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A B S T R A C T

The propagation of evanescent waves in hybrid poroelastic metamaterials is investigated by considering
interface effects. Hybrid metamaterials consist of a single-phased (acoustic or elastic) medium and a poroelastic
medium. To establish the finite element model of elastic/poroelastic and fluid/poroelastic interfaces, weak inte-
gral forms of wave equations for elastic, fluid, and poroelastic media and boundary conditions at the interfaces
between different media are first given. Next, the expressions for displacement and pressure in the frame of
Bloch’s theorem are substituted into the dynamical equations to obtain general forms suitable for periodic
metamaterials, from which the complex band structure and the frequency response of hybrid metamaterials
are calculated. The influence of geometrical and material parameters, as well as the viscosity of the pore fluid
on the propagation of elastic waves are discussed. The results and discussions show that flat bands and narrow
locally resonant band gaps appear for elastic/poroelastic metamaterials. A quasi-resonance Bragg band gap is
formed in the case of an elastic inclusion in a poroelastic matrix. Furthermore, a transition from an avoided
crossing to a wave-number band gap is obtained by adjusting the geometrical and material parameters of the
elastic inclusion. For the case of fluid inclusion in a poroelastic matrix with the open-pore interface, a cut-off
frequency for the fast longitudinal wave is observed. However, only an avoided crossing is produced for the
sealed-pore interface. For both cases, the phase velocity of the shear vertical (SV) wave decreases faster than
that of the slow longitudinal wave as the radius of the inclusion increases. When the viscosity of the pore fluid
is considered for elastic inclusion in a poroelastic matrix, the transmission dip at the ‘quasi-resonance Bragg’
band gap disappears. However, the transmission dip in the locally resonant band gap of the SV wave becomes
slightly shallower and smoother than in the inviscid case. This study is relevant to practical applications of
hybrid single-phased and poroelastic metamaterials, e.g., for coastal engineering and civil engineering.
1. Introduction

Phononic crystals [1] (PCs) and metamaterials [2] are artificial
composite materials. Their remarkable feature is the existence of band
gaps, within which the propagation of acoustic or elastic waves is
prohibited. Phononic crystals and metamaterials are widely used to
design noise barriers [3] and vibration isolators [4], among other
applications. Bragg scattering [1] and local resonance [5] are two
basic mechanisms for band gap generation. It is worth underlining
that band gaps are not only strongly affected by geometric parameters
and material properties, but also by interface conditions. For example,
solid/solid smooth-contact interfaces [6], fluid/fluid interfaces [7],
solid/fluid interfaces [8], and imperfect interfaces [9] all deeply in-
fluence wave propagation. Until now, most studies on metamaterials
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have focused on single-phased media, but poroelastic media are often
involved in terrestrial applications.

Poroelastic media are generally considered to be composed of a
solid skeleton and a fluid contained inside the pores. They have far
and wide applications in geophysics exploration [10], coastal engineer-
ing [11], seismology engineering [12], and other fields [13]. Biot [14]
first developed a theory of the poroelastic medium and predicted that
two longitudinal waves (fast and slow) and two shear waves (SV
wave) co-exist. Due to the presence of the slow-longitudinal wave,
the mathematical description of the interface between poroelastic and
other media is more complicated than the interface between different
single-phased media. Deresiewicz and Skalak [15] derived interface
conditions between two poroelastic media. The equations of the im-
permeable interface between elastic and poroelastic media and the
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open-pore interface between fluid and poroelastic media were also
given by the same authors. However, the presence of the fluid in the
solid skeleton may weaken the contact at the interface. Hence, it can
cause the elastic and poroelastic interfaces to be loosely bonded [16].
For the fluid/poroelastic interface, two other boundary conditions have
been proposed to describe hydraulic contacts: sealed pores [17] and im-
perfect pores involving the hydraulic permeability of the interface [18].
Since then, many researchers have studied wave propagation in poroe-
lastic media using those interface conditions. They can be roughly
divided into the following three categories.

First, the interface between two different poroelastic media has
received much attention. Various boundary conditions have been pro-
posed to describe interface contacts: open-pore, partial-open pore, and
sealed-pore interfaces. For the open-pore interface, many researchers
have calculated reflection and transmission coefficients at the interface
between two half-spaces: two porous media filled with an immisci-
ble fluid [19], two dissimilar poroelastic solids saturated with two
immiscible viscous fluids [20], the coupled porous sediment, and the
double-porosity substrate [21]. For the sealed-pore interface, Rasolo-
fosaon [22] first described the importance of generating the slow
compressional wave in porous media. Smeulders [23] analyzed the re-
flection coefficient and the pressure distribution of slow-compressional
waves and guessed that there are additional damping mechanisms
that are not incorporated in the theory. Dai et al. [24] introduced
a double porosity solid and discussed its influence on reflection and
transmission. The last interface type is the partial open-pore interface.
Sharma and Saini [25] analyzed the effect of pore alignment on ampli-
tude ratios and energy ratios. Next, Sharma [26] regarded the partial
connection of surface pores at the interface as tangential slipping and
discussed wave propagation. Vashishth and Khurana [27] considered
multilayered anisotropic poroelastic media and calculated reflection
and transmission coefficients.

Second, the interface between elastic and poroelastic media is also
of great interest. The impermeability interface is widely considered
in applications [28]. Some researchers are concerned with the imper-
meable interface; Dai et al. [29] developed a theoretical analysis of
elastic wave reflection and transmission at the interface between elastic
and double porosity half-spaces. Wang et al. [30] investigated the
energy dissipation of the porous sediment at the porous/solid interface.
Sharma et al. [31,32] considered the effect of solid viscoelasticity and
fluid viscosity on plane harmonic waves’ reflection and refraction.
Peng et al. [33] gave wavefield snapshots of plane-wave propagation
through the elastic/poroelastic system. Considering a permeable inter-
face, Goyal and Tomar [34] dealt with the reflection and refraction
of a plane longitudinal wave. Yang [35] numerically investigated the
influence of incident angle and frequency on the transmission coeffi-
cient. Barak et al. [36] further discussed plane wave propagation at an
interface between double-porosity solid with underlying uniform elastic
solid. For a loosely bonded interface, Vashisth et al. [37] solved the
problem of reflection and transmission of a plane incident wave, and
found there is the dissipation of energy except for normal and grazing
angles of incidence. Baljeet and Surjeet [38] introduced a viscous liquid
into a porous solid to observe the relationship between reflection and
refraction amplitude ratios for the incidence of P and SV waves.

Third, acoustic/poroelastic interface contacts were also examined.
For the open-pore interface, Denneman et al. [39] derived closed-
form expressions for reflection and transmission coefficients between
acoustic and porous half-spaces. Lyu et al. [21] calculated the reflection
and transmission of plane waves at the interface between the ocean
and the ocean floor. Bouzidi and Schmitt [40] experimentally measured
the acoustic reflection from a fluid/poroelastic interface as a function
of the angle of incidence. For the sealed-pore interface, Denneman
et al. [41] studied wave scattering at the interface of fluid/air-filled
porous layers. Dai and Kuang [42] analyzed the reflection and trans-
2

mission of elastic waves at the interface of a fluid and a double porosity
solid. Wu et al. [43] calculated reflection and transmission for a three-
layer system consisting of a fluid-saturated porous layer sandwiched
between a fluid half-space and a fluid substrate interface. For the partial
open-pore interface, Chiavassa and Lombard [44] proposed an accurate
numerical model to simulate wave propagation in fluid/poroelastic
media. Mesgouez et al. [45] investigated transient wave propagation in
a 2D acoustic/poroelastic system using semi-analytical and numerical
methods.

Wave propagation in periodically arranged poroelastic media was
not considered in the works cited above. In recent years, however,
the propagation of elastic waves in porous metamaterials has been
attracting increasing attention. Maglicano et al. [46] used an equivalent
fluid model to describe a porous medium with a periodic arrangement
of rigid inclusions; only one longitudinal wave is included in their
model, however. Xiong et al. [47] proved that the periodic insertion
of a rigid resonant inclusion into a porous matrix can enhance the
attenuation of sound waves at low frequencies. Lewinska et al. [48]
designed a porous microstructure combining a traditional poroelastic
material with locally resonant units embedded inside the pores to
strengthen the low-frequency attenuation of elastic waves. Though
these researchers used foam as the porous medium, Biot’s theory is not
mentioned. Based on Biot’s theory, Wang et al. [49,50] first studied
wave propagation inside one-dimensional and two-dimensional fluid-
saturated porous metamaterials with the open-pore interface, relying
on finite element analysis of porous media. Zhang et al. [51] analyzed
wave propagation in one-dimensional fluid-saturated porous metamate-
rials with the partial-open pore interface and enhanced the theoretical
analysis of porous media. Fama et al. [52] theoretically described an
incompressible fluid through the channels of a porous structure and
analyzed the erosive/deposition effects of the fluid in a solid matrix.
Rohan and Cimrman [53] explored porous scaffolds and the advection
phenomenon of the disturbance caused by the wave superimposed on
the fluid flow. Pu et al. [54] discussed the propagation of Rayleigh
waves in seismic metamaterials consisting of mass–spring resonators
periodically arranged on the surface of a porous half-space.

Although the studies above explicitly considered periodically satu-
rated media, the interface between single-phased and poroelastic media
was not discussed. As is well-known, acoustic [7], elastic [6], and
poroelastic media [14] respectively support one (a longitudinal), three
(a longitudinal and two shears), and four waves (two longitudinal and
two shear) waves. Hence, in contrast to the interface between two
poroelastic media, the propagation of a mechanical wave may change
drastically at the interface between a single-phased medium and a
poroelastic medium [29,30].

The purpose of this work is to study evanescent wave propagation in
hybrid elastic/poroelastic and fluid/poroelastic periodic metamaterials.
In this case, the complex band structure, rather than the real band
structure, should be employed for analysis. Generally, the complex
band structure can be computed following two different approaches:
either the eigenfunction expansion method or the discrete method.

Based upon Bloch’s theorem and series expansion theory, the eigen-
function expansion method expands the physical quantities appearing
in the non-uniform wave equation into the series form. A general-
ized eigenvalue equation is formed by approximately considering fi-
nite expansion terms, such as the extended plane wave expansion
(EPWE) method [55,56]. This method, however, generally cannot solve
problems with complex interfaces [57]. Alternatively, it is possible to
expand all scattered fields into cylindrical or spherical wave functions,
taking advantage of symmetry, and then establish characteristic equa-
tions according to interface conditions and Bloch’s theorem, resulting
in methods such as multiple scattering theory [58] or Dirichlet to
Neumann method [59]. Systems with complex interfaces can thus be
handled, but only in the case of spherical or cylindrical scatterers.

