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a b s t r a c t 

The propagation of waves in fluid-saturated porous periodic structures is significantly affected by the interface 

condition between adjacent layers. We consider in this paper the partial-open pore interface condition between 

adjacent layers in a one-dimensional fluid-saturated porous phononic crystal. A transfer matrix method is devised 

to obtain both the complex band structure and the poroelastic Bloch waves of the crystal. Spectral transmission 

through a finite structure is further computed by a stiffness matrix method. Attention is restricted to normal 

incidence of longitudinal waves. The influence of the pore blockage, a parameter of the partial-open pore interface 

condition, and of porosity and viscosity are investigated. The value of the pore blockage is found to influence 

significantly both the dispersion of poroelastic waves but also the partition of wave energy between solid skeleton 

and pore fluid. The effects of porosity and viscosity in the case of the partial-open pore interface condition are 

similar to what was previously obtained in the fully open pore case. 
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. Introduction 

Phononic crystals [1] (PCs) are artificial periodic composites that

an control the propagation of acoustic/elastic waves. They can possess

andgaps [2,3] due to either Bragg scattering [1] or local resonance [4] .

trong dispersion may also be observed in the passing bands [5] . PCs

an further exhibit peculiar properties, such as a negative effective mass

ensity [6,7] , waveguiding [8,9] , negative refraction [10,11] , or focus-

ng [12,13] . 

In the frequent case that PCs are composed of different materials,

here are interfaces between the latter. Those interfaces between the

ame or different material phases can be considered as perfect or imper-

ect. The influence of interface boundary conditions on wave propaga-

ion in PCs is a growing research direction [14] . Li et al. [15,16] com-

uted the band structure and the transmission of elastic waves for two

imensional solid/solid smooth-contact interface PCs. Albuquerque and

esion [17] studied acoustic wave propagation in solid/fluid superlat-

ices. Xu et al. [18] calculated the band structure of two dimensional

olid/air hierarchical PCs. Wang et al. [19] showed that the fluid/solid

nterface plays an important role in controlling elastic wave propaga-

ion by local additions of a fluid. Wee et al. [20] demonstrated the

anipulation of surface guided modes at a solid/fluid interface. Zhen
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t al. [21,22] examined the surface/interface effects on the propagation

f transverse waves in two-dimensional nanoscale PCs. 

The works mentioned above focused mostly on single-phased me-

ia. Recently, increasing attention has been paid to PCs composed of

wo- or multi-phased materials. Alevizaki et al. [23] extended the layer-

ultiple-scattering method to PCs of poroelastic spheres immersed in a

uid medium. Jiang and Huang [24] realized gradient sound absorbers

ith periodic macro void structure. Zhu et al. [25] put periodic metama-

erial resonators in a porous layer to achieve broadband low-frequency

ound absorption. Wang et al. [26,27] studied wave propagation in one-

imensional and two-dimensional fluid-saturated porous metamaterials

FSPM). Shi et al. [28–30] investigated the mitigation of vibrations in

aturated soil with periodic pile barriers. 

It is worth pointing out that the effect of different interface bound-

ry conditions has mostly been considered for a single interface, but not

or multi-phase PCs. The scattering of waves at the interface between

ifferent porous media has indeed been studied extensively. Geertsma

nd Smit [31] demonstrated that the slow longitudinal wave is gener-

ted at any interface between a porous medium and another medium.

overa [32] derived general boundary conditions for interfaces with

rbitrary shapes between porous media and other media. Rasolofos-

on [33] showed that fluid transfer at the interface between a liquid and
. Wang). 
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Fig. 1. Schematic representation of different interfaces between two FSP media, seen at the microscopic scale, adapted from Ref. [38] . (a) Open pore interface. (b) 

partial-open pore interface. (c) Sealed pore interface. The yellow and green areas represent the solid skeletons, and the blue areas represent fluid. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Schematic representation of a 1D fluid-saturated porous phononic crys- 

tal. The lattice constant is 𝑎 = 𝑎 1 + 𝑎 2 . Periodicity is along the 𝑥 direction; the 

other two directions are infinite. The alternating layers are considered as ho- 

mogenized fluid-saturated porous media. 

