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A B S T R A C T

Well-designed stretching-dominated lattices can form elastic metamaterials with high specific
stiffness and strength. Their strongly anisotropic and unstable nonlinear mechanical properties,
however, limit their application to energy absorption. In contrast, bending-dominated lattices
are well known for high energy absorption capacity and stable nonlinear response, but poor
elastic response. Here, we propose a new class of light-weight elastic isotropic bending-
dominated truss lattice that combines both advantages. Numerical simulations reveal that the
proposed lattices not only exhibit elastic isotropy, but also nearly isotropic inelastic large
deformation response. In particular, for a relative density smaller than 1% the metamaterial
almost attains the upper bound of Poisson’s ratio for an isotropic material, i.e 𝜈 = 0.5. Compared
to BCC truss lattices, uniaxial compression tests show that the relative modulus is twice as large,
and that the relative collapse strength and specific energy absorption are about 1.6 times as
large. The designed metamaterial is thus a noteworthy alternative for load bearing, energy
absorption, and transformation acoustics.

. Introduction

Metamaterials and lattice materials are attracting widespread interest due to their low weight and tailored mechanical properties,
uch as programmable deformations (Coulais et al., 2018; Florijn et al., 2014), unusual acoustic properties (Milton and Cherkaev,
995; Milton, 2013; Frenzel et al., 2019, 2017), controlled Poisson’s ratio (Bückmann et al., 2012, 2014; Chen et al., 2020b), reusable
hock absorbing capacity (Frenzel et al., 2016; Zhu et al., 2019), high specific stiffness, specific strength and high energy absorption
apacity (Chen et al., 2020a; Han et al., 2015; Zhu et al., 2020). These mechanical properties are largely determined by structural
eometry and constituent materials (Berger et al., 2017; Yang and Ma, 2020; Chen and Tan, 2018; George et al., 2014; Jang et al.,
013; Zheng et al., 2014). Recent advances in additive manufacturing have enabled the realization of mechanical materials at multi-
ength scales with a variety of base materials. Most well-designed lattice materials possess highly anisotropic mechanical properties,
owever, which limits their application to complicated cases, especially when the loading direction is non-deterministic.

The most popular method for designing isotropic structural materials is to combine different anisotropic structures with proper
roportion, that is, to enhance the weaker directions and limit the stronger directions. Gurtner et al. presented a new class of optimal
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and isotropic three-dimensional truss lattice material (Gurtner and Durand, 2014). Tancogne et al. enriched the isotropic truss-lattice
family using combinations of elastically-anisotropic elementary cubic truss lattice and changing the ratio of bending-to-axial stiffness
of the constituent beams (Tancogne-Dejean and Mohr, 2018a,b). Lately, Bonatti et al. showed that a family of elastically-isotropic
shell-lattice materials are always stiffer than optimal isotropic truss-lattices and approach the Hashin–Shtrikman bound at high
relative densities (Bonatti and Mohr, 2019).

According to theoretical predictions, only closed-cell materials can attain the Hashin–Shtrikman upper bounds on isotropic
echanical properties, even at ultra low relative density (Christensen, 1986). Numerically, Berger et al. identified a class of cubic–

ctet hybrid closed foams achieving the maximum isotropic stiffness (Berger et al., 2017). By placing plates along the closest
acked planes of crystal structures with cubic symmetry, Tancogne et al. presented a class of light-weight plate-lattices providing
ear isotropic yield strength together with elastic isotropy (Tancogne-Dejean et al., 2018). Crook et al. further introduced a class
f plate nano-lattices that are the only materials to experimentally achieve the Hashin–Shtrikman and Suquet upper bounds for
sotropic elastic stiffness and strength, respectively (Crook et al., 2020). Similarly, by synthesizing 𝑛+ 1 sets of continuous plates in

a transversely quasi-periodic manner, a dual family of quasi-periodic mechanical metamaterials with extreme maximum isotropic
stiffness were achieved in theory (Wang and Sigmund, 2020).

As stretching-dominated materials with low relative density, the structural lattices mentioned above exhibit a higher specific
stiffness and strength, but a less stable nonlinear response than those deforming in a bending-dominated mode (Deshpande
et al., 2001). This is mainly because, in the initial elastic region, stretching-dominated materials store more strain energy during
deformation than bending-dominated materials do. Under compression or tension, unlike bending-dominated materials, there exist
micro-components in stretching dominated materials to support tensile forces and thus prevent displacements and rotations of nodes.
When considering the nonlinear regime, things change drastically. In general, stretching-dominated materials lack stability toward
large strain deformations and exhibit decreasing post-yield or post-buckling response. In contrast, bending-dominated materials
make full use of plastic bending joints allowed for large deformations and provide relatively large and nearly constant stress in the
nonlinear regime. Moreover, high specific stiffness and strength always come with large nonlinear anisotropy (Gurtner and Durand,
2014; Tancogne-Dejean and Mohr, 2018a,b; Tancogne-Dejean et al., 2018). Thus far and to best of our knowledge, however, few
works have focused on designing isotropic nonlinear bending-dominated materials for energy absorption.

In this paper, a class of isotropic bending dominated truss lattice materials, formed by replacing the central connecting node of
the body-centered cubic (BCC) truss lattice (Ushijima et al., 2011; Gümrük and Mines, 2013; Tancogne-Dejean and Mohr, 2018c)
with a simple cubic (SC) truss lattice element, is proposed for absorbing energy. The effects of geometrical parameters on the
effective mechanical properties are analyzed using numerical simulations and an analytical theory. Results show that the designed
metamaterials exhibit not only isotropic stiffness, but also nearly isotropic inelastic large deformation response. A series of samples
with different relative densities are printed using two-photon polymerization in two different crystallographic directions, [100] and
[110]. Uniaxial compression tests confirm the designed mechanical properties. Compared to BCC truss lattice materials, the designed
metamaterials have a relative elastic modulus about twice as large and a specific energy absorption about 1.6 times as large.