In the case of the discrete method, the whole system is discretized,
and the eigenvalue problem for the continuous system is transformed

into a corresponding discrete problem suitable for numerical solving,
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such as the finite element method (FEM) [60]. In the FEM framework,
there are furthermore two different numerical approaches. One is to
consider Bloch periodic boundary conditions around the unit cell. The
complex band structure is then obtained by carefully transforming the
global mass and stiffness matrices, resulting in the semi-analytical finite
element method (SAFEM) [61] or the extended Bloch mode synthesis
method (EBMSM) [62]. An alternative way is considering a Bloch
operator transformation of the governing equation by substituting the
Bloch wave solution into the governing equation, which is referred to
as the Bloch operator finite element method (BOFEM) [63].

In the present work, the poroelastic medium acts as either the ma-
trix or inclusions. The paper is organized as follows. In Section 2, wave
equations are recalled for elastic, acoustic, and poroelastic domains
and the corresponding weak integral forms are deduced. In Section 3,
interface conditions between fluid/poroelastic, elastic/poroelastic, and
poroelastic/poroelastic systems are given. The coupling boundary inte-
grals at the resulting interfaces are specifically obtained. In Section 4,
the unit cell and the partial differential equations are described. The
simplification of interface conditions based on the weak integral for-
mulation is extended to the case of periodic media. Section 5 presents
complex band structures, modal distributions, and frequency responses
for the poroelastic medium considered either as a matrix or inclusion,
for both inviscid and viscous pore fluid. Meanwhile, the influence
on wave propagation of geometric and material parameters of the
inclusion, and the viscosity of the pore fluid, is also discussed. The main
conclusions are drawn in Section 6.

2. Wave equations and weak integral forms

In this section, we turn our attention to the propagation of elastic
waves in doubly-periodic media. For a given frequency, the wave-
lengths of acoustic, elastic, and porous media are different. Thus, we
first give governing equations and derive the weak variational formu-
lations for the three types of media. Boundary integrals between the
three types of domains are then given.

2.1. Elastic wave equation and weak integral form

For vanishing body forces, the wave equation for an elastic medium
can be written in the frequency domain as

∇ ⋅ 𝝈𝑒 + 𝜌𝑒𝜔2𝐮𝑒 = 0, (1)

where 𝝈𝑒=𝐂(𝐫) ∶ ∇𝐮𝑒(𝐫) and 𝐮𝑒 are stress and displacement vectors of
the elastic solid; ∇=

(

𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦 ,

𝜕
𝜕𝑧

)

is the divergence operator; 𝐂(𝐫) is the
elastic tensor; 𝐫=(𝑥, 𝑦, 𝑧) is the position vector; 𝜌𝑒 is the mass density;
and 𝜔 denotes the angular frequency.

Consider 𝛿𝐮𝑒 a test function of the displacement vector. According
to the divergence or Gauss’ theorem, the weak integral form of the
previous equation for an elastic domain 𝛺𝑒 can be expressed as

∫𝛺𝑒

𝝈𝑒 ∶ 𝜺𝑒 (𝛿𝐮𝑒) d𝛺𝑒 − ∫𝛺𝑒

𝜌𝜔2𝐮𝑒 ⋅ 𝛿𝐮𝑒d𝛺𝑒 − ∫𝑆𝑒

𝐧𝑒 ⋅ 𝝈𝑒 ⋅ 𝛿𝐮𝑒d𝑆𝑒 = 0. (2)

where 𝜺𝑒 is the strain vector; 𝑆𝑒 stands for the boundary; and 𝐧𝑒 is the
external normal unit vector along 𝑆𝑒. The boundary integral in the last
term is denoted 𝐼𝑒.

2.2. Acoustic wave equation and weak integral form

The governing equation for acoustic wave propagation in a homo-
geneous inviscid fluid is:

∇ ⋅
(

1
𝜔2𝜌𝑎

∇𝑝𝑎
)

+ 1
𝐾𝑎 𝑝

𝑎 = 0, (3)

where 𝜌𝑎 is the mass density of the fluid; 𝑝𝑎 is the pressure; and 𝐾𝑎=𝜌𝑎𝑐2𝑎
denotes the bulk modulus of the fluid with 𝑐𝑎 the sound velocity in the
fluid.
3

Consider 𝛿𝑝𝑎 a test function of the fluid pressure 𝑝𝑎. The weak
integral form for the harmonic acoustic wave reads

∫𝛺𝑎

1
𝜔2𝜌𝑎

(∇𝑝𝑎) ⋅ ∇ (𝛿𝑝𝑎) d𝛺𝑎 − ∫𝛺𝑎

1
𝐾𝑎 𝑝

𝑎𝛿𝑝𝑎d𝛺𝑎

− ∫𝑆𝑎

1
𝜔2𝜌𝑎

𝐧𝑎 ⋅ (∇𝑝𝑎) ⋅ (𝛿𝑝𝑎) d𝑆𝑎 = 0, (4)

here 𝛺𝑎 and 𝑆𝑎 refer to the fluid domain and its boundary, respec-
ively; and 𝐧𝑎 is the external normal unit vector along the boundary 𝑆𝑎.
he boundary integral for pressure is denoted 𝐼𝑎.

.3. Wave equations and weak integral forms for the poroelastic medium

Based on Biot’s theory, the equations of motion of the isotropic
oroelastic medium can be described by the macroscopic displacement
ector (𝐮𝑠) of the solid phase and the pressure (𝑝) of the fluid phase;
ee Appendix A. Combining the constitutive equation Eq. (A.2) and
ynamic equation Eq. (A.3), the governing wave equations in terms of
𝐮𝑠, 𝑝) are obtained following [64] as

⋅ 𝝈𝑠 (𝐮𝑠) + 𝜔2𝝆 ⋅ 𝐮𝑠 + 𝜸 ⋅ ∇𝑝 = 0,

⋅
(

1
𝜔2

𝐦−1 ⋅ ∇𝑝
)

+ ∇ ⋅ (𝜸 ⋅ 𝐮𝑠) − 1
𝐵8

𝑝 = 0, (5)

where

𝝈𝑠 =
(

𝐵2 − 𝐵2
6∕𝐵8

)

∇ ⋅ 𝐮𝑠 ⋅ 𝐈 + 2𝐵5𝜺𝑠,

𝝆 = 𝜌𝐈 − 𝜌2𝑓𝐦
−1,

𝜸 = 𝜌𝑓𝐦
−1 + 𝐵6∕𝐵8𝐈. (6)

here 𝝈𝑠 represents the stress tensor of the solid phase and only de-
pends on 𝐮𝑠; 𝐦=𝐝𝐢𝐚𝐠[𝑚1, 𝑚2, 𝑚3], 𝑚1=𝑚11+ 𝑖𝑟11∕𝜔, 𝑚2=𝑚22+ 𝑖𝑟22∕𝜔, and
𝑚3=𝑚33 + 𝑖𝑟33∕𝜔. 𝑚𝑖𝑖 and 𝑟𝑖𝑖 are coefficients introduced by Biot, and 𝐈
is the identity tensor. The weak integrals can be written as

∫𝛺𝑝

𝝈𝑠 (𝐮𝑠) ∶ 𝜺𝑠 (𝛿𝐮𝑠) d𝛺 − ∫𝛺𝑝

𝜔2𝝆 ⋅ 𝐮𝑠 ⋅ 𝛿𝐮𝑠d𝛺 − ∫𝛺𝑝

𝜸 ⋅ (∇𝑝) ⋅ 𝛿𝐮𝑠d𝛺

− ∫𝑆𝑝

𝝈𝑠 (𝐮𝑠) ⋅ 𝐧𝑝 ⋅ 𝛿𝐮𝑠d𝑆 + ∫𝛺𝑝

(

1
𝜔2

𝐦−1 ⋅ ∇𝑝 ⋅ ∇𝛿𝑝 − 1
𝐵8

𝑝𝛿𝑝
)

d𝛺

− ∫𝛺𝑝

𝜸 ⋅ 𝐮𝑠 ⋅ ∇𝛿𝑝d𝛺 + ∫𝑆𝑝

(

𝜸 ⋅ 𝐮𝑠 ⋅ 𝐧𝑝 − 1
𝜔2

𝐦−1 ⋅ ∇𝑝 ⋅ 𝐧𝑝
)

⋅ 𝛿𝑝d𝑆 = 0,

(7)

where 𝛿𝐮𝑠 and 𝛿𝑝 are test functions for the porous solid displacement 𝐮𝑠
and the pore fluid pressure 𝑝, respectively; 𝛺𝑝 and 𝑆𝑝 are the poroelastic
domain and its boundary, respectively; and 𝐧𝑝 is the external normal
unit vector along the poroelastic medium boundary 𝑆𝑝.

According to the second equation of Eq. (A.2), the relative displace-
ment vector 𝐰 can be written in terms of 𝑝 and 𝐮𝑠

𝐰= 1
𝜔2

𝐦−1 ⋅ ∇𝑝 − 𝜌𝑓𝐦
−1 ⋅ 𝐮𝑠. (8)

Furthermore, the relation between the total stress and the solid
phase stress is given by Eq. (A.3)

𝝈𝑡 = 𝝈𝑠 (𝐮𝑠) +
𝐵6
𝐵8

𝑝𝐈. (9)

Substituting Eqs. (8) and (9) into Eq. (7), the weak integral form is
rewritten as

∫𝛺𝑝

𝝈𝑠 (𝐮𝑠) ∶ 𝜀𝑠 (𝛿𝐮𝑠) d𝛺 − ∫𝛺𝑝

𝜔2𝝆 ⋅ 𝐮𝑠 ⋅ 𝛿𝐮𝑠d𝛺 − ∫𝛺𝑝

𝜸 ⋅ ∇𝑝 ⋅ 𝛿𝐮𝑠d𝛺

− ∫𝑆𝑝

𝐧𝑝 ⋅ 𝝈𝑡 ⋅ 𝛿𝐮𝑠d𝑆 + ∫𝑆𝑝

𝐵6
𝐵8

𝑝𝛿𝐮𝑠 ⋅ 𝐧𝑝d𝑆

+ ∫𝛺𝑝

(

1
𝜔2

𝐦−1 ⋅ ∇𝑝 ⋅ ∇𝛿𝑝 − 1
𝐵8

𝑝𝛿𝑝
)

d𝛺 − ∫𝛺𝑝

(𝜸 ⋅ 𝐮𝑠 ⋅ ∇𝛿𝑝) d𝛺

+
𝐵6 𝐮𝑠 ⋅ 𝛿𝑝 ⋅ 𝐧𝑝d𝑆 − 𝜑 (𝐔 − 𝐮𝑠) ⋅ 𝐧𝑝 ⋅ 𝛿𝑝d𝑆 = 0, (10)
∫𝑆𝑝
𝐵8 ∫𝑆𝑝
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Applying the divergence theorem and the vector identity [∇ ⋅
(𝛼𝐯)=𝛼∇ ⋅ (𝐯) + ∇𝛼 ⋅ 𝐯], Eq. 10 can be reformulated as [65]

