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Evanescent Lamb waves in viscoelastic phononic metastrip
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In this paper, the propagation of evanescent Lamb waves in the one-dimensional viscoelastic
phononic metastrip is studied. Complex band structures and transmission spectra are calculated by
using the finite element method. The effect of viscosity is included according to the Kelvin-Voigt
model. Two types (namely H-type and I-type) of metastrips are fabricated in either steel or epoxy.
A theoretical model is developed to predict the distribution of the displacements of evanescent waves
in the finite metastrip. The effect of different cutting forms on the complex band structure is also
investigated. It is found that the spatial attenuation of evanescent waves is clearly observed in both
simulation and measurement. Numerical and experimental results agree well for steel metastrips
when only the elastic stiffness matrix is considered, whereas good agreement for epoxy metastrips
is achieved when viscoelasticity is taken into account. The displacement distribution of evanescent
waves can be accurately predicted from the two least evanescent waves identified in the complex
band structure. Different slicing forms for the metastrip result in the reconstruction of evanescent
waves, leading to the opening or closing of bandgaps. The present work lays the numerical and

experimental foundation for practical application of phononic metastrips.

I. INTRODUCTION

Phononic crystals (PCs) are composed of materials with different properties arranged periodically in space!™®.

The most striking feature of PCs is the band gap, inside which wave propagation is prohibited®®. This feature
has led to various applications, such as acoustic insulation'®™'2, sound isolation'>'® and filtering'®'7. Defect PCs

18221 o1 energy harvesting devices?? 24, According to the real band structure,

can also be used to design waveguides
bandgaps appear when there are no dispersion curves for a particular frequency range?®. However, according to energy
conservation, waves cannot disappear inside a bandgap. Then, then how do waves transform? Actually, evanescent
waves exist in the bandgap and are characterized by the complex band structure?®-27. The relationship between the real
part of the wave number and the frequency in the complex band structure is the dispersion, whereas the relationship
between the imaginary part of the wave number and the frequency characterizes attenuation on propagation®®.

2932 " complex band structures are also widely used for studying evanescent

In addition to evanescent bulk waves
Lamb waves. Some investigations only focus on flexural waves®>3*. Han et al calculated the complex band structure
of the phononic Euler beam by modifying the transfer matrix method3®, where the state parameters in the transfer
matrix method are replaced by initial parameters. Liu and Hussein investigated flexural wave propagation in periodic
Timoshenko beams®®. Effects of various types and consequences of periodicity on the complex band structure have
been discussed. Airoldi and Ruzzene designed a tunable one-dimensional metamaterial beam using periodic shunted

piezoelectric patches3”. They showed that a compromise in the resistance should be struck between bandwidth and

attenuation, determined by the minimum imaginary part of the wave number. Furthermore, there are also studies



focusing on the general Lamb waves. Oudich and Assouar calculated the complex band structure of two-dimensional
phononic plates by using the extended plane wave expansion method®®. The influence of the plate thickness on
evanescent waves, including their polarization, was discussed. Gao et al investigated evanescent waves propagation
in periodic nested acoustic black hole structures. Different attenuations of flexural and longitudinal waves were
characterized by complex band structures and verified experimentally>®.

In practice, solid components are not ideally elastic. Viscosity might exist to some extent, especially for
polymers?9~46. According to the viscoelastic model, the existing studies can be classified into two types. The first type
is the generalized Maxwell model. The generalized Maxwell model consists of several spring-dampers connected in
parallel; it takes into account the relaxation time of viscoelastic materials. Li et al discussed the complex viscoelastic
properties of three-dimensional metamaterials and the effect of thickness and shape of the hole on the attenuation of
Bloch waves?”. Yi et al described the mechanical response of a viscoelastic metamaterial composed of epoxy resin and
rubber. They found that by adjusting the mass of the two oscillators in the cell, a quasi-bandgap is created, which
results in a wider isolation bandwidth*®. Lewiriska et al studied a locally resonant acoustic metamaterial consisting
of tungsten, epoxy and rubber and found that the viscoelastic material affects both the band gap location but also
the attenuation of waves at frequencies around the band gap?®. We then focus on the Kelvin-Voigt (K-V) viscoelastic
models, where a frequency-dependent loss is equivalently added to the imaginary part of the modulus. Collet et al
calculated the two-dimensional complex band structure of a plate and used the minimum value of the ratio of the
imaginary part of the wave number to the amplitude of the wave number at the same frequency to estimate the at-
tenuation of evanescent waves in the band gap®®. Krushynska et al used the K-V model and the generalized Maxwell
model to calculate dissipative solid acoustic metamaterials consisting of rubber. By comparing these two viscoelastic
models it is found that the Kelvin-Voigt model provides reliable results from medium to high frequencies®'. Lou et
al investigated longitudinal wave propagation in viscoelastic composite rods. Coupling of the viscosity of the host
material and of the damping of the resonator is helpful to widen the band gap and enhance wave attenuation®?.
Krushynska et al compared the elastic model, the K-V model and the generalized Maxwell model to predict experi-
mentally measured viscoelastic curves, revealing the correlation between viscosity of the plate and the transmission
spectrum measured experimentally®®. The above references further investigated the application of viscoelastic models
to viscoelastic materials. However, these articles rarely combine the complex band structure and the transmission
spectrum of viscoelastic materials to analyze the propagation of evanescent waves in the plate. Furthermore, few
experiments have been conducted to compare with the numerical transmission modes.