i  

p  

e  

g  

o  

t

 

i

𝜎

w

a  

p  

T  

n  

e

𝑒

w  

T  

m

𝐵

𝐵

𝐵

𝐵

 porous medium is important for the generation of the slow longitudi-

al wave. Wu et al. [34] and Denneman [35] investigated the reflection

nd the transmission of elastic waves between a porous medium and

uid. Vashisth et al. [36] studied elastic wave propagation through the

islocation-like interface between an elastic solid and a porous medium.

he discussion was later extended to the reflection and the refraction of

eismic waves between elastic and porous half-planes [37] . Following

eresiewicz and Skalak [38] , Kumar and Miglani [39] discussed the ef-

ects of pore blockage on surface wave propagation across the interface

etween two dissimilar porous media. Sharma [40] investigated the in-

uence of different sets of boundary conditions on the energy partition

cross the porous-porous interface. 

In this paper, we focus on poroelastic wave propagation in one-

imensional fluid-saturated porous phononic crystals (FSPPC) with

arying interface conditions parameterized by the pore blockage pa-

ameter. By using a transfer matrix method, complex band structures

re obtained, as well as the eigenmodes at selected points. Transmis-

ion through finite structures is calculated by using a stiffness matrix

ethod. The influence on wave propagation of the pore blockage and

f the material parameters of the pore fluid is discussed. Only normal

ncidence is considered throughout the paper and attention is limited to

he two longitudinal waves of fluid-saturated porous media. 

. Problem statement and mathematical formulation 

.1. Interface conditions between two FSP media 

Following Deresiewicz [38] , the interface boundary condition be-

ween two FSP materials can be simplified into one of the three models

epicted in Fig. 1 . The interface boundary condition in Fig. 1 (a) is the

pen pore interface, for which the pores of the two FSP media are fully

onnected at the interface, so that the fluid can flow in between them.

his is the case considered previously for FSP phononic crystals [26,27] .

he interface boundary condition in Fig. 1 (c) is called the sealed-pore

nterface. In this case there is no connection between the pores of both

SP materials and the fluid is sealed inside each of them. The interface

oundary condition in Fig. 1 (b) is the intermediate case where the pores

f two FSP media are partially connected. It is also termed the partial-

pen pore interface. The average area at the interface where flow is pos-

ible is smaller than the intersection area of the pores on either side of

he interface. Considering homegenized quantities, the flow through the

nterface produces a pressure drop or discontinuity, which is translated

n the interface boundary condition [38] 

 

(1) − 𝑝 (2) = ℎ �̇� 𝑛 (1) 

here ℎ is the pore blockage coefficient representing the effect of the

rea of the pore being blocked, with units Pa·s/m. �̇� 𝑛 is the relative

article velocity in the fluid measured in the normal direction. 

.2. Solution of wave equations 

In this paper, we consider a one-dimensional FSP periodic structure

omposed of two materials A (yellow color) and B (grey color), as shown
2 
n Fig. 2 . Both materials are isotropic. The geometrical and physical

arameters of the present A-B system are the same as those consid-

red in Ref. [26] and the basic equations in this section were mostly

iven therein. In the present work, we only consider normal incidence

f waves. In this case, the shear wave is uncoupled from the two longi-

udinal waves and is disregarded in the analysis. 

On the basis of Biot’s theory [41] , the constitutive equations for

sotropic FSP media are expressed as 

( 𝑗 ) 
xx = 

(
2 𝐵 

( 𝑗 ) 
1 + 𝐵 

( 𝑗 ) 
2 

)
𝑒 
( 𝑗 ) 
xx + 𝐵 

( 𝑗 ) 
3 𝜉( 𝑗 ) , 

𝑝 ( 𝑗 ) 
𝑥 

= 𝐵 

( 𝑗 ) 
3 𝑒 

( 𝑗 ) 
xx + 𝐵 

( 𝑗 ) 
4 𝜉( 𝑗 ) , (2) 

here 𝑗 = 1 , 2 refers to the first and second layers of the unit-cell. 𝜎
( 𝑗) 
𝑥𝑥 

nd 𝑒 
( 𝑗) 
𝑥𝑥 are the stress and strain of the solid skeleton. 𝑝 

( 𝑗) 
𝑥 is the pore

ressure, and 𝜉( 𝑗) is the increment of the fluid content per unit volume.