∫𝛺𝑝

𝝈𝑠 (𝐮𝑠) ∶ 𝜺𝑠 (𝛿𝐮𝑠) d𝛺 − ∫𝛺𝑝

𝜔2𝝆 ⋅ 𝐮𝑠 ⋅ 𝛿𝐮𝑠d𝛺

+ ∫𝛺𝑝

(

−𝜸 +
𝐵6
𝐵8

𝐈
)

⋅ ∇𝑝 ⋅ 𝛿𝐮𝑠d𝛺 + ∫𝛺𝑝

𝐵6
𝐵8

𝑝∇ ⋅ 𝛿𝐮𝑠d𝛺𝑝

− ∫𝑆𝑝

𝐧𝑝 ⋅ 𝝈𝑡 ⋅ 𝛿𝐮𝑠d𝑆 + ∫𝛺𝑝

(

1
𝜔2

𝐦−1 ⋅ ∇𝑝 ⋅ ∇𝛿𝑝 − 1
𝐵8

𝑝𝛿𝑝
)

d𝛺

+ ∫𝛺𝑝

(

−𝜸 +
𝐵6
𝐵8

𝐈
)

⋅ 𝐮𝑠 ⋅ ∇𝛿𝑝d𝛺 + ∫𝛺𝑝

𝐵6
𝐵8

∇ ⋅ 𝐮𝑠 ⋅ 𝛿𝑝d𝛺

− ∫𝑆𝑝

𝜑 (𝐔 − 𝐮𝑠) ⋅ 𝐧𝑝 ⋅ 𝛿𝑝d𝑆 = 0, (11)

The boundary integral is thus 𝐼𝑝= − ∫𝑆𝑝
𝝈𝑡 ⋅ 𝐧𝑝 ⋅ 𝛿𝐮𝑠d𝑆 −

𝑆𝑝
𝜑 (𝐔 − 𝐮𝑠) ⋅ 𝐧𝑝 ⋅ 𝛿𝑝d𝑆.

. Interface conditions

In this section, we introduce interface conditions and coupled inter-
ace integrals for the following three different combinations: (1) elas-
ic/poroelastic system, (2) acoustic/poroelastic system, and (3) poroe-
astic/poroelastic system.

.1. Elastic/poroelastic system

To begin with, we consider the interface between elastic and poroe-
astic media. In this case, the pore fluid is prevented to flow into
he elastic medium at the interface. The solid skeleton and the elastic
edium are assumed to be in welded contact. Therefore, the total stress

nd the displacements are continuous at the interface, and the relative
isplacement (of the pore fluid with respect to the solid skeleton)
anishes. The corresponding boundary conditions can be expressed
s [66]
𝑡 ⋅ 𝐧𝑝 = 𝝈𝑒 ⋅ 𝐧𝑝,
(𝐔 − 𝐮𝑠) = 0,
𝑠 = 𝐮𝑒. (12)

The coupled interface integral (𝐼𝑝−𝑒) is obtained as a combination
f the boundary integrals resulting from the weak variational forms of
oth elastic (𝐼𝑒) and poroelastic (𝐼𝑝) domains. It reads as follows:

𝑝−𝑒 = 𝐼𝑝 + 𝐼𝑒 = − ∫𝑆𝑝−𝑒

𝐧𝑝 ⋅ 𝝈𝑡 ⋅ 𝛿𝐮𝑠d𝑆 − ∫𝑆𝑝−𝑒

𝜑 (𝐔 − 𝐮𝑠) ⋅ 𝐧𝑝 ⋅ 𝜹𝑝d𝑆

+ ∫𝑆𝑝−𝑒

𝐧𝑝 ⋅ 𝝈𝑒 ⋅ 𝛿𝐮𝑒d𝑆, (13)

here 𝑆𝑝−𝑒 represents the interface separating elastic and poroelastic
edia; and the appearance of the positive sign of the last term is due

o the identity 𝐧𝑝= − 𝐧𝑒 at every point of the interface.

.2. Acoustic/poroelastic system

Next, we pay attention to the acoustic/poroelastic system with
ither open- or sealed-pore interfaces. For the open-pore interface, the
ore fluid can freely flow in and out of the solid skeleton in the direc-
ion normal to the interface. Thus, there is no pressure difference across
he interface. The relative mass flux should additionally be conserved.
ased on Hamilton’s principle [67], the continuity of the total stress is
nsured at the interface. Summing up, the interface conditions can be
ritten [44]
𝑡 ⋅ 𝐧 = −𝑝𝑎 ⋅ 𝐧,
1 ∇𝑝𝑎 ⋅ 𝐧 = (1 − 𝜑)𝐮𝑠 ⋅ 𝐧 + 𝜑𝐔 ⋅ 𝐧,
4

𝜌0𝜔2
𝑝 − 𝑝𝑎 = 0. (14)

For the sealed-pore interface, the pore fluid cannot flow freely in
and out of the solid skeleton in a direction normal to the interface. In
addition, the acoustic pressure generally will be discontinuous across
the interface [15]. Therefore, the interface conditions can be expressed
as

𝝈𝑡 ⋅ 𝐧 = −𝑝𝑎 ⋅ 𝐧,
1

𝜌0𝜔2
∇𝑝𝑎 ⋅ 𝐧 = (1 − 𝜑)𝐮𝑠 ⋅ 𝐧 + 𝜑𝐔 ⋅ 𝐧,

(𝐔 − 𝐮𝑠) ⋅ 𝐧 = 0. (15)

The coupled integral (𝐼𝑝−𝑎) on the interface 𝑆𝑝−𝑎 results from the
nteraction of fluid and poroelastic media. It reads as follows:

𝑝−𝑎 = 𝐼𝑝 + 𝐼𝑎 = − ∫𝑆𝑝−𝑎

𝐧𝑝 ⋅ 𝛿𝝈𝑡 ⋅ 𝐮𝑠d𝑆 − ∫𝑆𝑝−𝑎

𝜑 (𝐔 − 𝐮𝑠) ⋅ 𝐧𝑝 ⋅ 𝛿𝑝d𝑆

+ ∫𝑆𝑝−𝑎

1
𝜔2𝜌𝑎

∇𝑝𝑎 ⋅ 𝐧𝑝 ⋅ 𝛿𝑝𝑎d𝑆. (16)

.3. Poroelastic/poroelastic system

Finally, we consider the poroelastic/poroelastic system with open-
ore interfaces. Both media are described in terms of a mixed formula-
ion based on (𝐮𝑠, 𝑝). The coupled integral can be obtained as

𝑝1−𝑝2 = 𝐼𝑝1 + 𝐼𝑝2

= − ∫𝑆𝑝1−𝑝2

𝐧𝑝1 ⋅ 𝝈𝑡
1 ⋅ 𝛿𝐮

𝑠
1d𝑆 − ∫𝑆𝑝1−𝑝2

𝜑1
(

𝐔1 − 𝐮𝑠1
)

⋅ 𝐧𝑝1 ⋅ 𝛿𝑝1d𝑆

+ ∫𝑆𝑝1−𝑝2

𝐧𝑝1 ⋅ 𝝈𝑡
2 ⋅ 𝛿𝐮

𝑠
2d𝑆 + ∫𝑆𝑝1−𝑝2

𝜑2
(

𝐔2 − 𝐮𝑠2
)

⋅ 𝐧𝑝1 ⋅ 𝛿𝑝2d𝑆,

(17)

here subscripts 1,2 denote the poroelastic media 1 and 2, respectively.
ndeed, at the interface 𝑆𝑝1−𝑝2 , interface conditions are given by [64]
𝑡
1 ⋅ 𝐧 = 𝝈𝑡

1 ⋅ 𝐧,

1
(

𝐔1 − 𝐮𝑠1
)

= 𝜑2
(

𝐔2 − 𝐮𝑠2
)

,
𝑠
1 = 𝐮𝑠2,

1 = 𝑝2. (18)

ere the first and second equations denote the continuity of the total
tress and relative mass flux across the interface, respectively. The last
wo equations ensure that the solid skeleton and pore fluid are well
onnected.

. Finite element method and geometric model

In this work, we consider three-dimensional (3D) square-lattice
etamaterials composed of circular inclusions embedded in a matrix.
ither the inclusion or the matrix can be elastic, acoustic, or poroelastic
edia. 𝐧𝑚 and 𝐧𝑠 are the outward unit normal vectors of the matrix and

nclusion at the interface, respectively. The two normal unit vectors
oint in opposite directions, 𝐧𝑠= − 𝐧𝑚.

According to Bloch’s theorem, both displacements and pressure
ields of the harmonic wave read

(𝐫) = 𝑒−𝑖(𝐤⋅𝐫)𝐮𝐤(𝐫),

𝑝(𝐫) = 𝑒−𝑖(𝐤⋅𝐫)𝑝𝐤(𝐫), (19)

here 𝐤=(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the Bloch wave vector; and 𝐮𝐤(𝐫)=[𝑢𝐤𝑥, 𝑢𝐤𝑦, 𝑢𝐤𝑧]
nd 𝑝𝐤(𝐫) are periodical functions with the same periodicity as the
rystal lattice.

BOFEM is adopted to calculate the complex band structure, by
ubstituting (19) into the wave equation to obtain the general form. As
note, the wave vector is considered the eigenvalue. The general form
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𝐑

𝐋

𝐑𝑎−𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

−𝜔2
[

𝐦−1(𝑖𝑘𝑥𝑝𝐤 + 𝑝𝐤,𝑥, 𝑖𝑘𝑦𝑝𝐤 + 𝑝𝐤,𝑦, 𝑖𝑘𝑧𝑝𝐤 + 𝑝𝐤,𝑧) ⋅ 𝐧𝑎∕𝜔2 +
(

1 − 𝜌𝑓𝐦
−1
)

𝐮𝑠𝐤 ⋅ 𝐧
𝑎
]

⎤

⎥

⎥

⎥

⎥

⎦

,

Box I.
nd interface conditions are combined within the commercial software
omsol Multiphysics to calculate the complex band structure for the
ifferent systems. Numerical calculations are implemented using the
DE (Partial Difference Equation) the module of Comsol Multiphysics.
he discretized partial differential equations can be written using the
ollowing equations system [68]

∇ ⋅ 𝐓 = 𝐆 𝛺,

𝐧 ⋅ 𝐓 = 𝐑 𝜕𝛺𝑁 ,

𝐋 = 0 𝜕𝛺𝐿, (20)

here 𝛺, 𝜕𝛺𝑁 , and 𝜕𝛺𝐿 are the unit cell domain, Neumann boundary,
nd Dirichlet boundary, respectively; 𝐓 represents the 4 × 4 equation
atrix governing the problem; 𝐆,𝐑,𝐋 are 4 × 1 coefficient matrices
ependent on variable or its partial derivative and 𝐧 is the outward
ormal unit vector to the interface.