Recently, increasing attention has been paid to one-dimensional phononic metastrips cut from a slab®*®6. This
setup implies two more free boundaries compared to the usual slab®”. Efforts have been made to enlarge bandgaps
for Lamb waves by strengthening Bragg scattering®®, or coupling Bragg scattering and local resonance®. Tunable
manipulation of elastic waves was also realized by fluid fillings through fluid-solid interaction®®.

In this paper, we focus on the propagation of evanescent waves in viscoelastic metastrips cut from an epoxy
perforated with periodic rectangular holes. Complex band structures and transmission spectra of the metastrips are
calculated using the finite element method. Viscoelasticity is introduced by considering the Kelvin-Voigt model. The
distribution of displacements of evanescent waves are imaged by using a vibrometer. A theoretical model is developed
that predicts accurately the displacement distribution in transmission mode. The effects of the slicing form on the

complex band structure are discussed. For comparison, metastrips cut from a lossless steel slab are also investigated.
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Figure 1: Unit cell (a) and photographs of the H-type epoxy metastrip (b) and steel metastrip (c). Geometric
parameters of the unit cell are a = 20 mm, b/a = 0.5, ¢/a = 0.1, d/a = 0.1, and e/a = 1.

II. NUMERICAL AND EXPERIMENTAL METHODS

In this section, the numerical method used for the computation of complex band structure is given along with
the K-V model. Numerical and experimental evaluation of the distribution of displacements in metastrips is also
presented.

First, we introduce the K-V model to characterize the viscoelastic behavior of materials. The stiffness tensor C

can be expressed asf!
C=C+wn, (1)

with C and m the elastic tensor and the viscoelastic tensor, respectively. For harmonic wave propagation in the

viscoelastic solid, the dynamic equilibrium equation is%2:

pw?u(r,k) + V-[C : V*u(r,k)] =0, (2)

where p is the mass density, w is the angular frequency, u = (u,v,w)7 is the displacement vector , r = (2, v, 2) is the
coordinate vector, k = (k, ky, k.) is the wave vector, and V*u(r) = 1/2(Vu(r) + (Vu(r))T). According to the Bloch

theorem, the displacement has the following form:
u(r,k) = u(r)e ™, ®3)

where ug(r) is a periodic function of coordinate. When viscosity is introduced, all propagating waves become evanes-

cent and should be characterized using complex band structures. For this purpose, the wavenumber can be isolated



in the governing equation by substituting Eq. (3) into Eq. (2). We obtain the generalized wave equation:

pwu, (r) + V- [C : Viuy(r)] — ik - [C : Vouy(r)] — (V- C) - [uy(r) @ K]
+k-C- [w(r) ® k] = 0. (4)

Since both & and w are involved in the governing equation, we can solve for the real band structure by choosing w as
the eigenvalue and sweeping k along the boundary of irreducible Brillouin zone.