he displacement components of the skeleton and of the fluid are de-

oted as 𝑢 
( 𝑗) 
𝑥 and 𝑈 

( 𝑗) 
𝑥 , respectively. The strain and the increment can be

xpressed as 

 

( 𝑗) 
𝑥𝑥 

= 𝑢 ( 𝑗) 
𝑥,𝑥 

, 𝜉( 𝑗) = 𝑤 

( 𝑗) 
𝑥,𝑥 

, (3) 

here 𝑤 

( 𝑗) 
𝑥 = 𝜙( 𝑗) ( 𝑈 

( 𝑗) 
𝑖 

− 𝑢 
( 𝑗) 
𝑖 
) ; and 𝜙( 𝑗) is the porosity of the materials.

he material coefficients 𝐵 

( 𝑗) 
1 and 𝐵 

( 𝑗) 
4 are spatially periodic and deter-

ined by the materials properties of the solid skeleton and fluid [42] : 

 

( 𝑗 ) 
1 = 𝐶 

( 𝑗 ) 
44 , 

 

( 𝑗 ) 
2 = 𝐶 

( 𝑗 ) 
12 + 𝐵 

( 𝑗 ) 
3 𝐵 

( 𝑗 ) 
4 ∕ 𝐵 

( 𝑗 ) 
4 , 

 

( 𝑗 ) 
3 = − 

( 

1 − 

𝐶 

( 𝑗 ) 
11 + 2 𝐶 

( 𝑗 ) 
12 

3 𝐾 

( 𝑗 ) 
𝑠 

) 

𝐵 

( 𝑗 ) 
4 , 

 

( 𝑗 ) 
4 = 

⎛ ⎜ ⎜ ⎝ 
1 − 𝜙( 𝑗 ) 

𝐾 

( 𝑗 ) 
𝑠 

+ 

𝜙( 𝑗 ) 

𝐾 

( 𝑗 ) 
𝑓 

− 

𝐶 

( 𝑗 ) 
11 + 2 𝐶 

( 𝑗 ) 
12 

3 𝐾 

( 𝑗 ) 
𝑠 𝐾 

( 𝑗 ) 
𝑠 

⎞ ⎟ ⎟ ⎠ 
−1 

, (4) 
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here 𝐶 

( 𝑗) 
11 , 𝐶 

( 𝑗) 
12 and 𝐶 

( 𝑗) 
44 are the elastic constants of the solid skeleton.

 

( 𝑗) 
𝑠 and 𝐾 

( 𝑗) 
𝑓 

represent the bulk modulus of the solid skeleton and of

he pore fluid, respectively. The equations of motion can be expressed

n local coordinates as 

𝜎
( 𝑗 ) 
xx = 𝜌( 𝑗 ) �̈� ( 𝑗 ) 

𝑥 
+ 𝜌

( 𝑗 ) 
𝑓 

�̈� 

( 𝑗 ) 
𝑥 

, 

 𝑝 ( 𝑗 ) 
𝑥,𝑥 

= 𝜌
( 𝑗 ) 
𝑓 

�̈� ( 𝑗 ) 
𝑥 

+ 𝑚 

( 𝑗 ) 
11 �̈� 

( 𝑗 ) 
𝑥 

+ 𝑟 
( 𝑗 ) 
11 �̇� 

( 𝑗 ) 
𝑥 

, (5) 

here 𝜌( 𝑗) = (1 − 𝜙( 𝑗) ) 𝜌( 𝑗) 𝑠 + 𝜙( 𝑗) 𝜌( 𝑗) 
𝑓 

, 𝜌
( 𝑗) 
𝑠 and 𝜌

( 𝑗) 
𝑓 

are the mass densities of

he solid skeleton and of the pore fluid, respectively. 𝑚 

( 𝑗) 
11 and 𝑟 

( 𝑗) 
11 are

oefficients introduced by Biot. For isotropic FSP materials, we have

 

( 𝑗) 
11 = 𝑚 

( 𝑗) and 𝑟 
( 𝑗) 
11 = 𝑟 ( 𝑗) . 