For different systems, the coefficient matrices can be obtained by
ifferent interface conditions. 𝐓 and 𝐆 are determined by the wave
quations, respectively. The expressions of coefficient matrices of 𝐑 and
are derived below.
For the elastic/poroelastic system, substituting the third expression

f Eq. (12) into Eq. (13), Eq. (13) becomes the equivalent weak integral
orm of the first and second equations of Eq. (12). This means that the
otal stress continuity and relative displacement is zero at the interface
ill be automatically satisfied during the finite element calculation.
herefore, only displacement vector continuity (𝐮𝑠=𝐮𝑒) should be con-
trained explicitly. Substituting the third equation of Eq. (12) into (20),
he coefficient matrix 𝐋𝑝−𝑒 can be obtained as

𝑝−𝑒=

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑒𝐤𝑥 − 𝑢𝑠𝐤𝑥
𝑢𝑒𝐤𝑦 − 𝑢𝑠𝐤𝑦
𝑢𝑒𝐤𝑧 − 𝑢𝑠𝐤𝑧

0

⎤

⎥

⎥

⎥

⎥

⎦

, (21)

According to the law of variation 𝛿(𝑑𝑞)=𝑑𝛿𝑞 + 𝑞𝛿𝑑, 𝑑, 𝑞 are two
ependent variables, and 𝛿𝑑, 𝛿𝑞 are two test functions, respectively. For
he acoustic/poroelastic system with the open-pore interface, substitut-
ng Eq. (14) into Eq. (16), the coupled integral (𝐼𝑝−𝑎) can be simplified
s

𝑝−𝑎 = ∫𝛤𝑝−𝑎
𝛿 (𝑝𝑎𝐮𝑠 ⋅ 𝐧)d𝛤 , (22)

The coupled integral Eq. (22) is similar to that of the acoustic-
lastic structure [69], so the poroelastic medium will be coupled to
he acoustic medium through the classical acoustic-elastic coupling
erm [65]. In addition, the boundary condition 𝑝=𝑝𝑎 also needs to
e explicitly imposed on 𝑆𝑝−𝑎. Substituting the interface conditions
q. (14) into Eq. (20), the coefficient matrices 𝐑𝑝−𝑎, 𝐑𝑎−𝑝 (see Box I),
nd 𝐋𝑝−𝑎 for an open-pore interface can be obtained as

𝑝−𝑎=

⎡

⎢

⎢

⎢

⎢

⎣

(

𝑝𝑎𝐤 + 𝐵6𝑝𝐤∕𝐵8
)

𝑛𝑝𝑥
(

𝑝𝑎𝐤 + 𝐵6𝑝𝐤∕𝐵8
)

𝑛𝑝𝑦
(

𝑝𝑎𝐤 + 𝐵6𝑝𝐤∕𝐵8
)

𝑛𝑝𝑧
0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑝−𝑎=

⎡

⎢

⎢

⎢

⎢

0
0
0

𝑎

⎤

⎥

⎥

⎥

⎥

. (23)
5

⎣

𝑝𝐤 − 𝑝𝐤⎦
Fig. 1. The 2D square-lattice metamaterial of a circular inclusion embedded in a
matrix. (a) Schematic diagram of the unit cell. The metamaterial is assumed infinite
along the 𝑦-axis and periodic in the (𝑥, 𝑧) plane. (b) Sketch of the corresponding first
Brillouin zone.

here, 𝐑𝑝−𝑎 and 𝐑𝑎−𝑝 indicate that the constraints are imposed on the
poroelastic domain and acoustic domain, respectively.

For the sealed-pore interface, substituting Eq. (15) into Eq. (16), the
coupled integral 𝐼𝑝−𝑎 is consistent with the open-pore interface. The
coefficient matrices 𝐑𝑝−𝑎 and 𝐑𝑎−𝑝 (see Box II) can be derived as

𝐑𝑝−𝑎=

⎡

⎢

⎢

⎢

⎢

⎣

(

𝑝𝑎𝐤 + 𝐵6𝑝𝐤∕𝐵8
)

𝑛𝑝𝑥
(

𝑝𝑎𝐤 + 𝐵6𝑝𝐤∕𝐵8
)

𝑛𝑝𝑦
(

𝑝𝑎𝐤 + 𝐵6𝑝𝐤∕𝐵8
)

𝑛𝑝𝑧
𝜌𝑓

(

𝑢𝐤𝑥𝑛𝑥∕𝑚1 + 𝑢𝐤𝑦𝑛𝑦∕𝑚2 + 𝑢𝐤𝑧𝑛𝑧∕𝑚3
)

⎤

⎥

⎥

⎥

⎥

⎦

. (24)

For the poroelastic/poroelastic system, it should be noted that
Eq. (17) is equivalent to the first and second equations of Eq. (18).
Therefore, the continuity of both total stress and relative displacement
is automatically satisfied. In this case, only 𝐮𝑠1=𝐮

𝑠
2 and 𝑝1=𝑝2 need to

be explicitly imposed on 𝑆𝑝−𝑒. As a result, the coefficient vector 𝐋𝑝1−𝑝2
can be obtained as

𝐋𝑝1−𝑝2=

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑠2𝐤𝑥 − 𝑢𝑠1𝐤𝑥
𝑢𝑠2𝐤𝑦 − 𝑢𝑠1𝐤𝑦
𝑢𝑠2𝐤𝑧 − 𝑢𝑠1𝐤𝑧
𝑝2𝐤 − 𝑝1𝐤

⎤

⎥

⎥

⎥

⎥

⎦

. (25)

5. Numerical results and discussion

In this section, propagation characteristics of elastic waves in a 2D
𝑥 − 𝑧 plane of elastic/poroelastic and fluid/poroelastic metamaterials
are investigated. The 𝑦-axis is parallel to the invariance axis, and
displacements and pressure fields are independent of the 𝑦-coordinate
(𝐤𝑥=0). Furthermore, propagation of pure shear wave is neglected for
both elastic and poroelastic media, since it only involves the solid
skeleton. The geometry considered is depicted in Fig. 1. The lattice
constant is 𝑎=2m and the radius of the inclusion is 𝑟=0.4𝑎.

Complex band structures, modal distributions, and transmission
spectra are calculated and presented. The influence of elastic material
parameters, inclusion radius, and the pore fluid viscosity on dispersion
relations and attenuation of the wave is also analyzed. Note that we
only discuss wave propagation along the 𝛤X direction in the present
work. In the following, for convenience, we designate combinations
of materials using the letter P for poroelastic, E for elastic, and F for
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K
𝛼

𝐑𝑎−𝑝=

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

−𝜔2
[

𝐦−1(𝑖𝑘𝑥𝑝𝐤 + 𝑝𝐤,𝑥, 𝑖𝑘𝑦𝑝𝐤 + 𝑝𝐤,𝑦, 𝑖𝑘𝑧𝑝𝐤 + 𝑝𝐤,𝑧) ⋅ 𝐧𝑎∕𝜔2 +
(

1 − 𝜌𝑓𝐦
−1
)

𝐮𝑠𝐤 ⋅ 𝐧
𝑎
]

⎤

⎥

⎥

⎥

⎥

⎦

,

Box II.
fluid. The combination matrix/inclusion can be either P/E (an elastic
inclusion in a poroelastic matrix), E/P (a poroelastic inclusion in an
elastic matrix), P/F (a fluid inclusion in a poroelastic matrix), or F/P
(a poroelastic inclusion in a fluid matrix). These different cases are
treated separately. We also verify the correctness and effectiveness of
the formulations established in the paper, see Appendix B for details.

5.1. An elastic inclusion in a poroelastic matrix (P/E system)

First, we consider an elastic inclusion embedded in a poroelastic ma-
trix (poroelastic medium 1), with the geometry shown in Fig. 1(a). Ma-
terial parameters for the matrix are: C11=10 GPa, C12=2 GPa, K𝑠=2 GPa,
𝑓=2 GPa, 𝜌𝑠=3000 kg∕m3, 𝜌𝑓=1000 kg∕m3, 𝜂 = 0.0 Pa/s, 𝛼1(∞)=1,
3(∞)=1, 𝛷=0.2, and 𝑑=6.32 μm. Material parameters for the inclusion

(concrete) are: C11=33.3 GPa, C12=8.3 GPa, and 𝜌𝑠=2500 kg∕m3. The
poroelastic medium is isotropic and the pore fluid viscosity is ignored.
The complex band structure is shown in Fig. 2(a). The reduced fre-
quency 𝑓𝑎 is plotted as a function of the reduced wave number 𝑘𝑎∕(2𝜋).
Wave polarization is identified by the relative energy ratio between
the kinetic energy in the pore fluid and the total kinetic energy in the
poroelastic matrix and the elastic inclusion. It is expressed as:

𝑃𝑓 =
∫ 𝐸𝑓

𝑘 𝑑𝑆1

∫
(

𝐸𝑠
𝑘 + 𝐸𝑓

𝑘

)

𝑑𝑆1 + ∫ 𝐸𝑒
𝑘𝑑𝑆2

. (26)

here 𝐸𝑒
𝑘 = 𝜌𝑒𝜔2 (𝑢2𝑥 + 𝑢2𝑧

)

∕2, 𝐸𝑠
𝑘 = (1 − 𝜑) 𝜌𝑠𝜔2 (𝑢2𝑥 + 𝑢2𝑧

)

∕2, and 𝐸𝑓
𝑘 =

𝜑𝜌𝑓𝜔2 (𝑈2
𝑥 + 𝑈2

𝑧
)

∕2 are the kinetic energy for the elastic inclusion, the
pore solid skeleton, and the pore fluid, respectively. 𝑆1 and 𝑆2 represent
the matrix and inclusion domains, respectively.

To compare with the dispersion relation, we also calculate the
transmission spectrum for a finite structure with 50 unit cells. Three
different excitation signals,

(

𝑢𝑥0, 𝑢𝑦0, 𝑝0
)

= (1, 0, 0), (0,1,0), and (0,0,1),
are applied to the left side of the finite structure. The transmitted signal
is detected on the right side of the structure. Continuous boundary
conditions are applied to the upper and lower surfaces. The frequency
response is defined as

𝑇 = log10

(

∫ 𝑈𝑅𝑑𝑙
∫ 𝑈0𝑑𝑙

)

, (27)

where 𝑈𝑅= |

|

𝑢𝑥|| or |

|

|

𝑢𝑦
|

|

|

or |𝑝| and 𝑈0=1 are the amplitudes of the
received and incident signals, respectively. As a note, 𝑙=𝑎 is the length
of the line for recording the transmitted signal.