2. Design of isotropic bending dominated lattice material

We first outline the general design procedure for combining the properties of BCC and SC truss lattices and achieving linear
isotropy. As shown in Figs. 1a and 1b, both lattices at low density are highly anisotropic and Young’s modulus varies by more than
2 or 3 orders of magnitude as a function of the loading direction. The directions along which maxima occur, however, are different:
they are the principal axes of the cubic unit cell for the SC lattice and its diagonals for the BCC lattice. The BCC-SC truss lattice is
then defined by replacing the central connection of the BCC lattice with an element of the SC lattice, as Fig. 1c depicts. The impact
of struts on the mechanical behavior is indeed highly direction dependent. In the [100] direction, the struts of the inner SC lattice
element enhance the overall mechanical properties, whereas the struts of the BCC lattice provide rotational degrees of freedom and
thus guarantee the steadiness of the post-collapse response. In the [111] direction, the converse is true: mechanical properties are
enhanced by the BCC struts whereas the post-collapse response is stabilized by the SC struts. As a result, isotropy can be achieved
by adjusting the geometrical dimensions of the struts, as we show next. The relevant dimensions are the ratio of inner cubic strut
length to unit cell length 𝐿2∕𝐿 and the ratio of strut diameter to unit cell length 𝐷∕𝐿 (see Figs. 1a). Both ratios influence the
overall density of the structure 𝜌̄. For compactness, we discuss their numerical values in the following, as obtained from numerical
computations based on finite element analysis. A full analysis including analytical derivations is provided in the following section.

2.1. Relative density

Fig. 1a displays a non primitive cubic symmetric unit cell model of the body-centered cubic (BCC) lattice, composed of eight
identical intersecting struts. Here, the struts are assumed to have uniform circular cross-section with constant radius 𝑅 and length
𝑙 =

√

3𝐿∕2, with 𝐿 the side length of the cubic cell. For BCC truss lattice material, the relative density is defined as the ratio of the
actual volume 𝑉 occupied by the lattice structure to the total volume of the unit cell,

𝜌 = 𝑉
𝐿3

. (1)

𝑉 is obtained by integration as

𝑉 = 8
(

𝜋𝑅2𝑙 − 2
√

6𝑅3
)

. (2)
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Fig. 1. Linear elastic properties of cubic symmetric truss lattice materials. The representative unit cells and the corresponding normalized Young’s modulus as
a function of loading direction for (a) the BCC lattice, (b) the SC lattice, and (c) the BCC-SC lattice. The relative extreme values, 𝐸min∕𝐸max are (a) 0.0249, (b)
0.0315 and (c) 𝟏.

Eq. (1) can therefore be written

𝜌̄ = 3
√

3𝜋
(𝑅
𝑙

)2
− 18

√

2
(𝑅
𝑙

)3
. (3)

The above formula comprises two terms: the relative density of the ideal perfect struts minus the material overlap at nodes. The
material overlap contribution increases with the aspect ratio 𝑅∕𝑙. For example, material overlap accounts for a correction by less
than 5% when 𝑅∕𝑙 = 0.01, but the correction reaches 50% for 𝑅∕𝑙 = 0.1.

As shown in Fig. 1c, the BCC-SC lattice is composed of 8 outer struts along diagonal directions with length 𝐿1 and 12 inner
struts along horizontal and vertical directions with length 𝐿2. All struts have the same radius 𝑅. The volumes of outer and inner
struts are

𝑉1 = 𝜋𝑅2𝐿1 − 𝐶1𝑅
3 (4)

and

𝑉2 = 𝜋𝑅2𝐿2 − 𝐶2𝑅
3. (5)

Constants 𝐶1 and 𝐶2 account for the overlap volume at nodes. Their numerical values were estimated using a 3D computer-aided
design (CAD) software and are 𝐶1 = 3.35 and 𝐶2 = 2.83. The volume 𝑉 = 8𝑉1 + 12𝑉2. The relative density of the BCC-SC lattice is
given by

𝜌̄ = 4
√

3𝜋
(𝑅
𝐿

)2
+ (12 − 4

√

3)𝜋
(

𝑅2𝐿2

𝐿3

)

− 𝐶
(𝑅
𝐿

)3
(6)

with 𝐿 = 𝐿2 +
2
√

3
𝐿1 the unit cell length. The numerical value of the last constant is 𝐶 = 8𝐶1 + 12𝐶2 = 60.73. The relative density is

determined by two independent variables, for instance the ratio of radius to unit cell length 𝑅∕𝐿 and the ratio of inner strut length
to unit cell length 𝐿2∕𝐿. One can use equally well 𝐷∕𝐿 and 𝐿2∕𝐿 as the independent variables, with 𝐷 = 2𝑅 the diameter of the
struts. For a given relative density, only one of the two variables needs to be adjusted to regulate the mechanical properties of the
BCC-SC lattice. Fig. 2 illustrates the relationship between relative density and the geometrical ratios. It is obvious that the relative
density will increase as either 𝑅∕𝐿 or 𝐿 ∕𝐿 increases.
3
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Fig. 2. Contour plot of the relative density of BCC-SC truss lattices versus geometrical parameters 𝐷∕𝐿 and 𝐿2∕𝐿.

Table 1
Effective strut length for BCC and BCC-SC lattices.
Topology 𝑙𝑒 𝑙1 𝑙2

BCC 𝑙 − 2
√

6𝑅∕𝜋
BCC-SC 𝐿1 − 𝐶1𝑅∕𝜋 𝐿2 − 𝐶2𝑅∕𝜋

2.2. Elastic behavior of BCC and BCC-SC lattices

In a Cartesian coordinate system, the constitutive law of linear elasticity relates the strain tensor 𝜺 to the stress tensor 𝝈 via a
fourth-order symmetric elastic compliance tensor 𝐒, as

𝜺 = 𝐒 ∶ 𝝈. (7)

For cubic-symmetric lattice materials, there are only three independent elements in the compliance matrix, i.e.

𝑺 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1∕𝐸 − 𝜐∕𝐸 − 𝜐∕𝐸 0 0 0
1∕𝐸 − 𝜐∕𝐸 0 0 0

1∕𝐸 0 0 0
1∕𝐺 0 0

sym 1∕𝐺 0
1∕𝐺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8)

𝐸, 𝐺 and 𝜐 are Young’s modulus, the shear modulus and Poisson’s ratio of the lattice material in principal directions. Detailed
analytical derivations for BCC and BCC-SC lattices are given in the following section.