It is worth noting that Biot’s theory conforms to the actual inter-

retation of elastic wave propagation when describing the macroscopic

echanical behavior of liquid-saturated porous media. However, it can-

ot fully reveal the actual phases within the porous medium and the in-

eractions between those phases when the micro-mechanical behaviour

s of interest. In this case, models containing different constituents and

aking into account their physical boundaries are required [43] . 

Substituting Eq. (5) into Eq. (2) , the wave equations of FSP media

re obtained as 

2 𝐵 

( 𝑗 ) 
1 + 𝐵 

( 𝑗 ) 
2 

) 𝜕 2 𝑢 ( 𝑗 ) 𝑥 (
𝜕𝑥 ( 𝑗 ) 

)2 − 𝐵 

( 𝑗 ) 
3 

𝜕 2 𝑤 

( 𝑗 ) 
𝑥 (

𝜕𝑥 ( 𝑗 ) 
)2 = 𝜌( 𝑗 ) �̈� ( 𝑗 ) 

𝑥 
+ 𝜌

( 𝑗 ) 
𝑓 

�̈� 

( 𝑗 ) 
𝑥 

, 

− 𝐵 

( 𝑗 ) 
3 

𝜕 2 𝑢 ( 𝑗 ) 𝑥 (
𝜕𝑥 ( 𝑗 ) 

)2 + 𝐵 

( 𝑗 ) 
4 

𝜕 2 𝑤 

( 𝑗 ) 
𝑥 (

𝜕𝑥 ( 𝑗 ) 
)2 = 𝜌

( 𝑗 ) 
𝑓 

�̈� ( 𝑗 ) 
𝑥 

+ 𝑚 

( 𝑗 ) �̈� 

( 𝑗 ) 
𝑥 

+ 𝛾 ( 𝑗 ) �̇� 

( 𝑗 ) 
𝑥 

, (6) 

For time-harmonic plane waves, we have 

𝑢 ( 𝑗 ) 
𝑥 

= 𝐴 

( 𝑗 ) exp 
(
i 𝑞 ( 𝑗 ) 𝑥 ( 𝑗 ) 

)
exp ( − i 𝜔𝑡 ) , 

 

( 𝑗 ) 
𝑥 

= 𝐶 

( 𝑗 ) exp 
(
i 𝑞 ( 𝑗 ) 𝑥 ( 𝑗 ) 

)
exp ( − i 𝜔𝑡 ) , (7) 

here i = 

√
−1 , 𝑥 ( 𝑗) ∈ (0 , 𝑎 𝑗 ) and 𝑎 𝑗 is the thickness of the 𝑗-th layer of

he unit cell. The lattice constant is 𝑎 = 𝑎 1 + 𝑎 2 . 𝑞 
( 𝑗) is the wavenum-

er along the 𝑥 direction. 
[
𝐴 

( 𝑗) , 𝐶 

( 𝑗) ] are coefficients to be determined.

ubstitution of Eq. (7) into Eq. (6) leads to the following equations: 

𝜌( 𝑗 ) 𝜔 

2 − 

(
2 𝐵 

( 𝑗 ) 
1 + 𝐵 

( 𝑗 ) 
2 

)(
𝑞 ( 𝑗 ) 

)2 )
𝐴 

( 𝑗 ) 

+ 

(
𝐵 

( 𝑗 ) 
3 
(
𝑞 ( 𝑗 ) 

)2 + 𝜌
( 𝑗 ) 
𝑓 

𝜔 

2 
)
𝐶 

( 𝑗 ) = 0 , (
𝐵 

( 𝑗 ) 
3 
(
𝑞 ( 𝑗 ) 

)2 + 𝜌
( 𝑗 ) 
𝑓 

𝜔 

2 
)
𝐴 

( 𝑗 ) 

+ 

(
𝑚 

( 𝑗 ) 
𝜔 

2 − 𝐵 

( 𝑗 ) 
4 
(
𝑞 ( 𝑗 ) 

)2 )
𝐶 

( 𝑗 ) = 0 , (8) 

here �̄� 

( 𝑗) = 𝑚 

( 𝑗) + 

i 𝛾( 𝑗) 