As a reference, the complex band structure for the P/P system with
the open-pore interface is plotted with black points. This system is
obtained by replacing the elastic inclusion with the poroelastic medium
2, considering the same solid skeleton parameter, whereas the pore
fluid is the same as for the matrix. Unlike the wavenumber band gap
of 2D FSPMs [50], an avoided crossing is formed at low frequencies
in this work. The avoided crossing is characterized by real parts of
the bands avoiding each other [70]. This characteristic is similar to
the anticrossing of photon–magnon coupling which is formed due
to coherent interaction between microwave optical photons and spin
systems [71].

For the P/E system, the fast-longitudinal (P1) and slow-longitudinal
(P2) waves are distinguished by color varying from blue (0) to red (1).
Anyway, these longitudinal waves interact and hybridize. Compared
6

with the P/P system, it is clear that three waves have smaller phase
velocities. Especially, the decreasing of the P2 wave is the most remark-
able. The first band gap of the P2 wave is also widened from 375 m/s
to 740 m/s. We find that a wavenumber band gap [72] appears at low
frequencies (𝑓𝑎=800 m∕s). The wavenumber band gap is characterized
by real parts of bands moving toward each other and converging [70].
This characteristic is similar to the opposite anticrossing of photon–
magnon coupling generated by the compensation of both intrinsic
damping and coupling-induced damping of magnon modes [73].

Another striking phenomenon is the emergence of a complete
band gap between 1170 m/s and 1200 m/s and of flat bands around
𝑓𝑎=1180 m∕s. For clarification, the zoomed complex band structure
and transmission spectrum in reduced frequency regions 1130 m/s–
1230 m/s and 1130 m/s–1450 m/s are displayed in Fig. 2(c–f). We
can see that the frequency response decreases very quickly and that
transmission dips are very sharp for all three waves [Fig. 2(d)]. In-
terestingly, the transmission of the SV wave shows the same trend as
transmissions of two longitudinal waves, which is not obvious from
the observation of the imaginary parts of the complex band structure.
Modal distribution at marked points (N1 − N5) in Fig. 2(c,e) are shown
in Fig. 3. It is observed that the vibration mode at the marked point N5

is mainly dominated by the pore fluid displacement, and displacement
polarization 𝑃𝑑=

|

|

|

𝑢𝑦
|

|

|

∕|𝑈 | is 1:7. This means that when the SV wave
is selected as the source signal, the P2 wave will also be excited.
Therefore, the response is the result of the coupling of two waves. It
is also seen that the transmission dip for the SV wave is deeper than
that for two longitudinal waves since the minimum imaginary part of
the SV wave is larger. Thus, the displacement along the 𝑥-direction of
point N4 decays slower than that of point N5.

It is worth pointing out that generation mechanisms for band gaps
are different between the SV wave and two longitudinal waves. For the
SV wave, it is easily found that the continuity of the second branch is
broken and a 𝜋 phase jump exists. This is known as the local resonance
band gap [74], formed from the hybridization between a local reso-
nance and the continuous Bloch wave. It is clearly observed that the
vibration at the N2 and N5 points is localized in the matrix, and that
the displacement component in the pore fluid is much larger than in
the solid skeleton and in the elastic inclusion. Therefore, hybridization
occurs in the pore fluid. The corresponding band gap is narrow, so
hybridization is weak.

For two longitudinal waves, it can be also seen from Fig. 2(e)
that the P1 wave and the P2 wave intersect at point D1 and form an
evanescent wave EP12. Imaginary parts first increase with frequency
and then separate at point D2. It is observed that the imaginary part
of the P1 wave gradually decreases, but that of the P2 wave gradually

increases from point D2. Thus, the trajectory of the imaginary part has
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Fig. 2. Complex band structures and transmission spectra for the P/E system (an elastic inclusion in a poroelastic matrix). Panel (a) consists of two parts: the left and right parts
show the relation of the reduced frequency with the real and imaginary parts of the wave number, respectively. The color scale indicates wave polarization varying from blue (0)
to red (1). Black dots are for the complex band structure of the P/P system with the open-pore interface. Panel (b) shows the transmission spectrum of a finite structure with 50
unit cells. The red, blue, and pink solid lines are for the responses to incident signals (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. Light gray regions represent band gaps for the SV
wave in the complex band structure, whereas gray regions show band gaps for longitudinal waves. Panels (c–f) are zoomed complex band structures and transmission spectra in
the reduced frequency regions 1130 m/s–1230 m/s and 1130 m/s–1450 m/s.
a cusp. At the same time, the frequency response [Fig. 2(f)] rapidly
decreases to form a transmission dip at which the imaginary part
reaches the maximum value. These traits are similar to local resonance
band gaps [75]. There are further differences when the imaginary part
does not reduce to zero. Modal vibration (Fig. 3) at marked points (N1,
N3, N4) is similar to that of the SV wave at point N5. Modal vibration
is dominated by the pore fluid, and the vibration of the porous solid
can almost be ignored. This also leads the relative energy ratio (𝑃𝑓 )
of the P1 wave to approach 1. In addition, the ‘quasi-resonance Bragg’
band gap [76] is found. It is formed by the overlapping between the
first Bragg band gap and the local resonance band gap of the P1 wave.
Hence, compared with the result of the P/P system, the lower boundary
of the first band gap of P1 waves moves down in frequency and the
band gap widens. These have not been observed in previous work
on the fluid-saturated periodic porous medium [49–51]. It is worth
7

emphasizing that there is no separate local resonance band gap in the
poroelastic matrix because resonances emerge only after introducing
the elastic and poroelastic interface.

5.2. A poroelastic inclusion in an elastic matrix (E/P system)

Next, we consider wave propagation in the E/P system. Mate-
rial and geometric parameters are consistent with those described
above. Results are shown in Fig. 4(a,b). Wave polarization is now ex-
pressed as 𝑃𝑓𝑒=∫ 𝜌𝑒𝜔2𝑢2𝑥∕2d𝑆1∕∫ 𝜌𝑒𝜔2 (𝑢2𝑥 + 𝑢2𝑧

)

∕2 d𝑆1. The color scale
varies from red to blue, representing the change of wave polarization
from longitudinal to shear. Two different wave sources

(

𝑢𝑥0, 𝑢𝑧0
)

= (1, 0)
and (0,1) are considered. The frequency response is now defined as
𝑇=log10(∫ 𝑈𝑅𝑑𝑙∕∫ 𝑈0𝑑𝑙), where 𝑈𝑅= |

|

𝑢𝑥|| and 𝑈0=1 are the amplitudes
of the received and incident signals. As a reference, we also plot the
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Fig. 3. Modal distributions at marked points (N1 ,N2 ,N3 ,N4 ,N5) in Fig. 2(a). Panels (a), (b), (c), and (d) show normalized displacements |

|

𝑢𝑥||∕𝑢max, ||𝑢𝑧||∕𝑢max, ||𝑈𝑥
|

|

∕𝑢max, and |

|
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|

|

∕𝑢max,
respectively. 𝑢max=max

(

|

|

𝑢𝑥|| , ||𝑢𝑧|| , ||𝑈𝑥
|

|

, |
|

𝑈𝑧
|

|

)

at every marked point. The color scale represents the normalized displacement amplitude ranging from 0 (blue) to 1 (red).
real band structure for the solid/solid structure with black dots. This
computation is achieved by replacing the poroelastic inclusion with an
elastic inclusion similar to the porous solid skeleton. Compared with
the result of the solid/solid system, it is noted that flat bands appear
around 𝑓𝑎=840 m∕s and 1350 m/s. For clarity, zoomed complex band
structures and transmission spectra are shown for reduced frequency
ranges 780 m/s–900 m/s and 1200 m/s–1500 m/s in Fig. 4(c–f). It
is clearly seen from Fig. 4(c,d) that a pass band (780 m/s–900 m/s)
for SV waves appears inside the first Bragg band gap for the SV wave
of the solid/solid result. Modal distributions at marked points O1 − O5
are illustrated in Fig. 5. It can be seen that the vibration at O3 and
O4 points is concentrated in the inclusion. Furthermore, displacement
distributions in the pore fluid at points O3 and O4 are similar. We
emphasize that flat bands are associated with the resonance of the
inclusion. Meanwhile, they appear owing to the introduction of the
elastic and poroelastic interface.

Another observed feature is that the continuity of the first branch
for the P wave is broken and a low-frequency band gap (800 m/s–
870 m/s) is formed. Modal distributions at marked points (O1,O2,O5)
8

are concentrated on the inclusion. And, the distribution of 𝑈𝑥 and
𝑈𝑧 is similar. Thus, this is again a local resonance band gap. Dif-
ferent from the P/E case, the locally resonant band gap opens up
as a result of the interaction between locally resonant modes of the
poroelastic inclusion and of longitudinal waves propagating in the
matrix [74]. That interaction, in turn, leads to a flattening of branches
at intersections and reduction in the group velocities [77]. Surprisingly,
transmission is not in direct relation with the imaginary part of the P
wave, and there is no transmission dip as observed for traditional local
resonance band gaps [75,78]. Calculated displacement polarization
(𝑃𝑑=||𝑢𝑥||max∕||𝑢𝑧||max) in the matrix at points O2 is 5:1. This means that
when the P wave is selected as the wave source, the SV wave will
also be excited. As a consequence, interference between the P wave
and SV wave occurs [79] and the frequency response is similar to the
minimum imaginary part among P and SV waves. The zoomed complex
band structure and transmission spectrum for the reduced frequency
range 1200 m/s–1500 m/s also show similar characteristics. A local
resonance band gap for SV waves forms and a pass band for P waves
appear inside the Bragg band gap for P waves of the solid/solid system,
because of the existence of the elastic and poroelastic interface. In
addition, a complete band gap (1335 m/s–1342 m/s) with a very large

value of the transmission dipappears.
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Fig. 4. Complex band structures and transmission spectra for the E/P system (a poroelastic inclusion in an elastic matrix). Panel (a) shows the complex band structure or the
dependence of the reduced frequency with the real and imaginary parts of the wave number. Black dots represent the real band structure of a 2D solid/solid structure with constant
geometric parameters. The color scale indicates the ratio of the kinetic energy in the 𝑥 direction to the total kinetic energy in the matrix, ranging from 0 (blue) to 1 (red). Light
gray regions represent band gaps for SV waves, whereas gray regions represent band gaps for P waves. Panels (c) and (e) are zoomed complex band structures, and panels (d)
and (f) are zoomed frequency responses of panels (a) and (b), for reduced frequency ranges 780 m/s–900 m/s and 1200 m/s–1500 m/s, respectively.
5.3. Parametric study

The dispersion relation is strongly affected by material and geomet-
ric parameters. Hence, we examine the influence of material properties
and inclusion radius on wave propagation for the P/E and the E/P
systems. Results are presented in Figs. 6 and 7.