Alternatively, we can also calculate the complex band structure by choosing k as the eigenvalue and by sweeping
w in the frequency range of interest. Commonly used methods for calculating the complex band structure include for
instance the transfer matrix method®?, the extended plane wave expansion method®, and the finite element method®!.
In this paper, we use the partial differential equation (PDE) module of the finite element software COMSOL to
calculate the complex band structure. We set k = k0, with © = (cos ¢, sin ¢ cos 0, sin ¢ sin 0), where k = |k| and ©
denotes the unit vector parallel to the propagation direction of the elastic wave. ¢ is the angle of the unit vector with
the z-axis and € is the angle of projection of the unit vector in the yz-plane with the y-axis. First we focus on the
one-dimensional periodic (H-type) metastrip with unit cell shown in Fig. 1. The unit cell has a relatively large mass
block and narrow connectors. Therefore it is adapted to the generation of resonant band gaps®. Considering wave
propagation along the direction of periodicity, we have ¢ = 6§ = 0 and thus k = (k;,0,0). The governing equation for
the PDE module has the following form:

— pw*u+ V- (—CVu—au) + B-Vu+~yu=0, (5)

with a, 3, v coeflicient matrices to be determined. Comparing Eq. (4) and Eq. (5) we obtain a = —C-k,B=1k-C

and v = —k- C -k. Periodic boundary conditions are applied on the surfaces perpendicular to the z-axis direction
ug(r) = uk(r +a), (6)

and the remaining surfaces are left free. A triangular mesh is first used for the top surface with element size in the
range a/100 — a/10. Then a swept mesh is generated to divide the geometric model into 4 layers in the thickness
direction. A similar process for the use of the PDE module can be found in Ref.6! for bulk waves.

Furthermore, experimental measurements are carried out to investigate the propagation of evanescent waves. An
asymmetric wave source is applied to the left of the metastrip by attaching a piezoelectric patch on the strip in Fig.
1(b) and (c). The response is collected on the right part of the metastrip by using a Polytec scanning vibrometer. The
detailed experimental process can be found in Ref.%°. For comparison, we also calculate the transmission spectrum
of a three-dimensional finite metastrip by applying an out-of-plane excitation. We define the transmission in decibel

units by

Js, 1U11dS

F= 2010g1o(w )
Sa

(7)

where U; is the total displacement received on the right side of the metastrip (S1) and Uy = 1 is the z-polarized wave



source at the left side (S2). The length of the numerical model is slightly smaller than that for experiment to reduce

the calculation cost, but accuracy is not affected.
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Figure 2: Complex band structure (a) and transmission spectrum (b) of the H-type steel metastrip. The left and
right parts in panel (a) show the variation of frequency with the real and imaginary wave number, respectively.
Only the elastic model is considered. The color scale indicates the polarization of waves from in-plane modes (blue)
to out-of-plane modes (red). The black solid line is the real band structure of the elastic model. The gray area
represents the band gap for out-of-plane waves. The distributions of the z-polarized displacement at the marked
points Hy, Hy and Hj in panel (a) are also presented. Numerical and experimental transmissions are presented in

panel (b) using blue and red lines, respectively.

III. EVANESCENT WAVE IN ELASTIC METASTRIP

Before introducing viscoelasticity, we first investigate evanescent wave propagation in the bandgap of the elastic
steel metastrip. The material parameters of the elastic steel are Cyy = 80.769 Gpa, Poisson’s ratio v = 0.3 and mass
density p = 7850 kg/m>. The complex band structure of the H-type steel metastrip can be obtained by following
the process in section IT with viscosity neglected. The results are shown in Fig. 2. In order to distinguish between

different polarized modes, we further calculate the polarization amount p,, for out-of-plane waves:

|w|2dV
PP ' L U S— (8)
TP + 0P + [wP)av

For comparison, the real band structure of the elastic metastrip is also presented with the black solid line in Fig. 2.
It is obviously found that the real part of the complex band structure is exactly the same as the real band structure
with the imaginary part being uniformly zero. Hence this study also serves to verify the calculation of complex band

structures. In addition to those waves that are propagating with no attenuation in the structure, the imaginary part
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Figure 3:  Attenuation of evanescent waves in H-type steel metastrip. Panels (a) and (b) show the numerical and
experimental transmission modes of finite steel metastrips at 35 kHz and 60 kHz, respectively. The color scale
represents the amplitude of normalized displacement. Panels (c) and (d) show the displacement distribution along
the central line on the top surface of the metastrip at 35 kHz and 60 kHz respectively. The numerical and
experimental displacement distribution along the central line of the top surface is shown in solid line in the top part
of panel. The black and red lines indicate the displacement distribution obtained from experimental and
simulations, respectively. The green dashed lines represent the displacement distributions predicted from Eq. (10)
with ¢1 = 0.5, ky = —9.42 — 3.024, ¢ = 0.5, ko = —3.14 — 3.01¢ in (a) and ¢; = 0.5, ky = —0.66i, ¢2 = 0.5,
ko = —6.28 — 0.667 in (b). The blue dashed line represents the exponential-like decay of the measured displacement

fitted by the minimum imaginary wavenumber in the complex band structure.

