered systems, the 3D finite element method is used. Phononic band
structures are obtained by solving an eigenvalue problem [32]. Based
on Bloch’s theorem, two-dimensional Bloch-Floquet periodic boundary
conditions are applied on pairs of opposite boundaries of the unit cell
depicted in Fig. 1(a) with free bottom and top surfaces. After the finite
mesh of the unit cell is created adaptively, it is divided into finite
elements connected by nodes. At the interface between fluid and solid,
a fluid-solid boundary condition relating the pressure in the fluid to the
normal displacement of the solid boundary is imposed. For the filled
cup, a sound-soft boundary condition is applied on the top surface of
the liquid column. Considering fluid-solid interaction, the discrete form
of the acousto-elastic equations is [50]

(v )0 (5 w)6)-0)

where u and p represent the displacements and the pressure at the
nodes of the solid and fluid field mesh, respectively. F are nodal forces.
K, and K, are the stiffness matrices of the solid and fluid; M, and
M, are the mass matrices of the solid and fluid; S, represents the
fluid-solid coupling matrix and STS is its transpose.

Bloch’s theorem is applied on the boundaries of the unit cell in
the direction where periodicity applies, yielding the following relation
between displacements at the nodes on the boundary of the unit cell:

u(r + a) = *u(r), 2

where r is located at the boundary nodes and a is the lattice constant
vector. We solve directly the eigenvalue problem Eq. (1) given the
wavevector k under the complex boundary condition Eq. (2). We thus
get the whole band structure when the wavevector k sweep the irre-
ducible Brillouin zone. According to the dynamic equilibrium Eq. (1),
we obtain both the pressure field in the fluid and the displacements
field in the solid.

Then the frequency response is estimated as follows. Since a finite
phononic crystal and an external source of waves are considered,
the finite computational domain has to be terminated with radiation
boundary conditions to minimized unwanted reflections. For simula-
tion, a time harmonic and spatially random wave source of vertical
polarization is used at the source region where a cup is removed to
allow a direct comparison with experiments [51]. By sweeping the
excitation frequency f, we evaluate the frequency response function
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Fig. 1. (a) Schematic of the PC unit cell and definition of geometrical dimensions. (b) A finite 3D-printed epoxy metaplate sample consisting of 13 x 12 periodic unit cells.
One cup is removed inside the phononic structure to bond a piezoelectric patch for excitation of Lamb waves. Each cup can be individually filled with water. Coupled-resonator
acoustoelastic waveguides are thus defined in a reconfigurable and re-usable manner. Imaging of wave propagation is performed on the bottom side of the metaplate.
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Fig. 2. Schematic of the perfect epoxy metaplate (a) with all cups empty and (b) with all cups filled with water. The green and gray parts mark water and epoxy materials,
respectively. The phononic band structure of the perfect epoxy metaplate without (c) and with (d) water filling the cups for a selected frequency range. The color scale measures
the polarization amount of the out-of-plane component of displacement. Frequency response functions (FRFs) for the perfect phononic metaplate with all cups empty (red line)
and filled with water (black line) obtained from simulation (e) and experiment (f) for a selected frequency range.

(FRF) R(f) in decibels units by considering the ratio of the z-component
of the displacements integrated over the source and the receiver as

[q u.ds
R(f) = 20logyg (ﬁ) : ©)
s, Yz

where u, is the vertical displacement along S,, the area of the receiver
and S, the area of the source.

In this work, the solid material parameters for epoxy are mass
density p, = 1175 kg/m?, Poisson’s ratio v = 0.41, and Young’s modulus
E = 32 GPa. The fluid material is water with mass density p, =
1000 kg/m> and sound velocity ¢ = 1490 m/s. Here, the influence on
transmission of the viscosity of water and the viscoelasticity of epoxy
which are the main sources of damping is neglected for large lattice
constants and low frequencies [35].