For the P/E system, when the radius is decreased from 𝑟=0.4𝑎
[Fig. 2(a)] to 0.2𝑎 [Fig. 6(a)], the wavenumber band gap at low
frequencies becomes an avoided crossing around 𝑓𝑎=750 m∕s. But
a wavenumber band gap appears around 𝑓𝑎=1050 m∕s. A similar
change can be achieved by the rotation of a YIG sphere, in which
case both an avoided crossing and a wavenumber band gap can be ob-
served [80]. The phase velocity of the P2 wave obviously becomes large
since the interference wavelength in the structure is decreased [81].
The first Bragg band gap is narrowed as Bragg scattering in the PC
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becomes weak [82]. No complete band gap is found. When the inclu-
sion is replaced with epoxy [Fig. 6(c)], the material parameters are:
C11=10.454 GPa, C12=1.59 GPa, 𝜌𝑠=1180 kg∕m3. There is also in this
case an avoided crossing around 𝑓𝑎=750 m∕s, similar to locking in the
presence of weak coupling [83]. The first branch of the P1 wave is
broken by the flat band at 𝑓𝑎 ≈ 1150 m∕s. If aluminum (C11=125.7 GPa,
C12=68.3 GPa, 𝜌𝑠=2730 kg∕m3) is selected instead of epoxy (Fig. 6(e)), a
wavenumber band gap is produced at low frequencies (𝑓𝑎 ≈ 830 m∕s),
similar to the concrete result in Fig. 2(a). Two complete band gaps are
generated. At the same time, a quasi-resonance Bragg band gap also
forms at 𝑓𝑎 ≈ 1200 m∕s. Therefore, these reveal that the larger radius
and the stiffer inclusion, the more favorable it is to generate the wave
number and the ‘quasi-resonance Bragg’ band gaps.

Fig. 7 presents complex band structures and frequency responses
for the E/P system, for different material and geometrical parameters.
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Fig. 5. Modal distributions at marked points (O1 ,O2 ,O3 ,O4 ,O5) in Fig. 4(c). Panels (a), (b), (c), and (d) show normalized displacements |
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at every marked point. The color scale is the same as in Fig. 3.
If 𝑟∕𝑎=0.2, in comparison with Fig. 4(a), the phase velocity of two
longitudinal waves obviously becomes large and flat bands move to
higher frequencies. Two complete band gaps are formed at 𝑓𝑎 ∈
1634 m∕s–1688 m/s and 1852 m/s–1960 m/s. When the radius is
constant (𝑟=0.4𝑎) and concrete is replaced by the epoxy, the local
resonance band gap of the P wave is widened. A complete band gap
[Fig. 7(d)] around 𝑓𝑎=885 m∕s is produced since the P and SV bang
gaps overlap. The corresponding frequency response shows a deep
transmission dip. When concrete is replaced with aluminum, the result
is similar to Fig. 4(a). The first locally resonant band gap for the P wave
is relatively narrow because of strong hybridization [74]. Furthermore,
there is a pass band for the SV wave inside the first local resonance
band gap for the P wave. There are, however, also differences with
the concrete matrix [Fig. 4(a)]. A complete band gap is found at low
frequencies (812 m/s–865 m/s). It can be concluded that the softer the
elastic material, the more favorable it is to forming a complete band
gap. The harder the elastic material, the more likely the pass band of
the SV wave will appear inside the locally resonant band gap for the P
wave.

5.4. A fluid inclusion in a poroelastic matrix (P/F system) with the open-
pore interface

Now, we study wave propagation in the P/F system with the open-
pore interface. For the matrix, we take the same parameter for the
10
poroelastic medium as for the P/E system. The fluid in the inclusion is
water, whose density and velocity are 𝜌𝑤=10

3 kg/m3 and 𝑐𝑤=1490 m∕s,
respectively. The complex band structure and the transmission spec-
trum are presented in Fig. 8. Wave polarization is defined as the
energy ratio between the kinetic energy in the pore fluid and the total
kinetic energy in the poroelastic matrix 𝑃𝑓=∫ 𝐸𝑓

𝑘 𝑑𝑆1∕∫
(

𝐸𝑠
𝑘 + 𝐸𝑓

𝑘

)

d𝑆1.
For comparison, the real part of the complex band structure for the
P/E system is also plotted with black dots. It is observed that phase
velocities of the P2 and SV waves for the P/F system are smaller than
for the P/E system, since the interference wavelength of multiple Bragg
scattering in the structure is increased [81]. Neither a wavenumber
band gap nor an avoided crossing is observed, but two complete band
gaps are formed in reduced frequency ranges 400 m/s–820 m/s and
1150 m/s–1350 m/s. Another remarkable feature in Fig. 8(a) is that
the cut-off frequency for the P1 wave emerges around 𝑓𝑎=845 m∕s
owing to the introduction of the fluid and poroelastic interface. This
may be associated with the free flow of fluid across the continuous
interface and the coupling of the displacement between pore fluid and
water [44]; however, it is not related to periodicity [84]. In theory, the
P1 wave within the cut-off band gap should be fully suppressed [85].
In fact, however, attenuation is seen only when band gaps for both P1
and P2 waves overlap, since wave equations for two longitudinal waves
are generally coupled. As seen in Fig. 8(a), the overlapping band gap
range from the highest point Q1 (𝑓𝑎=540 m∕s) of the first branch of
the P wave to the cut-off frequency point Q (𝑓𝑎=615 m∕s) of the P
2 2 1
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Fig. 6. Influence of the normalized radius 𝑟∕𝑎 and elastic material parameters on the complex band structure and the frequency response for the P/E system (an elastic inclusion in
a poroelastic matrix). Panels (a,b) present results for 𝑟∕𝑎=0.2. Panels (c,d) and (e,f) present results for epoxy and aluminum, respectively. Black dots are real parts of the complex
band structure for the concrete inclusion [Fig. 2(a)]. The color scale indicates wave polarization varying from blue (0) to red (1). The red, blue, and pink solid lines are for
transmission responses to incident signals (1,0,0), (0,1,0), and (0,0,1), respectively. Light gray regions represent the band gaps for the SV wave in the complex band structure,
whereas gray regions show the band gaps for the two longitudinal waves.
wave. Surprisingly, the phase velocity of the SV wave is even smaller
than that of the P2 wave. This result is somewhat counterintuitive and
has not been observed before to the best of our knowledge.

5.5. A poroelastic inclusion in a fluid matrix (F/P system) with the open-
pore interface

The complex band structure and the transmission spectrum for
the F/P system with the open-pore interface are presented in Fig. 9.
Material and geometric parameters are again consistent with the P/F
system. As a reference, the real part of the complex band structure for
the fluid/solid structure is plotted with black dots. The latter case is
obtained by substituting the poroelastic inclusion with the elastic solid,
considering parameters of the porous solid skeleton. Wave polarization
11
is defined as the energy ratio between the kinetic energy in the pore
fluid and the total kinetic energy of the poroelastic inclusion. It is worth
pointing out that the dispersion relation is strongly dependent on the
properties of the inclusion. Compared with the fluid/solid system, the
phase velocity is higher for the F/P system since the poroelastic inclu-
sion is softer [86]. A pass band FP1 [Fig. 9(a)] appears inside the band
gap and transmission is smaller than that of other pass bands [Fig. 9(b)]
due to the vibration of the unit cell mainly concentrated on the matrix.
There are two narrow band gaps in the ranges 944 m/s–948 m/s and
1276 m/s–1279 m/s, and corresponding frequency responses quickly
weaken and transmission dips are very deep. To illustrate the physical
mechanism of their formation, zoomed complex band structures and
frequency responses are shown in Fig. 9(c–f). It is observed that the
variation of the imaginary parts of the bands [Fig. 9(c,e)] and the
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Fig. 7. Influence of normalized radius 𝑟∕𝑎 and elastic material parameters on the complex band structure and the frequency response for the E/P system (a poroelastic inclusion
in an elastic matrix). Panels (a,b) present results for 𝑟∕𝑎=0.2. Panels (c,d) and panels (e,f) present results for epoxy and aluminum for 𝑟∕𝑎=0.4. Black points are real parts of the
complex band structure for the concrete matrix [Fig. 4(a)]. The color scale indicates wave polarization varying from blue (0) to red (1). Light gray regions represent band gaps
for SV waves, whereas gray regions represent band gaps for P waves.
frequency responses [Fig. 9(d,f)] inside the first and the second narrow
band gaps are similar to those of Bragg and local resonance band
gaps [58], respectively. These results are associated with the fluid and
poroelastic interface. In addition, we also pick out points Q3 and Q4

from Fig. 9(c,e) and calculate modal distributions, as shown in Fig. 10.
It is observed that vibration at two points is mainly dominated by the
pore fluid. Furthermore, it is interesting to find that the displacement
distribution in the unit cell is symmetric about the center. Therefore,
we guess that resonance bands LR1 and LR2 [Fig. 9(a)] may be related
to the vibration of the pore fluid.
12
5.6. A fluid inclusion in a poroelastic matrix (P/F system) with the sealed-
pore interface

Wave propagation through the P/F system with the sealed-pore
interface is investigated. Complex band structures and transmission
spectra are presented in Fig. 11. Wave polarization is the same as for
the open-pore interface. Compared with the result for the open-pore in-
terface, the most pronounced difference is that the cut-off frequency of
the P1 wave is not observed. An avoided crossing [Fig. 11(a)] is found
and it is much wider than the open-pore case owing to the stronger
coupling between the porous solid skeleton and pore fluid [44]. It
also can be seen from Fig. 11(b) that two complete band gaps are
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Fig. 8. Complex band structure and transmission spectrum for the P/F system (a fluid inclusion in a poroelastic matrix) with the open-pore interface. The left and right parts in
panel (a) stand for the relation of the reduced frequency with the real and imaginary parts of the wave number. The color scale indicates the ratio of the kinetic energy of the
pore fluid to the total kinetic energy in the matrix, ranging from 0 (blue) to 1 (red). Black dots are the real part of the complex band structure for the P/E system. The calculated
transmission spectrum is plotted in panel (b). The red, blue, and pink solid lines are for responses to incident signals (1,0,0), (0,1,0) and (0,0,1), respectively. Light gray regions
represent band gaps for SV waves, whereas gray regions represent band gaps for P waves.
formed between 883 m/s–908 m/s and 1214 m/s–1248 m/s. Zoomed
complex band structures and frequency responses (700 m/s–1000 m/s
and 1050 m/s–1300 m/s) are depicted in Fig. 11(c–f). It is obviously
observed that the first complete band gap is produced because the
SV wave becomes the evanescent SV wave from point Q5 (𝑓𝑎= 803)
inside the avoided crossing of two longitudinal waves. In addition,
transmission [Fig. 11(d)] of the longitudinal waves is smaller than that
of the SV wave. However, the zoomed complex band structure at high
frequency [Fig. 11(e)] is too complicated to distinguish characteristics
of waves. Similar to the open-pore case, the phase velocity of the SV
wave is still smaller than that of the P2 waves.