also presents 4 frequency ranges where non-zero values exist and are marked by red dots: 20.2 —23.5 kHz, 27.8 — 30.1
kHz, 30.8 — 45.9 kHz and 53.7 — 64.6 kHz. They are band gaps for out-of-plane waves, where only evanescent waves
exist. Fig. 2(b) presents numerical and experimental transmission spectra of the finite metastrip. It is observed that
numerical and experimental results agree very well. The transmission becomes small in the 4 ranges characterized by
the complex band structure. This result indicates that it is reasonable to use the elastic model to predict accurately
the transmission properties of the steel metastrip. It is also noted that there are many transmission peaks in the
transmission spectrum. They correspond to the resonance of the finite elastic metastrip.

A relatively flat band around 30 kHz is observed in the real part of the complex band structure. The z-polarized
displacement distribution at point H; is given in Fig. 2. Vibrations on the two sides of the central beam are in phase
opposition, so mode H; can not be excited by applying a symmetric harmonic plane wave source. This band is thus

identified as a deaf band%6:67.

The deafness of this band is also verified by the numerical transmission spectra in
Fig. 2(b) where only very small transmission is observed around 30 kHz. A small transmission peak is found in the
experimental transmission around that frequency, however. This might be owing to the fact that the piezoelectric

patch is not completely parallel to the metastrip, so that spurious in-plane waves are excited and collected by the
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Figure 4: Complex band structure (a) and transmission spectrum (b) of the H-type epoxy metastrip. The left and
right parts in panel (a) show the variation of frequency with the real and the imaginary wave number, respectively.
Viscosity is introduced according to the K-V model. The color scale indicates the polarization of waves from in-plane
modes (blue) to out-of-plane modes (red). The black solid line is the real band structure of the corresponding elastic
model. The gray area represents the band gap for out-of-plane waves in the real band structure. The experimental
transmission is presented in panel (b) with the red line. For comparison, numerical transmissions obtained by using

the K-V model and the corresponding elastic model are presented with the blue and the yellow lines, respectively.

vibrometer.

To further investigate evanescent waves, we select two frequency points (35 kHz and 60 kHz) inside the bandgap
and illustrate in Fig. 3 the displacement distribution at the top surface of the structure. It is observed that vibrations
mainly concentrate on the unit cells close to the wave source, and the other unit cells show almost no vibrations. This
spatial decay, observed in both simulation and experiment, is the typical behavior of evanescent waves. Meanwhile,
vibrations are found to propagate further in Fig. 3(b) compared to Fig. 3(a). To quantitatively evaluate the decay,
we plot the displacement distribution along the central line of the top surface in Figs. 3(c) and (d), respectively.
Numerical and experimental results are shown using black and red lines, respectively. Both results are found to decay
in an exponential way. The decay is related to the minimum imaginary wavenumber in the complex band structure®®,
as indicated by the dashed lines. The minimum imaginary wavenumber at 35 kHz is 3.02, larger than that at 60 kHz
(0.66). So the vibration decays faster at 35 kHz.

IV. EVANESCENT WAVE IN VISCOELASTIC METASTRIP

In this section, we turn our attention to the epoxy metastrip. As epoxy is a kind of polymer, its viscosity is generally

more pronounced than that of common solids (e.g. steel), making it more difficult to predict the wave response with
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Figure 5:  Attenuation of evanescent waves in the H-type epoxy metastrip. Panels (a) and (b) show the numerical
and experimental transmission modes of finite steel metastrips at 24 kHz and 40 kHz, respectively. The color scale
represents the amplitude of the normalized displacement. Panels (c) and (d) show the displacement distribution
along the central line on the top surface of the metastrip at 24 kHz and 40 kHz. The numerical and experimental
displacement distributions along the central line of the top surface are shown with a solid line in the top part of
panel. The black and the red lines indicate the displacement distribution obtained from experimental and
simulations, respectively. The green dashed lines represent the displacement distributions predicted from Eq. (10)
with ¢1 = 0.66, k1 = —3.11 — 2.037, ¢o = 0.33, ko = 9.46 — 2.067 in (a) and ¢; = 0.5, k3 = 0.07 — 0.55i, ¢ = 0.5,
ky = 6.35 — 0.567 in (b). The blue dashed line represents the exponential-like decay of the measured displacement

fitted by the minimum imaginary part of the wave number in the complex band structure.