We first consider the perfect PC metaplate for later comparison.
The properties of the bare phononic crystal can be considered with
all cups either empty or filled with water, as depicted in Figs. 2(a,b).
The phononic band structures of the infinite PC are different for empty
or filled cups, as Figs. 2(c,d) show. Band structures are shown only
within the frequency range of interest extending from 7.8 kHz to
8.6 kHz. Dispersion bands are classified as in-plane or out-of-plane by

observing the polarization of the displacement vector for each Bloch
wave. The color bar indicates the amount of vertical component in
the displacement vector. Dark blue bands are disregarded, as their
polarization is purely in-plane. Recently [46], we have shown that
transmission is strongly affected by the presence or absence of water
inside the cups. This phenomenon was explained based on the local-
resonance mechanism and the influence of the fluid-solid boundary
condition [45]. With filled cups, there is only one flat band with out-of-
plane polarization in the frequency region of interest, around 8.1 kHz;
this flat band leads to some transmission in the numerical simulation
but is hardly detected in the experiment. Conversely, with empty cups,
passing out-of-plane bands appear and lead to partial transmission from
7.98 kHz to 8.35 kHz in the numerical simulation. Experimentally,
partial transmission over an even wider bandwidth is observed. As a
result, negative contrast can be used to define resonating defects in the
phononic metaplate, i.e. by emptying given cups in the array of initially
filled cups [46].

The numerical and experimental FRFs are fairly consistent with-
out any parametric adjustment, as a comparison of Fig. 2(e) and
Fig. 2(f) shows. In detail, the experimental FRFs appear to be shifted
in frequency and have a wider frequency extension compared to the
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Fig. 3. Schematic of the epoxy metaplate with a negative contrast straight CRAEW formed by locally emptying a line of cups (a). The green and gray parts mark water and epoxy
materials, respectively. The phononic band structure (b) of perfect phononic metaplate with all cups filled with water (solid lines) the straight CRAEW (dash lines) for a selected
frequency range. The frequency response functions (FRFs) of the perfect phononic metaplate with all cups filled with water (black line) and for the straight CRAEW (blue line)
obtained from simulation (c¢) and experiment (d) for a selected frequency range. The CRAEW supercell and eigenmode N, at the marked dispersion point are depicted in (e). The
numerical (f) and experimental (g) out-of-plane displacement distributions are shown at 8.27 kHz and 8.16 kHz, respectively. The propagating circuits are surrounded by the pink
lines. The black (red) disks indicate the wave source (receiver) positions. The color scales represent the amplitude of the out-of-plane displacement field from 0 (blue) to maximum

(red).

numerical results. The slight frequency shifts may be attributed to the
difference of machining and material properties or the underestimated
acoustoelastic coupling in the numerical simulation. Generally, the
complete band gap for filled cups is suitable for the design of highly
confined coupled resonator waveguides, as we discuss next. In the
following, we investigate wave propagation in either periodic or ape-
riodic coupled-resonator acoustoelastic waveguides (CRAEWs) defined
by negative contrast (defects are empty cups). It is expected that elastic
waves can be spatially localized around the defects at the frequencies
inside the complete band gaps, decaying exponentially away from the
defect center [8,33,52].

3. Results and discussion

We now consider CRAEWs formed in the perfect PC metaplate
by locally emptying certain cups. We first consider a straight line of
defects, with adjacent cavities separated by two lattice constants, as
shown in Fig. 3(a). Figs. 3(b-d) present the phononic band structure
of the CRAEW, as well as the numerical and experimental frequency
response functions for the finite sample. The CRAEW supercell is shown
in Fig. 3(e) together with a representative modal shape for the guided
wave at point N;. Looking closer at the band structure in Fig. 3(b),
there are additional guiding bands that appear throughout the fre-
quency range between 8.09 kHz to 8.27 kHz which is extremely sen-
sitive to local changes in the resonators. In other words, its dispersion
relationship is ultimately determined by the coupling strength between
the resonators. The simulated and experimental frequency response
functions in Figs. 3(c,d) indicate that transmission through the waveg-
uide is indeed obtained. As in the case of the perfect crystals, the
FRFs agree fairly well. It is noticed that there are 10 dB differences
between the numerical simulations and the experiments in the FRF.
This can possibly be attributed to the slightly inaccurate modeling of