As depicted in Fig. 3b, micro-struts have an irregular geometry at both ends and hence their mechanical behavior around nodes
has to be quite complex. Strictly speaking, traditional theoretical analysis based on perfect beam theory is not applicable in such
a case. To overcome this issue and for the sake of generality, irregular struts are effectively replaced by perfect cylinders with the
same volume. Thus, an effective strut length is introduced instead of the original strut length. Table 1 gives the values of effective
strut lengths for both BCC and BCC-SC lattices.

2.2.1. Compressive modulus and Poisson ratio of BCC lattice
Due to cubic symmetry, one strut of the unit cell is selected for further analysis, as shown in Fig. 3c. When the unit cell is under

uniaxial compression, both ends of the micro-strut are able to move in the principal directions. Fig. 3c illustrates the deformation
of the strut under compression. The strut can be considered as a clamped–clamped beam subjected to an axial force, a shear force
4
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Fig. 3. Representative unit cells of (a) the BCC lattice and (e) the BCC-SC lattice under uniaxial compression. (b) Effective cylindrical model for an irregular
strut. Panels (c)–(g) illustrate the corresponding simplified mechanical beam model.

and a bending moment. Based on Timoshenko’s beam theory, and in a reference frame attached to the beam, the axial displacement
𝛿𝑁 and the shear deflection 𝛿𝑆 are given by

𝛿𝑁 =
𝑁𝑙𝑒
𝐸𝑠𝐴

, (9)

𝛿𝑆 =
𝑆𝑙3𝑒

12𝐸𝑠𝐼

(

1 +
12𝐸𝑠𝐼
𝜅𝐴𝐺𝑠𝑙2𝑒

)

=
𝑆𝑘𝑙3𝑒
12𝐸𝑠𝐼

, (10)

where 𝑁 and 𝑆 are the axial force and the shear force applied to the strut, 𝑙𝑒 is the effective length of the strut, 𝐸𝑠 is the elastic
modulus of the strut material, 𝐴 = 𝜋𝑅2 is the cross section area of the strut, 𝐼 = 𝜋𝑅4∕4 is the second moment of area of the beam, 𝐺𝑠
is the shear modulus of the strut material, and 𝜅 is Timoshenko’s shearing coefficient. The coefficient 𝑘 is introduced to incorporate
both bending and shearing coupling effects.

For a circular strut, 𝜅 is obtained by the following expression (Hutchinson, 2001)

𝜅 =
6
(

1 + 𝜈𝑠
)2

7 + 12𝜈𝑠 + 4𝑣2𝑠
, (11)

where 𝜈𝑠 is Poisson’s ratio of the strut material. For an isotropic material, we further have
𝐸𝑠

2𝐺𝑠
(

1 + 𝜈𝑠
) = 1. (12)

As a result, the above equations lead to

𝛿𝑁 =
𝑁𝑙𝑒

𝜋𝐸𝑠𝑅2
, (13)

𝛿𝑆 =
𝑘𝑆𝑙3𝑒

3𝜋𝐸𝑠𝑅4
, (14)

𝑘 = 1 +
7 + 12𝜈𝑠 + 4𝑣2𝑠

(

𝑅
)2

. (15)
5

1 + 𝜈𝑠 𝑙𝑒
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The forces 𝑁 and 𝑆 originate from a global force 𝐹 oriented along direction [001]:

𝑁 = 𝐹 sin 𝜃, (16)

𝑆 = 𝐹 cos 𝜃, (17)

with sin 𝜃 = 1∕
√

3 and cos 𝜃 =
√

2∕3. 𝜃 is the angle between directions [110] and [001]. The global displacements 𝑢, 𝑣 and 𝑤 of the
unit cell in the 𝑥, 𝑦 and 𝑧 directions, respectively, can then be expressed as

𝑢 = 𝑣 = 1
√

2

(

𝛿𝑆 sin 𝜃 − 𝛿𝑁 cos 𝜃
)

= 1
3

(

𝑘𝐹 𝑙3𝑒
3𝜋𝐸𝑠𝑅4

−
𝐹 𝑙𝑒

𝜋𝐸𝑠𝑅2

)

, (18)

𝑤 = −
(

𝛿𝑆 cos 𝜃 + 𝛿𝑁 sin 𝜃
)

= −1
3

(

2𝑘𝐹 𝑙3𝑒
3𝜋𝐸𝑠𝑅4

+
𝐹 𝑙𝑒

𝜋𝐸𝑠𝑅2

)

. (19)

The effective Young’s modulus 𝐸 and Poisson’s ratio 𝜈 of the BCC lattice material, therefore, are given by

𝐸 =
𝜎𝑧
𝜀𝑧

=

−4𝐹
𝐿2

2𝑤
𝐿

=
9
√

3𝜋𝐸𝑠

3 + 2𝑘
(

𝑙𝑒
𝑅

)2
𝑅2

𝑙𝑒𝑙
, (20)

𝜈 = − 𝑢
𝑤

=
𝑘 − 3

(

𝑅
𝑙𝑒

)2

2𝑘 + 3
(

𝑅
𝑙𝑒

)2
. (21)

The expression for Young’s modulus considers the mid-plane symmetry of the BCC unit cell, so that the force 𝐹 is distributed over
4 struts (hence the vertical stress is expressed as 𝜎𝑧 = −4𝐹∕𝐿2) and the strain is symmetrical with respect to the cell center (hence
𝜀𝑧 = 2𝑤∕𝐿).