5.7. A poroelastic inclusion in a fluid matrix (F/P system) with the sealed-
pore interface

Fig. 12 reports the complex band structure and the transmission
spectrum for the F/P system with the sealed-pore interface. As a ref-
erence, the real part of the complex band structure for the open-pore
interface is also plotted with black dots. Wave polarization is defined
as for the open-pore case. Compared with the open-pore interface, it
is seen that the first branch of the real part almost coincides for both
cases. This implies that the interface has little effect at low frequencies.
However, this band is lower for the sealed-pore case when it closes to
the right boundary. This observation suggests that the phase velocity
becomes small and that the effective density of the phononic state
becomes large. Furthermore, mode interference is strengthened [87].
In addition, the resonant bands move down in frequency and the
transmission dip [Fig. 12(b)] becomes deeper than that of the open-
pore interface. Polarization of the flat band approaches 1 which means
that the vibration of the inclusion is concentrated on the pore fluid. We
also calculate the vibration distribution of the inclusion at point Q6 in
Fig. 13. Obviously, the displacement of the porous solid is much smaller
than that of the pore fluid.

5.8. Influence of radius for the P/F system

We have also checked the influence of the radius 𝑟 of the inclusion
on the propagation of elastic waves for the P/F system with the open-
and sealed-pore interfaces. Calculated results are gathered in Figs. 14
and 15, respectively. For the open-pore interface, with an increase in
the radius, the cut-off frequency for the P1 wave increases. The cut-
off frequency increasing with varying material parameters has been
reported in photonic crystals modeled as a metal-infiltrated opal [88].
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Only a complete band gap appears in Fig. 14(b), but two complete band
gaps are formed in Fig. 14(d). We can also find that the avoided cross-
ing becomes narrow when the radius is increased. Our study further
confirms that the cut-off frequency is associated with the connectivity
of the interface [89]. Different from the results for the P/E system in
Fig. 3(a) and 6(a), however, the band edge of the first branch for SV
waves moves down faster than for P waves as the radius is increased.
Furthermore, when the radius is 𝑟=0.3𝑎 [Fig. 14(c)], the phase velocity
of the SV wave smaller than that of the P2 wave is found.

For the sealed-pore interface, when the radius is 0.2𝑎 [Fig. 15(a)],
the first branches of the dispersion relation of the P2 and SV waves
coincide. Two narrow complete band gaps (around 𝑓𝑎=625 m∕s and
1830 m/s) are observed in Fig. 15(b). Increasing the radius to 0.3𝑎
[Fig. 15(c)], the first branches of the P2 and SV waves are separated
and the phase velocity of the SV wave is smaller than that of the P2
wave. It is consistent with that of the open-pore interface. At the same
time, two complete band gaps [Fig. 15(d)] are generated in reduced
frequency ranges 540 m/s–580 m/s and 1030 m/s–1130 m/s, and the
frequency response [Fig. 15(d)] of the second complete band gap is
very small. It is also observed that the phase velocity of the P1 wave is
weakly dependent on the radius of the inclusion.

5.9. Effects of pore fluid viscosity

The effects of the pore fluid viscosity on wave propagation in
poroelastic media is also of importance [90,91], since it makes wave
propagation dispersive and energy dissipative. In the following, the
pore fluid viscosity is introduced to analyze its influence on wave
characteristics. The calculated results are further compared to results
for the inviscid pore fluid. Geometrical and material parameters are
otherwise the same as those for metamaterials with an inviscid pore
fluid of the previous sections.

5.9.1. The P/E and E/P systems
Firstly, we pay attention to the effect of the pore fluid viscosity

on wave propagation for the P/E system. Fig. 16(a,b) show the dis-
persion relation and the transmission spectrum for a small viscosity
(𝜂 = 1e−7 Pa s). As a reference, the complex band structure for the
inviscid pore fluid is plotted with black dots. Sharp corners of the real
part at high-symmetry points of the Brillouin zone become rounded,
as reported earlier [92]. Interestingly, real parts of the wavenumber
band gap begin to approach each other and imaginary parts become
non-zero. At the same time, a slight attenuation is also seen in the
frequency response [Fig. 16(b)]. Inside the complete band bap, from
1130 m/s to 1230 m/s, the real and imaginary parts of degenerated

evanescent waves EP12 are completely separated. In addition, the cusp
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Fig. 9. Complex band structure and transmission spectrum for the F/P system (a poroelastic inclusion in a fluid matrix) with the open-pore interface. The left and right parts in
panel (a) stand for the relation of the reduced frequency with the real and imaginary parts of the wave number. The color scale indicates the ratio of the kinetic energy of the
pore fluid to the total kinetic energy of the inclusion, from 0 (blue) to 1 (red). Black dots present the real part of the complex band structure of the associated 2D fluid/solid
system with solid skeleton parameters of the poroelastic inclusion used for the solid. The calculated transmission spectrum is plotted in panel (b). Red solid lines present the
received signal log10 |𝑝| under the unit excitation (𝑝0=1). Black dashed lines present the transmission of the fluid/solid system. Gray regions indicate band gaps for longitudinal
waves. Panels (c–f) are zoomed complex band structures and transmission spectra in the reduced frequency regions 940 m/s–950 m/s and 1272 m/s–1282 m/s.
of the imaginary part is not observed and the transmission dip inside
the quasi-resonance Bragg band gap also disappears. Inside the local
resonance band gap for the SV wave, the imaginary part becomes
smaller, which contributes to the propagation of elastic waves. As a
result, the transmission dip in the frequency response becomes even
shallower and smoother. This is significantly contrary to the previous
result of two fluid-saturated porous metamaterials [50] due to the
introduction of the poroelastic and elastic interface. Furthermore, the
transmission gradually gets smaller above the first band gap and all
band gaps are widened. It is worth mentioning that the imaginary part
of the P2 wave is non-zero from the zero frequency, similar to the
single-phase result [93]. Meanwhile, the frequency response becomes
small at low frequencies. It may be due to an energy loss caused by the
relative viscous flow of the pore fluid with respect to the porous solid
skeleton [48].
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Next, the viscosity (𝜂=10−7 Pa s) of the pore fluid is introduced into
the E/P system. Calculated results are presented in Fig. 16(c,d). Real
parts [Fig. 16(c)] of the wave number for both the P and SV waves
deviate from high symmetric points of the first Brillouin zone. At the
same time, flat bands disappear. At low frequencies, a complete band
gap around 𝑓𝑎=800 m∕s is produced and corresponding transmission
[Fig. 16(d)] decreases particularly fast. The second complete band gap
around 𝑓𝑎=1300 m∕s is widened.

5.9.2. The P/F and F/P systems with the sealed-pore interface
Fig. 17 illustrates the effect of the pore fluid viscosity (𝜂=10−7 Pa s)

on wave propagation in the P/F and F/P systems with the sealed-
pore interface. For the P/F system in Fig. 17(a), the complex band
structure is only slightly affected. The real and imaginary parts of the
avoided crossing start to separate and the imaginary part for the P
2
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Fig. 10. Modal distributions at marked points Q3 and Q4 in Fig. 9(c,d). Panels (a), (b), (c), and (d) show normalized displacements |
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at every marked point. The color scale is the same as in Fig. 3.
wave is slightly larger than for the P1 wave. The first complete band
gap moves up to the range 948m/s–990 m/s and the corresponding
transmission is strengthened. The P2 wave turns into an evanescent
wave because the imaginary part of the P2 wave is slightly larger
at all frequencies. Transmission is reduced at low frequencies (below
𝑓𝑎= 420 m/s). However, the frequency response for the P2 wave does
not exhibit attenuation characteristics and is almost identical with the
frequency response for the P1 wave at high frequencies (above 𝑓𝑎=
420 m/s). The result from that the coupling between the P1 and P2
waves has a great influence on transmission at high frequencies. For
the F/P system [Fig. 17(c)], it is easily found that the resonant band
at low frequency and the corresponding transmission dip [Fig. 17(d)].
All in all, the viscosity has a little effect on the sealed-pore interface. It
may be that the viscous pore fluid cannot flow across the interface and
only can stay in the solid skeleton.

6. Conclusions

In this work, propagation of evanescent wave in hybrid metama-
terials with interface effects has been analyzed based on the BOFEM
technique. The finite element models of complex interfaces for elas-
tic/poroelastic and fluid/poroelastic systems were built. The calcu-
lation method of complex band structures was developed, and the
influence of interface conditions on wave propagation was discussed.
The following observations and remarks can be made.

For the elastic/poroelastic interface, flat bands and locally resonant
band gaps are found for both the P/E system (an elastic inclusion
in a poroelastic matrix) and the E/P system (a poroelastic inclusion
in an elastic matrix). However, the ‘quasi-resonance Bragg’ band gap
is only formed for the P/E system. The ‘quasi-resonance Bragg’ band
gap strongly depends on the radius and material parameters of the
inclusion; it was not observed in previous studies of fluid-saturated
porous media. In addition, a transition from an avoided-crossing to
a wave-number band gap is observed by regulating geometric and
material parameters of the elastic inclusion. For the E/P system, phase
velocities of both the P and SV waves become smaller and resonant
bands move down in frequency as the radius is increased. In addition,
the stiffer the inclusion, the weaker the hybridization and the narrower
the locally resonant band gap.

For the P/F system (a fluid inclusion in a poroelastic matrix), a
cut-off frequency for the P1 wave appears only for the open-pore
interface. Attenuation is furthermore observed when two longitudinal
waves band gaps overlap. Increasing the radius, the phase velocity of
the SV wave becomes smaller than that of the P2 wave. For the sealed-
15

pore interface, a wide avoided crossing is produced. For the F/P system
(a poroelastic inclusion in a fluid matrix), the interface has little effect
on the dispersion relation at low frequency.

When the viscosity is considered, band gaps and complex band
structures are affected differently. For the P/E system, the transmission
dip for the ’quasi-resonance Bragg’ band gap disappears, but that for
the local resonance band gap becomes slightly shallower and smoother
than in the inviscid case. In addition, a complete band gap is found
at low frequency for the E/P system. However, in contrast to the P/E
system, the transmission dip of the first complete band gap becomes
deeper than in the inviscid case for the P/F system. At the same time,
flat bands disappear for the F/P system.