the sample, inaccurate material properties, evaporation of water during
experiments, and the neglection of certain aspects of acoustoelastic
coupling. On the other hand, the excitation sources of the simulations
and experiments are not exactly the same. The vibrations for the eigen-
mode in Fig. 3(e) are mainly concentrated on the defect. There is some
energy leakage to the adjacent unit cells ensuring coupling between
subsequent defects. The eigenmode is also symmetric with respect to
the direction of wave propagation. The out-of-plane displacement field
for the finite sample is shown (f) for numerical simulation at 8.27 kHz
and (g) for experiment at 8.16 kHz. Movies of the propagation of the
guided waves are further shown in the Supplementary Material [53].
Propagation along the straight CRAEW is observed neatly. After the first
row of the crystal, elastic energy is well confined in the defects along
the waveguide.

Wave confinement along straight linear waveguides was discussed
quantitatively before [46] and is here extended to the CRAEW case. A
confinement degree [54] was proposed as follows:

-1
C, = l/l/ Ll dnay “@
L)) |

z |max

where [/, and /, are the lengths for one row of the finite structure
in the x and the y directions. |x| is the distance to the excitation
source. The confinement degree calculated for the straight CRAEW is
C, = 32.64 m~2, which implies a stronger confinement than inside the
linear straight waveguide in the same phononic metaplate [46].

Next, we consider a bent CRAEW including a sharp corner with a
90° bend. Fig. 4(a) shows a schematic representation of the negative
contrast bent CRAEW. In this case, the phononic band structure cannot
be obtained. Instead, we can still obtain the frequency response func-
tion and compare it to the experimental result. The numerical (b) and
experimental (c) FRFs are not significantly different from the straight
CRAEW case. In particular, the transmission bandwidth are similar. The
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Fig. 4. Schematic of the epoxy metaplate with a negative contrast bent CRAEW formed by locally emptying a bent line of cups (a). The green and gray parts mark water and
epoxy materials, respectively. The frequency response functions (FRFs) of the perfect phononic metaplate with all cups filled with water (black line) and for the bent CRAEW
(purple line) obtained from simulation (b) and experiment (c) for a selected frequency range. The out-of-plane displacement distributions at 8.12 kHz in the simulation (d) and
8.16 kHz in the experiment (e). The propagating circuits are surrounded by the pink lines. The black (red) disks indicate the wave source (receiver) positions. The color scale
represents the amplitude of the out-of-plane displacement field from O (blue) to maximum (red).

out-of-plane displacement field for the finite sample is shown (d) for
numerical simulation at 8.12 kHz and (e) for experiment at 8.16 kHz.
Movies of the propagation of the guided waves are further shown in
the Supplementary Material [53]. Vibrations are again mainly confined
at the defect sites where the cups are empty along the circuits. When
looking closer to the displacement distributions, vibrations are similarly
symmetric with respect to the direction of wave propagation before
the bend, as for the straight CRAEW. Then symmetry with respect to
the direction of propagation is broken. Vibrations are found to be a
superposition of two orthogonal dipolar components, oriented along
the x and the y axes, effectively inducing an elliptical vibration [46].
This effect can especially be observed in the animations shown in
Supplementary Material [53]. A good consistency is perceived between
numerical and experimental results. In addition, different from topo-
logical waveguides [49], the energy in bent CRAEW will be either
reflected by the corner or confined by the periodicity. Obtaining a
frequency-dependent number, such as a coefficient of transmission,
indeed appears difficult.

As we know, evanescent coupling of waves across a band gap is
omnidirectional, decreasing exponentially away from a resonator, that
is why the coupling between adjacent resonators is not limited to
the privileged crystallographic directions [47]. Therefore, evanescent
waves suitably couple adjacent resonators placed along a rather arbi-
trary path, forming an aperiodic coupled-resonator chain [55,56]. The
collective resonances of a chain of coupled phononic microresonators
have been achieved in the pure silica phononic structure in our previous
work [47] where the defects are designed by omitting the etching of
selected holes in a solid plate. Here, a similar chain of coupled acous-
toelastic resonators, or an aperiodic CRAEW, is designed by locally
emptying certain cups separated by (+2,+1) or (+1,+2) lattice shifts,
as shown in Fig. 5(a).