2.2.2. [100] Shear modulus of BCC lattice
Consider the BCC unit cell sketched in Fig. 4a with an applied shear displacement. The strut can also be treated as a clamped–

clamped beam. The local displacement 𝛿𝑁 and 𝛿𝑆 , and the corresponding force 𝑁 and 𝑆, are related to the global shear displacement
𝑢 and global force 𝐹 via

𝛿𝑁 =
√

2𝑢 cos 𝜃 = 2
√

3
𝑢, (22)

𝛿𝑆 =
√

2𝑢 sin 𝜃 =

√

2
√

3
𝑢, (23)

𝑁 cos 𝜃 + 𝑆 sin 𝜃 =
√

2𝐹 . (24)

By substituting Eq. (13), (14), (22) and (23) into (24), we obtain

𝐹 =

(

2𝜋𝐸𝑠𝑅2

𝑙𝑒
+

3𝜋𝐸𝑠𝑅4

𝑘𝑙3𝑒

)

𝑢
3
. (25)

Therefore, the effective shear modulus of the BCC lattice is

𝐺 = 𝜏
𝛾
=

𝐹
𝐿2
𝑢
𝐿

=
𝜋𝐸𝑠
3

(

2 + 3
𝑘

(

𝑅
𝑙𝑒

)2
)

𝑅2

𝑙𝑒𝐿
. (26)

2.2.3. Bulk modulus of BCC lattice
Under hydrostatic pressure, the standard strut can again be considered a clamped–clamped beam subjected to an axial force.

Based on Timoshenko’s beam theory, we have

𝛿 =
𝑁𝑙𝑒
𝐸𝑠𝐴

. (27)

The global force 𝐹 and the displacement 𝑢 are given by

𝑁 =
√

3𝐹 , (28)

𝛿 =
√

3𝑢. (29)
6
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Fig. 4. (a)–(c) Deformation of struts in BCC unit models under pure shear loading.(d)–(g) Three different representative simplified beam models for BCC-SC
lattice subjecting to pure shearing force.

We get an analytical expression for the bulk modulus from the definition

𝐾 = − 𝑑𝑃
𝑑𝑉 ∕𝑉

=
2𝜋𝐸𝑠𝑅2

𝑙𝑒𝐿
(

3 − 6 𝑢
𝐿

+ 4 𝑢2

𝐿2

) , (30)

with 𝑑𝑃 = 4𝐹∕𝐿2, 𝑉 = 𝐿3, and 𝑑𝑉 = 𝐿3 − (𝐿 − 2𝑢)3. Noting that 𝑢 ≪ 𝐿, we simply have

𝐾 ≈
2𝜋𝐸𝑠𝑅2

3𝑙𝑒𝐿
. (31)

2.2.4. Elastic modulus and Poisson ratio of BCC-SC lattice
Different from the BCC lattice, when under compression the struts of the BCC-SC lattice cannot be simply considered as clamped–

clamped beams. As sketched in Fig. 3e, struts can be divided into three types, labeled AB, AC or AD according to their deformation
behavior. Strut AB can be considered as a clamped–free beam (A is free and B is clamped) subjected to an axial force, a shear force
and a bending moment. Based on the moment balance principle of statics,

𝑀𝐴 +𝑀𝐵 = 𝑆1𝑙1, (32)

𝑀 (𝑥) = 𝑆1𝑙1 −𝑀𝐴 − 𝑆1𝑥. (33)

It follows that 𝑀𝐴 = −𝑀(𝑙1) and 𝑀𝐵 = 𝑀(0). The relative rotation between the ends of the beam sketched in Fig. 3f is calculated
from the beam equation

𝜃𝐴 = ∫

𝑙1

0

𝑀 (𝑥)
𝐸𝑠𝐼

𝑑𝑥 =
𝑙1
𝐸𝑠𝐼

(

𝑆1𝑙1
2

−𝑀𝐴

)

. (34)

Strut AC is only subject to a constant bending moment 𝑀1 and thus the relative rotation at point A is given by

𝜃1 =
𝑀1𝑙2
2𝐸𝑠𝐼

. (35)

Strut AD is subject to a constant bending moment 𝑀2 and an axial force 𝐹 and thus the relative rotation at point A is given by

𝜃2 =
𝑀2𝑙2 . (36)
7
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m

2

d

Due to the fact that all struts are connected at a same rigid joint 𝐴, they must experience the same rotation and moment balance

𝜃𝐴 = 𝜃2 =
√

2𝜃1, (37)

𝑀𝐴 = 𝑀2 +
√

2𝑀1. (38)

Substituting these beam equations into the balance equations,

𝑀𝐴 = 𝑘1𝑆1𝑙1, (39)

𝑘1 =
2𝑙1

𝑙2 + 4𝑙1
. (40)

We have, by Timoshenko’s beam theory

𝛿1𝑁 =
𝑁1𝑙1
𝐸𝑠𝐴

, (41)

𝛿1𝑆 =
𝑘2𝑆1𝑙31
𝐸𝑠𝐼

, (42)

𝑘2 =
2 − 3𝑘1

6
+

𝐸𝑠𝐼
𝜅𝐴𝐺𝑠𝑙21

, (43)

𝛿2𝑁 =
𝐹 𝑙1
2𝐸𝑠𝐴

. (44)

Thus, the relationship between global displacement and global force is

𝑢1 = 𝑣1 =
1
√

2

(

𝛿1𝑆 sin 𝜃 − 𝛿1𝑁 cos 𝜃
)

= 1
3

(

𝑘2𝐹 𝑙31
𝐸𝑠𝐼

−
𝐹 𝑙1
𝐸𝑠𝐴

)

, (45)

𝑤1 = −
(

𝛿1𝑆 cos 𝜃 + 𝛿1𝑁 sin 𝜃 + 2𝛿2𝑁
)

= −1
3

(

4𝑘2𝐹 𝑙31
𝐸𝑠𝐼

+
2𝐹 𝑙1
𝐸𝑠𝐴

+
3𝐹 𝑙2
𝐸𝑠𝐴

)

. (46)

The effective Young’s modulus and Poisson’s ratio of the BCC-SC lattice are finally obtained as

𝐸 =
𝜎𝑧
𝜀𝑧

=

−4𝐹
𝐿2
𝑤1
𝐿

=
12𝜋𝐸𝑠

3 +
2𝑙1
𝑙2

+ 16𝑘2

(

𝑙1
𝑅

)2 𝑙1
𝑙2

(

𝑅
𝑙2

)2 𝑙2
𝐿
, (47)

𝜈 = −
2𝑢1
𝑤1

=

8𝑘2𝑙21
𝑅2

− 2

2 +
16𝑘2𝑙21
𝑅2

+
3𝑙2
𝑙1

. (48)

In addition, in case the BCC-SC lattice material has cubic symmetry, the bulk modulus can be obtained as a function of Young’s
odulus and the shear modulus as