an elastic model. The K-V model is thus used in the numerical simulation and for comparison with experiment. The
material parameters used for epoxy are Cyy = 8.51 GPa, 144 = 2.128 x 10% Pa s, Poisson’s ratio v = 0.41 and mass
density p = 2038 kg/m3. We plan to measure material parameters for instance using a dynamic mechanical analyzer
(DMA) in the future.

The complex band structure and the transmission spectrum of the epoxy metastrip computed including the K-V
model are shown in Fig. 4(a). The real band structure calculated by using the elastic model is additionally presented
for comparison. Since we consider the same unit cell, the real band structure for elastic epoxy is apparently the
same with that for steel, but compressed to lower frequencies. Three bandgaps for out-of-plane waves are observed
and marked in gray in the elastic case. The sharp corners at the bandgap edge of the real band structure becomes
rounded in the complex band structure when viscoelasticity is considered. As frequency increases, the effect becomes
more obvious. The minimum imaginary part gets larger compared to the results for steel in Fig. 2(a), suggesting
a larger attenuation even in the passing bands. Fig. 4(b) shows the numerical and experimental transmission for
a finite epoxy metastrip. The blue and yellow lines present the numerical results of the K-V model and the elastic

model, respectively, whereas the red line presents the experimental result. It is found that the transmission obtained



by using the K-V model and experiment agree very well. We have further considered the generalized Maxwell model
in the computation of the transmission®!, but comparison with experiment was not found to be improved. Details
can be found in Appendix A. Transmission peaks appearing in the elastic spectrum are washed out in the relative
high frequency range of the viscoelastic spectrum in both simulation and measurement. This is attributed to the
increasing effect of viscosity®’, which is not observed in the transmission of Fig. 2(b). Bandgap edges become blurry
in the transmission spectrum as compared to steel.

Figs. 5(a) and (b) illustrate the displacement distribution for epoxy at 24 kHz and 40 kHz. The variations of
displacement along the central line are shown in Figs. 5(c) and (d). Vibrations are found to decay in an exponential
way in both cases. Experimental results agree well with numerical simulation when the K-V model is selected. The
amplitude attenuation can be well fitted by using the minimum imaginary wavenumber determined from the complex

band structure. Hence, the evanescent behavior is correctly characterized using the K-V model.

V. THEORETICAL MODEL TO PREDICT DISPLACEMENT DISTRIBUTION OF EVANESCENT
WAVE

In this section, a theoretical model is proposed to predict the modal distribution of evanescent wave in the metastrip.
According to the theory of diffraction gratings3?, the diffracted field is a superposition of harmonic waves with different
diffraction orders, some of them evanescent. The appearance of evanescent waves in the periodic metastrip can be
understood in a similar way. Since there exists many evanescent modes at any frequency, the evanescent field can be

described as:

m
w(z,y) =Y fnwn(z, y)e ", )

n=1
where w,, represent the displacement fields extracted from the ny, order eigenmodes in the complex band structure
with wavenumber k,,. ¢,, is a weighting coefficient for each evanescent wave. Since evanescent waves decay very fast,

we consider only the lowest two orders to approximate the transmission mode. Eq. (9) is then rewritten

w(z,y) = prwy(z,y)e” ™" + dows (2, y)e " (10)

Figs. 3 and Figs. 5 show the predicted displacement distribution from Eq. (10) with the green line. The numerical
and predicted results match perfectly with the lowest two orders of evanescence. They agree convincingly with the
experimental distributions. The remaining small discrepancies might be owing to slightly different settings in the
experiment and simulation. This indicates that the oscillations of the displacement distributions, rather than the
decaying trend, are accurately predicted by Eq. (10). This prediction is very helpful for the practical design of
phononic metastrips. Furthermore, it is also noted that accurate material properties should be considered in the

calculation of complex band structures, especially for polymer with large viscosity.
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Figure 6: Schematic diagram of different metastrips cut from a slab and the I-type metastrips fabricated for
experiments. (a) The yellow and blue cut areas indicate the H-type and I-type metastrips, respectively. (b) The

metastrip made of epoxy. (c) The metastrip made of steel.