The numerical (b) and experimental (c) FRFs are presented in
Fig. 5. A series of sharp resonances are clearly observed inside the
initial complete band gap. As argued in Ref. [47], it can be explained
from the discrete sequence of eigenfrequencies of the chain modeled
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Fig. 5. Schematic of the epoxy metaplate with a negative contrast aperiodic CRAEW
of 11 coupled resonators formed by locally emptying a chain of cups (a). The absolute
vertical displacements obtained from simulation (b) and experiment (c) at the position
of the last resonator in the chain around selected frequencies. Vertical-displacement
maps at frequencies of 8.18 kHz in the numerical simulation (d) and 8.19 kHz in the
experiment (e). All the defect resonators along the chain are figured by the pink square.
The color scale represents the amplitude of the out-of-plane displacement field from 0
(blue) to maximum (red).
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X point

as a phononic polymer. The maximum amplitude of the out-of-plane
displacement for each peak varies notably, indicating that vibration
modes are variously matched to the excitation source. The out-of-
plane displacement field for the finite sample is shown in Fig. 5(d) for
numerical simulation at 8.12 kHz and in Fig. 5(e) for experiment at
8.16 kHz. Movies of the collective vibrations are further shown in the
Supplementary Material [53]. Clearly, the full chain of defects vibrates
coherently. It can be noticed that the vibrations of the defect resonators
along the chain are elliptical, in correspondence with the vibrations in
the bent CRAEW after the bend. This effect results from the lack of
periodicity of the chain and of the absence of symmetry with respect
to the direction of propagation. Overall, guided waves are rather well
confined inside the defect chain.

In the following, a simplified periodic version of the aperiodic
CRAEW is considered to compare to some extent with the discrete
structure. The supercell is depicted in Fig. 6(a). The sequence of lattice
translations is (2,—1)a then (2,+1)a so that the spatial period along
axis x is 4a. The periodic CRAEW thus defined can be obtained from
a continuous deformation of the chain of resonators. The phononic
band structure for the supercell is shown in Fig. 6(b). A number of
additional bands appear inside the complete band gap, as in the case of
Fig. 3(b). These bands have different polarization contents and couple
differently with the source of vibrations. As a remark, since two periods
of the chain are actually included in the supercell compared to the
periodic straight CRAEW as shown in Fig. 3, the 4a period causes
spurious foldings at the Brillouin zone edges. As a result, the additional
bands around 8.18 kHz extend almost asymmetrically and continuously
toward the I' and X points, in contrast to the cosine shape of the bands
of the straight CRAEW in Fig. 3(b). Therefore, coupling coefficients
are almost independent of the direction of coupling. Figs. 6(c,d) also
illustrate the eigenmodes at the high-symmetry points of the Brillouin
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zone around 8.18 kHz corresponding to points A and B. The elliptical
vibration directions of both defect resonators are reversed at the I’
and X points. More significantly, the eigenmode shapes are clearly very
similar to those observed in the collective vibrations of Fig. 6.

4. Conclusions

In this paper, wave propagation in coupled-resonator acoustoelastic
waveguides formed by evanescent coupling of chains of defect cavities
has been studied numerically and experimentally. Straight and bent
periodic waveguides, and aperiodic circuits which are formed by locally
emptying certain cups have been investigated. Localized defect modes
existing inside the complete band gap are the basis of the wave guid-
ance in CRAEWs and lead to strong wave confinement in the defects.
Experimental results are found to be in fair agreement with numer-
ical results in all cases. This work provides the first numerical and
experimental realization of two-dimensional reconfigurable coupled-
resonator acoustoelastic waveguides. Furthermore, to our knowledge
it is the first time that acoustoelastic wave propagation along aperiodic
CRAEWS is achieved, resulting in a larger choice for the definition of
phononic circuits. This work provides prospects for the reconfigurable
manipulation of acoustoelastic wave transmission in coupled-resonator
waveguides. Different chains of CRAEWSs with a rather arbitrary shape
can indeed be straightforwardly realized without changing the solid
metaplate. Active or even smart manipulation of localized resonators
is thus expected.
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