𝐾 = 𝐸
3(1 − 2𝜈)

. (49)

.2.5. [100] Shear modulus of BCC-SC lattice
Fig. 4 illustrates the way micro-struts deform under a pure shear displacement. For strut AB, only axial displacement occurs

uring deformation, thus

𝐹𝑥 =
2𝐸𝑠𝐴𝛿1𝑁

𝑙2
. (50)

Strut AC can be considered as a beam with clamped–clamped boundary conditions and by virtue of Timoshenko’s beam theory we
have

𝛿2𝑁 =
𝑁2𝑙1
𝐸𝑠𝐴

, (51)

𝛿2𝑆 =
𝑘3𝑆2𝑙31
12𝐸𝑠𝐼

, (52)

𝑘3 = 1 +
7 + 12𝜈𝑠 + 4𝜈2𝑠

(

𝑅
)2

. (53)
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The strut force and displacement can be expressed in terms of the macroscopic force and displacement as

𝑁2 =
√

2𝐹 cos 𝜃 + 𝐹𝑥 sin 𝜃 = 2𝐹
√

3
+

𝐹𝑥
√

3
, (54)

𝑆2 =
√

2𝐹 sin 𝜃 − 𝐹𝑥 cos 𝜃 =

√

2𝐹
√

3
−

√

2𝐹𝑥
√

3
, (55)

𝛿2𝑁 =
√

2𝑢 cos 𝜃 − 𝛿1𝑁 sin 𝜃 = 2𝑢
√

3
−

𝛿1𝑁
√

3
, (56)

𝛿2𝑆 =
√

2𝑢 sin 𝜃 + 𝛿1𝑁 cos 𝜃 =

√

2𝑢
√

3
+

√

2𝛿1𝑁
√

3
. (57)

Those equations lead to

𝑢 −
(

1
2
+

𝑙1
𝑙2

)

𝛿1𝑁 =
𝑙1
𝐴

𝐹
𝐸
, (58)

𝑢 +

(

1 +
𝑘3𝑙31𝐴
6𝐼𝑙2

)

𝛿1𝑁 =
𝑘3𝑙31
12𝐼

𝐹
𝐸
. (59)

Solving those equations, we get

𝑢 =
𝑘4𝐹 𝑙1
𝐸𝜋𝑅2

, (60)

𝑘4 =
1 + 𝑘3

(

1
6
+

𝑙1
𝑙2

)(

𝑙1
𝑅

)2

3
2
+

(

1 + 2
3
𝑘3

(

𝑙1
𝑅

)2
)

𝑙1
𝑙2

. (61)

trut AD is subject to a shear force and a bending moment. Its deflection is given by

𝛿3𝑆 =
𝑘5𝑆𝑙32
3𝜋𝐸𝑠𝑅4

, (62)

𝑘5 = 1 +
7 + 12𝜈𝑠 + 4𝜈2𝑠

1 + 𝜈𝑠

(

𝑅
𝑙2

)2
. (63)

inally, the effective shear modulus is given by

𝐺 = 𝜏
𝛾
=

4𝑆
𝐿2

2
(

2𝑢 + 𝛿3𝑆
)

𝐿

=
2𝜋𝐸𝑠

2𝑘4 +
𝑘5
3

(

𝑙2
𝑅

)2 𝑙2
𝑙1

(

𝑅
𝑙1

)2 𝑙1
𝐿
. (64)

.3. Identification of isotropy

An analytical expression for Young’s modulus along an arbitrary direction can be obtained as (Meyers and Chawla, 2008):
1

𝐸𝑖𝑗𝑘
= 1

𝐸
− 1

𝐺
(𝑍 − 1)

(

𝑙2𝑖1𝑙
2
𝑗2 + 𝑙2𝑗2𝑙

2
𝑘3 + 𝑙2𝑖1𝑙

2
𝑘3

)

, (65)

where [𝑖𝑗𝑘] is the loading direction, and 𝑙𝑖1, 𝑙𝑗2 and 𝑙𝑘3 are direction cosines between the [𝑖𝑗𝑘] direction and the three principal
directions. Zener’s ratio 𝑍, which is used to quantify the anisotropy of cubic crystals, is

𝑍 =
2(1 + 𝜐)𝐺

𝐸
, (66)

By substituting Eq. (47), Eq. (48) and (64) into Eq. (66), Zener’s ratio for the BCC-SC lattice can expressed as

𝑍 =
8𝑘2(

𝑙1
𝑅
)2 +

𝑙2
𝑙1

2𝑘4 +
𝑘5
3
(
𝑙2
𝑅
)2(

𝑙2
𝑙1
)
. (67)

When 𝑍 = 1, a cubic material is exactly elastically isotropic. Finally, a combination of Eqs. (6) and (67) will help us identifying
the suitable geometrical parameters for isotropy.
9
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Fig. 5. Representative numerical unit cell models for (a) BCC and (b) BCC-SC truss lattices. (c) The engineering stress–strain curve of material IP-S is obtained
from compression experiments.

3. Numerical study

3.1. Simulation

To obtain the mechanical response of BCC and BCC-SC truss lattices, a series of unit cell models with different relative densities
ranging from 1 to 20% were built using the commercial finite element software ABAQUS. To ensure the calculation accuracy, as
shown in Fig. 5, there exist at least fourteen three dimensional linear solid elements (type C3D8R) along the strut diameter direction.
IP-S polymer is chosen as constituent material for simulations. The constituent material was modeled as an isotropic elasto-plastic
material with Young’s modulus 3.6 GPa and Poisson’s ratio 0.35 following an isotropic strain hardening behavior. A 0.2% offset
strength of 81 Mpa is taken as yield strength. The detailed engineering stress–strain curve shown in Fig. 5 is from a compression
experiment on a micro-cube. For all models, the edge length of unit cells was fixed to 200 μm. The strut diameter was changed with
the relative density, as well as the other geometrical parameters of the BCC-SC lattice. Periodic boundary conditions were applied
by matching mesh nodes on opposite planes with linear constraint equations (Li and Wongsto, 2004). Independent elastic moduli
together with Poisson’s ratio were extracted from uniaxial compression numerical experiments along the principal compression
direction and along the two pure shear directions, respectively.