VI. I-TYPE METASTRIPS

In this section we study the effect of different cutting forms on the behavior of evanescent waves, with impact on the
complex band structure and the transmission spectrum®® ™. Two different forms, as shown in Fig. 6, are considered.
The yellow areas in Fig. 6(a) show the cut form of the H-type sample in Fig. 1, while the blue areas show the same
for the I-type sample. The I-type metastrips fabricated in epoxy and steel are shown in Figs. 6(b) and (c).

Complex band structures and transmission spectra of the I-type metastrips are shown in Fig. 7 for epoxy and Fig.
8 for steel, respectively. It is found that evanescent waves are reconstructed for different cutting forms, leading to
the generation of bandgaps (including avoided crossings) at different frequencies. The cut-off frequency of the 2nd
longitudinal branch decreases and closes the longitudinal bandgap. More results are collected in Appendix B. One
additional deaf mode appears for both epoxy and steel metastrips. The related modal distributions are shown in Figs.
7(a) and 8(a) (point I;). Their vibrations are asymmetric with respect to the wave propagation direction. Hence they
do not affect the transmission spectrum for a harmonic plane wave source. The viscoelastic model should be included
in the numerical calculation whenever the viscosity of the medium can not be neglected. In this way, the experimental
transmission can be well predicted by numerical simulations, as illustrated by Figs. 7(b) and 8(b).

It is observed in Fig. 8 that the lowest z-polarized bandgap exists at 20.2 — 22.6 kHz for the I-type steel metastrip.
The corresponding vibration modes at the band edges are also illustrated in the figure. It is observed that the modal
distribution at the lower edge (point I3) is similar to the second order flexural vibration of a simply supported beam
in the zz-plane. The exterior ends of the narrow connectors and the central of the lump have almost no vibration.
The vibration mode at the lower edge of H-type metastrip (point Hs in Fig. 2) has similar characteristics. IT is thus
not surprising that these two lower edge modes have almost identical frequencies. For the upper edge (point I5), the
modal distribution looks like the first-order flexural vibration of a beam with two free ends in the yz-plane. Similar
pattern can also be found at the upper edge of the H-type metastrip in Fig. 2 (point Hs). However, the connectors
support relatively large vibrations, leading to different upper band edges for the H-type and I-type metastrips.
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Figure 7: Complex band structure and transmission spectrum for the I-type epoxy metastrip. The left and right
parts in panel (a) show the variation of frequency with the real and imaginary wave number, respectively. Viscosity
is included using the K-V model. The color scale indicates the polarization of waves from in-plane modes (blue) to
out-of-plane modes (red). The black solid line is for the real band structure of the corresponding elastic model. The
gray area represents the band gap for out-of-plane waves in the real band structure. The inset shows the vibration

mode of the z-polarized band inside the 2nd bandgap. Experimental transmission is represented in panel (b) with

the red line. For comparison, the numerical transmission obtained using the K-V model and the corresponding

elastic model are presented by the blue and the yellow lines, respectively.

VII. CONCLUSION

In this paper, we have investigated the propagation of evanescent Lamb waves in viscoelastic metastrips made of
epoxy. With the aid of the finite element method, we have calculated the complex band structure and the transmission
spectrum of the metastrip by taking the K-V model into account. Experiments were conducted to measure the
transmission spectrum and the distribution of displacements. For comparison, the results for essentially lossless steel
metastrips are also given. A theoretical model is proposed for the distribution of the displacements of evanescent
waves. The effect of different slicing forms on the complex band structure and the transmission spectrum were also
discussed. The results and discussions lead us to the following conclusions:

(1) In addition to propagating Lamb waves, evanescent Lamb waves in the elastic metastrip are precisely charac-
terized by using the complex band structure. Deaf bands are observed for a symmetric z-polarized wave source. The
numerical transmission obtained by using the elastic model agrees well with experiment for the elastic steel metastrip.