The present work only considers 2D hybrid single-phased and poroe-
lastic systems but could naturally be extended to three-dimension(3D)
cases. In this case, the complexity of wave equations would be increased
because they would contain four independent variables. Moreover, the
wave vector would have components in all three directions. Therefore,
interface conditions would become more complex when establishing
the finite element model. Besides, the present work is also relevant to
the practical design of seismic metamaterials [94], and of importance
for applications in natural soil and civil engineering [4], where the fluid
phase and the viscosity of the soil are often ignored.
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Fig. 11. Complex band structure and transmission spectrum for the P/F system (a fluid inclusion in a poroelastic matrix) with the sealed-pore interface. The left and right parts
in panel (a) display the relation of the reduced frequency with the real and imaginary parts of the wave number. The color scale indicates wave polarization varying from blue
(0) to red (1). Black dots are the real part of the P/F system with the open-pore interface. The calculated transmission spectrum is plotted in panel (b). The red, blue, and
pink solid lines are for the responses to incident signals (1,0,0), (0,1,0), and (0,0,1), respectively. Light gray regions represent band gaps for SV waves, whereas gray regions
represent band gaps for two longitudinal waves. Panels (c–f) are zoomed complex band structures and transmission spectra in the reduced frequency regions 700 m/s–1000 m/s
and 1050 m/s–1300 m/s.
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Fig. 12. The complex band structure and the transmission spectrum for the F/P system (a poroelastic inclusion in a fluid matrix) with the sealed-pore interface. The left and right
parts in panel (a) display the relation of the reduced frequency with the real and imaginary parts of the wave number. The color scale indicates the ratio of the kinetic energy
of the pore fluid to the total kinetic energy of the inclusion, from 0 (blue) to 1 (red). Black dots present the real part of the complex band structure for the F/P system with the
open-pore interface. The calculated transmission spectrum is plotted in panel (b). The red solid line is for the received signal log10 |𝑝| under a unit excitation. The black dashed
line is for the transmission spectrum of the open-pore interface. Gray regions indicate band gaps for longitudinal waves.

Fig. 13. Modal distribution at the marked point (Q6) in Fig. 12(a). Panels (a), (b), (c), and (d) show normalized displacements |
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at marked point. The color scale is the same as in Fig. 3.

Fig. 14. Influence of the normalized radius 𝑟∕𝑎 on the complex band structure and the frequency response for the P/F system (a fluid inclusion in a poroelastic matrix) with the
open-pore interface. Panels (a,b) and panels (c,d) show results for 𝑟∕𝑎=0.2 and 0.3, respectively. The color scale indicates the ratio of the kinetic energy of the pore fluid to the
total kinetic energy in the matrix, from 0 (blue) to 1 (red). Black dots show the real part for 𝑟∕𝑎=0.4. The red, blue, and pink solid lines are for responses to excitation signals
(1,0,0), (0,1,0), and (0,0,1), respectively. Light gray regions represent band gaps for SV waves, whereas gray regions represent band gaps for two longitudinal waves.
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Fig. 15. Influence of the normalized radius 𝑟∕𝑎 on the complex band structure and the frequency response for the P/F system (a fluid inclusion in a poroelastic matrix) with the
sealed-pore interface. Panels (a,b) and panels (c,d) show results for 𝑟∕𝑎=0.2 and 0.3, respectively. The color scale indicates the ratio of the kinetic energy of the pore fluid to the
total kinetic energy in the matrix, from 0 (blue) to 1 (red). Black dots show the real part for 𝑟∕𝑎=0.4. The red, blue, and pink solid lines are for the responses to excitation signals
(1,0,0), (0,1,0), and (0,0,1), respectively. Light gray regions represent band gaps for SV waves, whereas gray regions represent band gaps for two longitudinal waves.
Appendix A. Basic equations of Biot’s poroelastodynamics

The constitutive equations for transversely isotropic poroelastic
medium can be expressed as [91]
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(A.1)

where

𝜺 = 1
2
(

∇𝐮 + (∇𝐮)T
)

,

𝜉 = −∇ ⋅ 𝐰,

𝐰 = 𝜑(𝐔 − 𝐮). (A.2)

Here, 𝜎𝑖𝑗 is the total stress related to both the solid skeleton strain
(𝜀𝑖𝑗) and to the increment of the fluid content per unit volume (𝜉);
𝑖, 𝑗=𝑥, 𝑦, 𝑧 represent the different spatial components; and 𝑝 is the pore
fluid pressure. 𝐰 denotes the relative displacement vector (with respect
to the solid frame) of the pore fluid; 𝜑 is the porosity of the medium; 𝐮
and 𝐔 are the displacement vectors of the porous solid skeleton and the
pore fluid, respectively. The material coefficients 𝐵 to 𝐵 are spatially
18

1 8
periodic functions determined by the porous solid skeleton and the pore
fluid [95]:

𝐵1 = 𝐶66,

𝐵2 = 𝐶12 + 𝐵2
6∕𝐵8,

𝐵3 = 𝐶13 + 𝐵6𝐵7∕𝐵8,

𝐵4 = 𝐶33 + 𝐵2
7∕𝐵8,

𝐵5 = 𝐶44,

𝐵6 = −
(

1 −
𝐶11 + 𝐶12 + 𝐶13

3𝐾𝑆

)

𝐵8,

𝐵7 = −

(

1 −

(

2𝐶13 + 𝐶33
)

3𝐾𝑆

)

𝐵8,

𝐵8 =

(

1 − 𝜑
𝐾𝑆

+
𝜑
𝐾𝑓

−
2𝐶11 + 2𝐶12 + 4𝐶13 + 𝐶33

9𝐾2
𝑆

)−1

, (A.3)

where 𝐶𝑖𝑗 are the elastic constants of the porous solid skeleton; and
𝐾𝑠 and 𝐾𝑓 are the bulk modulus of the porous solid skeleton and pore
fluid, respectively.

For an isotropic poroelastic medium, we have

𝐵4 = 2𝐵1 + 𝐵2, 𝐵3 = 𝐵2, 𝐵5 = 𝐵1, 𝐵7 = 𝐵6. (A.4)

Substituting Eq. (A.4) into (A.1), the constitutive equations can be
simplified as

𝝈 = 𝐵2∇ ⋅ 𝐮 ⋅ 𝐈 + 2𝐵5𝜺 − 𝐵6∇ ⋅ 𝐰 ⋅ 𝐈,

𝑝 = 𝐵 ∇ ⋅ 𝐮 − 𝐵 ∇ ⋅ 𝐰. (A.5)
6 8
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Fig. 16. Influence of the pore fluid viscosity on the complex band structure and the transmission spectrum for the poroelastic/elastic interface. Panels (a) and (c) present the
variation of the real and imaginary wave numbers with the reduced frequency for the P/E and E/P systems, respectively. Black dots present the real part of the complex band
structure for an inviscid pore fluid. Color scales are the same as in Fig. 2(a) and Fig. 4(a), respectively. Panels (b) and (d) represent the frequency response functions for the P/E
and E/P systems, respectively. Line types, the light gray and gray regions are similar to the inviscid fluid case.
Based on Biot’s theory, the equations of motion for wave propa-
gation in an isotropic poroelastic medium can be written in Cartesian
coordinates as

∇ ⋅ 𝝈 = −𝜔2 (𝜌𝐮 + 𝜌𝑓𝐰
)

,

∇𝑝 = 𝜔2𝜌𝑓𝐮 + 𝜔2𝐦 ⋅𝑤. (A.6)

where 𝜌= (1 − 𝜑) 𝜌𝑠 + 𝜑𝜌𝑓 represents the density of the poroelastic
medium; 𝜌𝑠 and 𝜌𝑓 are the mass densities of porous solid skeleton and
pore fluid, respectively; and 𝜔 is angular frequency. 𝐦=𝐝𝐢𝐚𝐠[𝑚1, 𝑚2, 𝑚3],
𝑚1=𝑚11 + 𝑖𝑟11∕𝜔, 𝑚2=𝑚22 + 𝑖𝑟22∕𝜔, and 𝑚3=𝑚33 + 𝑖𝑟33∕𝜔. 𝑚𝑖𝑖 and 𝑟𝑖𝑖
are coefficients introduced by Biot. For isotropic poroelastic medium,
we have 𝑚11=𝑚22=𝑚1, 𝑚33=𝑚3, 𝑟11=𝑟22=𝑟1, and 𝑟33=𝑟3. They are all
functions of angular frequency 𝜔 and can be stated as

𝑚𝑖 = Re
[

𝛼𝑖 (𝜔)
]

𝜌𝑓∕𝜑 ,

𝑟𝑖 = Re
[

𝜂∕𝐾𝑖 (𝜔)
]

. (A.7)

Here, 𝜂 is the viscosity of the pore fluid; and 𝛼𝑖 (𝜔) and 𝐾𝑖 (𝜔) are
the dynamic tortuosity and permeability, respectively. The relationship
between 𝛼𝑖 (𝜔) and 𝐾𝑖 (𝜔) can be expressed as

𝛼 𝜔 =𝑖𝜂𝜑∕
[

𝜔𝜌 𝐾 𝜔
]

, (A.8)
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𝑖 ( ) 𝑓 𝑖 ( )
For a poroelastic medium with simple pore, the dynamic permeabil-
ity 𝐾𝑖 (𝜔) can be approximately defined as

𝐾𝑖 (𝜔) =𝐾𝑖 (0)
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⎞

⎟
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⎠

−1

,

(A.9)

where 𝑑2𝑖 is the pore characteristic size and 𝐾𝑖 (0) can be measured
independently. When the pores are not connected, we further have
8𝛼𝑖 (∞)𝐾𝑖 (0)∕𝜑𝑑2𝑖 =1.

Appendix B. Numerical validation

In this appendix, the calculation method for the complex band
structure of the P/E and F/P systems is validated. We assume the elastic
inclusion to be the poroelastic one with a tiny porosity. Then the wave
behaviors in the P/P (F/P) system would be similar to those in P/E
(F/E) system. The related results are shown in Fig. B.18. For panel
(a), blue stars represent the complex band structure for the P/P system
described in Ref. [50] with 𝛷2=1𝑒−8 for the inclusion. Red dots are
the corresponding results for the P/E system. It can be found that the
real and imaginary parts of the wave number almost coincide with
each other. Blue stars and red dots in panel (b) are the complex band
structures for the F/E and F/P systems, respectively. A good agreement
is also observed. So the proposed method for the calculation of complex
band structure of poroelastic–elastic (or fluid) system is valid.
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Fig. 17. Influence of the pore fluid viscosity on the complex band structure and the transmission spectrum for 2D fluid and poroelastic metamaterials with the sealed-pore interface.
Panels (a) and (c) present the variation of the real and imaginary wave numbers with the reduced frequency for the P/F and F/P systems, respectively. Black dots present the real
part of the complex band structure for an inviscid pore fluid. Panels (b) and (d) represent the frequency response functions for the P/F and F/P systems, respectively. The line
types, and the light and gray regions are similar to the inviscid fluid case.
Fig. B.18. Blue stars and red dots of panel (a) are the complex band structures for the P/P and the P/E systems; respectively. Blue stars and red dots of panel (b) are the complex
band structures for the P/P and fluid/solid systems; respectively.
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