3.2. Effect of geometrical parameter on elastic properties

Fig. 6a considers a fixed value of the effective density 𝜌̄ = 0.2, leaving the ratio 𝐿2∕𝐿 as the only variable for optimization. The
BCC-SC lattice is obtained as a continuous morphing operation as 𝐿2∕𝐿 varies from 0 (BCC) to 1 (SC). Significantly, Zener’s ratio
𝑍 decreases from a value larger than 1 to a value close to 0; by continuity, there is a single value 𝐿2∕𝐿 = 0.545 for which 𝑍 = 1
and linear isotropy is achieved. Young’s modulus 𝐸 increases steadily as a function of 𝐿2∕𝐿, whereas the shear modulus 𝐺 first
decreases until 𝐿2∕𝐿 = 0.8 after which point it increases slightly. Hence, the BCC-SC lattice achieves a trade-off between the elastic
properties of the BCC lattice, that favors the shear modulus 𝐺, and those of the SC lattice, that optimizes Young’s modulus 𝐸.

The same procedure can be repeated for different values of the effective density 𝜌̄. Fig. 6b displays the value of ratio 𝐿2∕𝐿 that
is needed to guarantee isotropy (𝑍 = 1) as density varies. Theoretical predictions are slightly lower than simulation results. In the
range 𝜌̄ ∈ [0 ∶ 0.2] its variation is almost linear and a linear regression can be performed. As a whole, Fig. 6b provides a map of the
geometrical parameters that define the linear isotropic BCC-SC truss lattice family.

3.3. Elastic properties

Fig. 7 depicts comparison of relative stiffness, relative shear modulus, relative bulk modulus and Poisson’s ratio obtained from
numerical simulation and analytical theory (see Supporting Information) for BCC lattice and BCC-SC lattice. For all elastic properties,
the analytical predictions which account for nodal effect and bending effect are in good agreement with simulations. Observed that
both BCC lattice and BCC-SC lattice are bending-dominated. The stiffness of the BCC-SC lattice is at least twice as large as that
10
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Fig. 6. (a) Effect of geometrical parameter on elastic modulus and isotropy for a relative density of 0.2. (b) Evolution of ratio of inner strut length to unit cell
length as a function of relative density obtained by theory, simulation and curve fitting.

Fig. 7. Comparison of relative elastic properties from simulations and analytical theory for BCC lattice and BCC-SC lattice.

of the BCC lattice. Conversely, the shear modulus of the BCC lattice is always larger than that of the BCC-SC lattice for relative
densities of up to 0.2. Having a similar deformation mode with the BCC lattice, the BCC-SC lattice always possess nearly the same
bulk modulus as the BCC lattice. Poisson’s ratio of both configurations are also presented in Fig. 7d. It is clear that the Poisson’s ratio
of BCC lattice is always larger than that of BCC-SC lattice. For both configurations, the Poisson’s ratio decreases as relative density
increases. In particular, the isotropic BCC-SC lattice with a relative density of 0.01 have a Poisson’s ratio which almost attains the
upper bound, 0.5, for isotropic material. This value of the effective Poisson’s ratio leads to a fairly large ratio of bulk modulus to
shear modulus of about 𝐾∕𝐺 = 90.6, making the elastically isotropic BCC-SC lattice an interesting structural basis in the field of
transformation elastodynamics (see Supporting Information).
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3.4. Inelastic large deformation response and nonlinear isotropy

To investigate the nonlinear response of both configurations, a large engineering strain of −0.2 is applied on corresponding
numerical models along [100], [110] and [111] directions. Fig. 8 show the stress–strain response of BCC-SC lattices with different
relative densities, obtained along the three principal directions [100], [110] and [111]. For comparison purposes, the full range
covered by the stress–strain response of BCC lattices for all loading directions is added. It can be observed that BCC lattice display
a very anisotropic nonlinear response, whereas the anisotropy of the BCC-SC lattice remains quite limited. For relative density
ranging from 0.01 to 0.2, the strongest direction and weakest direction of BCC-SC lattice are [111] and [100], respectively. In all
loading directions, the isotropic BCC-SC lattice exhibits an elastic response followed by a weakly increasing elastic–plastic behavior
and a nearly constant stress plateau, which is similar to BCC lattice in [100] direction. With an applied uniaxial strain up to 0.1,
their deformation and stress distribution are presented in Fig. 8e. During deformation, plastic bending hinges along with stress
concentration occur around the nodes. It should be noted that the distribution of plastic bending hinges of the isotropic BCC-SC
lattice are highly loading-direction depended. Plastic bending hinges can be found at the ends of diagonal struts for [100] direction
and inner SC struts for [110] direction and [111] direction. This implies that the combination of inner SC lattice and outer BCC
lattice provide sufficient rotational degrees of freedom and guarantee the occurrence of plastic bending hinges regardless of loading
direction. Bending-dominated lattices are always failed by bending collapse rather than yield or buckling. As pointed out by Gümrük
and Mines (2013), the collapse strength of bending-dominated lattices can be calculated from the intersection point of the elastic–
plastic collapse and the plastic collapse regions. The collapse strength 𝜎𝑐 is here defined empirically as the value of the engineering
stress where strain equals 0.1. All of them have been highlighted in stress–strain curves as colored dots. For a fair comparison
between different configurations, collapse strength in [100] direction are selected. The evolution of the relative collapse strength
as a function of the relative density is shown in Fig. 9. It is observed that the collapse strength of both configurations scales non-
linearly with relative density. The BCC-SC lattice always has a higher relative compressive strength. For relative density around 0.2,
the BCC-SC lattice has a relative strength about 1.6 times and a relative elastic modulus about 2.1 times larger than those of the
BCC lattice.