(2) When viscosity is introduced, all Lamb waves become evanescent in the viscoelastic epoxy metastrip. The
numerical and experimental distributions of those evanescent waves can be predicted accurately by the proposed

theoretical model, considering only the two least evanescent waves obtained from the complex band structure involving
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Figure 8: Complex band structure (a) and transmission spectrum (b) of the I-type steel metastrip. The left and
right parts in panel (a) show the variation of frequency with the real and imaginary wave number, respectively.
Only the elastic model is considered. The color scale indicates the polarization of waves from in-plane modes (blue)
to out-of-plane modes (red). The black solid line is the real band structure of the elastic model. The gray area
represents the band gap for out-of-plane waves. The insets show vibration modes of the z-polarized band at the
marked points I, I and I3 in panel (a). Numerical and experimental transmissions are represented in panel (b)

with the red and the blue lines, respectively.

the K-V model.

(3) Lamb wave propagation in the metastrip is highly affected by the choice of the cutting form defining the unit
cell. Different cutting forms can result in the reconstruction of evanescent waves, leading to the opening or closing of
bandgaps.

In addition to the phononic metastrip considered in this study, the proposed model can be extended to two-

dimensional periodic metaslabs'®, and to metastructures with binary-phase media”™. Novel devices based on vis-

coelastic metastrips are expected.
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Appendix A: NUMERICAL TRANSMISSION OBTAINED BY GENERALIZED MAXWELL MODEL

In addition to the K-V model, the generalized Maxwell model can be considered to calculate the transmission

though the viscoelastic metastrip. The generalized Maxwell model has the following form:*7-%3:

E=E +iE ﬁﬂiE ~ (A1)
-0 — "1+ w2r2 = "1+ w2T2

where FE is the complex-valued and frequency-dependent Young’s modulus, Ej is Young’s modulus for the elastic
case, B, and 7,, denote the modulus contributions and the corresponding relaxation times, and m is the number of
Maxwell elements. Of course, unless the parameters of the generalized Maxwell model can be fitted to experiment
they can only be set rather arbitrarily. Here, we conduct the simulation by using Ey = 24 GPa, m = 2, 1, = 1.2,
79 = 0.1. Results in Fig. 9 are plotted with green (E; = E2 = 10 kPa) and purple (E; = Fs = 100 kPa) lines,
respectively. Although the decay frequency regions are observed to be close to the experimental results in the case
of the green line, the exact transmission is not the same. When we increase F; and FEs, the transmission spectrum
moves toward higher frequencies and consistency becomes even worse. Therefore, we do not find improved agreement

with experiment when compared to the K-V model.

Appendix B: EFFECT OF CUTTING FORMS ON COMPLEX BAND STRUCTURE

In this appendix we present the complex band structure for metastrips with different cutting forms. Different
metastrips are indeed obtained by translating the cutting planes along the y-axis in Fig. 6(a). I-type and H-type
metastrips discussed in the main text are obtained for y = 0 and y = 10 mm, respectively. The complex band
structure for metastrips obtained for y = 3 mm (Fig. 10(a)), and y = 7 mm (Fig. 10(b)) are considered here.

Comparing Figs. 4(a), 7(a) and 10, it is observed that the complex band structure is clearly different for different
cutting forms. Fig. 7(a) shows that as y increases, the slope of band a changes first from negative to positive, and

then becomes negative again. Besides, there is an intersection of two longitudinal bands for the H-type metastrip
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Figure 10: Complex band structure of metastrip obtained for cutting forms with (a) y =3 mm and (b) y = 7 mm.

The left and right parts in panel (a) and (b) show the variation of frequency with the real and imaginary wave
number, respectively. The black solid line is the real band structure of the elastic model. The distributions of the
z-polarized displacement at the marked points in panel (a) are also presented. The color scale indicates the

polarization of waves from in-plane modes (blue) to out-of-plane mode (red).

(y = 10 mm) in Fig. 4 (marked as circle c;). As y decreases, the intersection separates. An avoided crossing appears
in Fig. 10(b) (marked as circle c2) for y = 7 mm. Furthermore, a resonant band gap appears in Fig. 10(a) for y = 3
mm. If y is further decreased down to 0, the lowest two longitudinal bands become almost parallel with each other,
and the band gap disappears (as illustrated by Fig. 7 for the I-type metastrip). Moreover, it is also interesting to
observe that different cutting forms can break the continuity of complex bands®""2, leading to the reconstruction of

evanescent waves (see circles c3 and ¢4 in Fig. 10).
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Highlights

® Complex band structure for evanescent Lamb waves is
calculated by using finite element method.
® Numerical and experimental distributions of evanescent waves

agree well and can be accurately predicted.

e Evanescent waves are reconstructed for different cutting forms,

leading to the opening or closing of bandgaps.
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