Using the previous design rules, only elastic isotropy is valid for small strain. However, for applications in energy absorption
and load bearing, it is also important to quantify nonlinear anisotropy. In this respect, the collapse strength and the specific energy
absorption (SEA) are the most important aspects for 3D energy absorbing metamaterials. They are respectively used to evaluate
the load bearing capacity and the entire energy absorption of a structural lattice. The SEA is defined as the work performed by a
uniaxial compression up to constant strain 𝜀0, taken as 0.2 for simulations, 0.2 and 0.5 for experiments, normalized by the total
mass

SEA =
𝑉 ∫ 𝜀0

0 𝜎𝑑𝜀
𝑀

. (68)

In this work, we consider that nonlinear isotropy is achieved when both collapse strength and SEA are constant regardless of the
loading direction. Nonlinear anisotropy is quantified by the ratios 𝜎max

𝑐 ∕𝜎min
𝑐 and SEAmax∕SEAmin, where minima and maxima are

taken over all loading directions in 3D space.
To check these mechanical properties, elasto-plastic solid elements simulations with compressive loading along 91 different

directions spanning the irreducible Brillouin zone were conducted (Suwas and Ray, 2014; Tancogne-Dejean et al., 2018). Fig. 10(a,b)
summarize in the form of pole figures the dependence of collapse strength and specific energy absorption with loading direction
for the BCC-SC lattice with 𝜌̄ = 0.1. The largest nonlinear anisotropy ratios are 𝜎max

𝑐 ∕𝜎min
𝑐 = 1.08 and SEAmax∕SEAmin = 1.09.

The softest direction is [12, 4, 1], whereas the strongest direction is [111]. Similar trends are found for other relative densities. The
argest nonlinear anisotropy ratios are summarized by Fig. 10c as a function of relative density. They initially decrease with the
elative density to reach their minima for 𝜌̄ = 0.1, after which value they increase only slightly. For most values of the relative
ensity, both nonlinear anisotropy ratios remain below 1.1, implying very limited nonlinear anisotropy. Even in the worst case,
he nonlinear anisotropy ratios compare favorably with the case of other lattices displaying elastic isotropy (Gurtner and Durand,
014; Tancogne-Dejean and Mohr, 2018b; Bonatti and Mohr, 2019). That property makes the BCC-SC truss lattice a noteworthy
lternative for load bearing and energy absorption.

. Experiment

Samples were fabricated using a liquid photoresist (IP-S, Nanoscribe GmbH) and a commercial three-dimensional lithography
ystem (Photonics Professional, Nanoscribe GmbH). The laser beam was focused by using a dip-in ×63 objective lens with 1.4

numerical aperture. A Galvanometric scan speed of 10 m/s was used for the whole fabrication process. After polymerization was
achieved, the sample was developed in a PGMEA (1-methoxy-2-propanol acetate) solution for 20 min to remove the unexposed
photoresist.

In order to validate the design of the BCC-SC truss lattice, samples with different relative densities 𝜌̄ = 0.01, 0.05, 0.1, 0.15,
and 0.2 were fabricated by direct laser writing. To reliably obtain the actual geometrical parameters of samples, Scanning electron
micrograph (SEM) images are shown in Fig. 11. The measured relative densities via SEM images for samples are 𝜌̄ = 1.4%, 5.9%,
10.8%, 15%, and 21.1%, respectively. Both crystallographic directions [100] and [110] were considered to investigate the dependence
of the compressive response with loading direction. Table S2 summarizes the geometrical parameters of the printed samples.

Under compression, samples are placed between a fixed glass substrate and a flat loading stamp driven with a stepping motor.
12
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Fig. 8. Nonlinear elastic properties of BCC-SC truss lattice materials. (a–e) The nonlinear compressive response is shown for different relative densities, ranging
from 0.01 to 0.2 and computed along the [100], [110], and [111] directions. The light gray area outlines the range covered by the response of BCC lattices
for all loading directions. (f) At a relative density of 0.01, contour plots illustrate the distribution of stress for the isotropic BCC-SC lattice along the [100], the
[110] and the [111] directions and the BCC lattice along the [100] direction. The applied strain is 0.1 in all cases. Detailed deformation frames are shown in
Figure S1.

camera equipped with a 20× objective lens facing the sample to monitor the deformation of the lateral faces of the sample under
compression test.

Fig. 12 summarizes the compressive stress–strain curves and acquired deformation frames obtained experimentally with the
different samples. For all relative densities, the experimental and numerical compressive responses show similar trends (see Figure
S2). The [100] sample for 𝜌̄ = 1.4% first deforms elastically but then follows a weakly nonlinear and increasing behavior (see
Fig. 12a). After reaching the first peak stress of about 20 kPa at a strain of 0.1, the response of the sample retains almost-periodic
buckling oscillations. The sample collapses from lower to upper boundaries in a layer by layer fashion. Compared with other
13
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Fig. 9. Evolution of (a) the relative collapse strength and (b) the normalized SEA as a function of relative density.

Fig. 10. Pole figures for directional dependency of (a) bending collapse strength distribution and (b) specific energy absorption distribution of the proposed
mechanical metamaterial with a relative density of 0.1. (c) Comparison of nonlinear isotropic ratios between the proposed BCC-SC truss lattice and other elastic
isotropic truss lattices and nearly isotropic TPMS-like shell lattice.
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Fig. 11. Scanning electron micrographs of BCC-SC truss micro-lattice samples fabricated via direct laser writing technology. (a–f) and (m–p) show top views of
alternating [100] and [110] BCC-SC truss-lattice samples with varying relative density 𝜌̄. (g–l) and (q–t) show isometric views of the same samples. (u) and (v)
are close-up views of the samples with 𝜌̄ = 5.9%. Scale bar lengths are (a–t) 300 μm and (u–v) 100 μm.

stretching dominated lattices or buckling structures, the amplitude of oscillations are obviously smaller. This indicates that the
post-collapse behavior should be stable and that the sightly buckling mode originates from the low resilience of thin struts to
imperfections and flaws.

For relative density 𝜌̄ = 5.9%, the buckling behavior of structures with ultra-low strut aspect ratio 𝐷∕𝐿 is suppressed, and the
deformation becomes uniform. The [100] sample exhibits an initially increasing elastic behavior followed by a weakly increasing
elastic–plastic response (Fig. 12b). The following plateauing behavior continues until the engineering strain reaches 0.25. During this
process, the BCC-SC micro-lattice appears to possess a similar but enhanced bending-dominated mechanical behavior compared to
the BCC lattice (see supporting material). This may be attributed to the facts that rotational micro-components allow for large
steady deformations and that supporting micro-components provide additional structure stiffness and strength. Compared with
other lightweight stretching-dominated truss lattices, such as the octet truss lattice (Tancogne-Dejean et al., 2016) and other hybrid
lattices (Tancogne-Dejean and Mohr, 2018b), the stable post-collapse response makes the BCC-SC lattice more suitable for energy
absorption. When the applied strain is larger than 0.25, rotational components contact each other and rotational degrees of freedom
disappear. As a result, vertical struts have to support more bending moment, and are therefore very sensitive to shearing forces and
flaws. When the compressive loading direction is not absolutely vertical, the shearing force introduced by friction between the
loading stage and the sample results in uneven deformations. Hence, the mechanical behavior changes from a stable and increasing
mode to an unstable and slightly oscillating mode.

The compressive response of samples with relative density 𝜌̄ = 10.8% and 15% show trends similar to those at 5.9% relative
density and their collapsing modes are similar. As the relative density increases, the unstable mechanical behavior at large strain
gradually reduces. When the relative density is larger than 21.1%, oscillation modes disappear and the mechanical behavior is
enhanced (see Fig. 13).

In contrast to [100] samples, all [110] samples exhibit almost the same elastic and elastic–plastic responses when the applied
strain is less than 0.2. The following nonlinear response also appears to be more stable and to be slightly decreasing, at least for
samples with relative density larger than 1.4%. Their stable behavior may be explained from the fact that [110] samples contain
twice more rotational elements (i.e., inclined struts) compared to [100] samples, which provides enough rotational degrees of
freedom to achieve stability. The decreasing response may be caused by brittle fracture of vertical struts (supporting elements)
during fabrication (see Fig. 11v) and by the smaller number of vertical struts.

The experimental Young’s modulus and collapse strength of all samples are found to be in good agreement with numerical
simulation and analytical results (See Fig. 14). Their elastic isotropy is confirmed by the fact that experimental data are close to
the ideal linear isotropic ratio of 1 (See Fig. 14d). Regarding nonlinear isotropy, more sample orientations would be necessary for
a full characterization. The trends in the experimental results, however, are in line with simulations from the point of view of SEA.
For all the relative densities considered, the deformation criterion, the failure mode and the nonlinear response of [100] samples
15
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Fig. 12. Compression experiments with BCC-SC micro-lattice samples fabricated by two-photon polymerization along directions [100] and [110]. (a) Nonlinear
mechanical response and corresponding frames acquired during compression tests on samples with a relative density of 1.4%. Frames I to IV show the initial,
collapse deformation, global unstably or steady deformation, and large compression up to maximum applied strain. (b) Nonlinear mechanical response and
corresponding frames acquired during compression tests on samples with a relative density of 5.9%. Frames I to IV show the initial, collapse deformation,
inelastic buckling, and large compression up to maximum applied strain. All scale bars are 200 μm long. The dotted line at 20% strain marks the upper limit
of available numerical simulation data.

are found to be similar to those of [110] samples when the applied strain is smaller than 0.2. The extreme values of the nonlinear
isotropy ratios are about 1.13 and 0.9, and are found with samples with relative densities 0.01 and 0.2. For other relative densities,
the nonlinear isotropic ratios are found to be close to 1.

Additional experimental studies performed with the BCC lattice and gathered in the supporting material show that the BCC-SC
lattice always possesses a relative strength about 1.6 times as large and a normalized SEA about 1.64 times as large as that of
the BCC lattice (see Figures S3). To further support this point, Fig. 15 presents an Ashby plot of SEA20% against Young’s modulus,
comparing the mechanical properties of lightweight lattice materials, including the proposed isotropic BCC-SC lattices, isotropic SC
BCC truss lattices (Tancogne-Dejean and Mohr, 2018b), isotropic SC FCC truss lattices (Tancogne-Dejean and Mohr, 2018b), isotropic
16
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Fig. 13. (a-c) Stress–strain curves are shown for samples with higher relative densities. The dotted line at 20% strain marks the upper limit of available numerical
simulation data.

shell lattices (Ma et al., 2021), and isotropic plate lattices (Duan et al., 2020). In comparison, the proposed BCC-SC truss lattices
achieve a similar SEA with a much lower Young’s modulus. It is noteworthy that the BCC-SC lattice with a relative density of 0.01
has a Poisson’s ratio that almost attains the upper bound, 0.5, for isotropic materials (see supporting material). The BCC-SC lattice
exhibits a fairly large ratio of bulk modulus to shear modulus, 𝐾∕𝐺 = 90.6, which makes it potentially interesting for transformation
elastodynamics. These mechanical behaviors make the proposed lattice a promising candidate for applications to static compression
and dynamic shock.

5. Conclusion

In this paper, we have introduced a class of isotropic bending dominated truss lattice materials, formed by replacing the
central connecting node of the body-centered cubic (BCC) truss lattice with a simple cubic (SC) truss lattice element, and we have
examined its properties for energy absorption. The effective mechanical properties have been investigated both theoretically and
numerically. Results show that the designed metamaterials exhibit not only isotropic stiffness, but also nearly isotropic inelastic
large deformation response. A series of samples with different relative densities were printed using two-photon polymerization in
two different crystallographic directions, [100] and [110]. Uniaxial compression tests confirm that the BCC-SC lattice possesses
nearly isotropic inelastic large deformation response together with isotropic elastic properties. The designed metamaterial is thus a
noteworthy alternative for load bearing, energy absorption, and transformation acoustics.
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Fig. 14. Mechanical data for samples measured during compression tests. (a) Young’s modulus, (b) collapse strength, and (c) specific energy absorption are
plotted against relative density for all tested samples. (d) Variations of isotropic ratios as a function of relative density demonstrate almost isotropic nonlinear
mechanical response.

Fig. 15. Ashby plot showing the SEA20% versus the Young’s modulus for various lightweight lattice structure samples, including isotropic BCC-SC lattices in this
paper, isotropic SC BCC truss lattices (Tancogne-Dejean and Mohr, 2018b), isotropic SC FCC truss lattices (Tancogne-Dejean and Mohr, 2018b), isotropic shell
lattices (Ma et al., 2021), and isotropic plate lattices (Duan et al., 2020).
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