𝜔 
. The existence of non-trivial solutions of

q. (8) requires that the determinant of the coefficient matrix is zero.

herefore, we have 

𝜌( 𝑗) 𝜔 

2 − (2 𝐵 

( 𝑗) 
1 + 𝐵 

( 𝑗) 
2 ) ( 𝑞 

( 𝑗) ) 2 𝐵 

( 𝑗) 
3 ( 𝑞 

( 𝑗) ) 2 + 𝜌
( 𝑗) 
𝑓 

𝜔 

2 

𝐵 

( 𝑗) 
3 ( 𝑞 

( 𝑗) ) 2 + 𝜌
( 𝑗) 
𝑓 

𝜔 

2 �̄� 

( 𝑗) 𝜔 

2 − 𝐵 

( 𝑗) 
4 ( 𝑞 

( 𝑗) ) 2 
|||||| = 0 . (9)

q. (9) admits two solutions for ( 𝑞 ( 𝑗) ) 2 . Hence, there are two pairs of

oots they are opposite to each other 

 

( 𝑗 ) 
1 = − 𝑞 

( 𝑗 ) 
2 = 𝜔 

√ √ √ √ √ √ 

− 𝐺 

( 𝑗 ) 
2 + 

√ 

𝐺 

( 𝑗 ) 
2 𝐺 

( 𝑗 ) 
2 − 4 𝐺 

( 𝑗 ) 
1 𝐺 

( 𝑗 ) 
3 

2 𝐺 

( 𝑗 ) 
1 

, 

 

( 𝑗 ) 
3 = − 𝑞 

( 𝑗 ) 
4 = 𝜔 

√ √ √ √ √ √ 

− 𝐺 

( 𝑗 ) 
2 − 

√ 

𝐺 

( 𝑗 ) 
2 𝐺 

( 𝑗 ) 
2 − 4 𝐺 

( 𝑗 ) 
1 𝐺 

( 𝑗 ) 
3 

2 𝐺 

( 𝑗 ) 
1 

, (10) 

ith 𝐺 

( 𝑗) 
1 = (2 𝐵 

( 𝑗) 
1 + 𝐵 

( 𝑗) 
2 ) 𝐵 

( 𝑗) 
4 − 𝐵 

( 𝑗) 
3 𝐵 

( 𝑗) 
3 , 𝐺 

( 𝑗) 
3 = 𝜌( 𝑗) 𝑚 

( 𝑗) − 𝜌
( 𝑗) 
𝑓 

𝜌
( 𝑗) 
𝑓 

and

 

( 𝑗) 
2 = −(2 𝐵 

( 𝑗) 
1 + 𝐵 

( 𝑗) 
2 ) 𝑚 

( 𝑗) − 𝜌( 𝑗) 𝐵 

( 𝑗) 
4 − 2 𝜌( 𝑗) 

𝑓 
𝐵 

( 𝑗) 
3 . The positive (negative)
3 
alue of a root means that the wave propagates in the positive (nega-

ive) direction along the 𝑥 direction. 𝑞 
( 𝑗) 
1 and 𝑞 

( 𝑗) 
3 represent the coupled

low (P2) and fast (P1) longitudinal wave, respectively. For each

 

( 𝑗) 
𝑙 

( 𝑙 = 1 ∼ 4) , the amplitude ratios of the waves can be expressed

ccording to Eq. (8) as 

 

( 𝑗) 
𝑙 

= 

𝐶 

( 𝑗) 
𝑙 

𝐴 

( 𝑗) 
𝑙 

= 

(2 𝐵 

( 𝑗) 
1 + 𝐵 

( 𝑗) 
2 ) ( 𝑞 

( 𝑗) 
𝑙 
) 
2 
− 𝜌( 𝑗) 𝜔 

2 

𝐵 

( 𝑗) 
3 ( 𝑞 

( 𝑗) 
𝑙 
) 
2 
+ 𝜌

( 𝑗) 
𝑓 

𝜔 

2 
. (11) 

The displacement of the fundamental wave decomposes into slow

nd fast longitudinal waves. According to Eqs. (7) , (10) and (11) , the

eneral solution for the displacement can be written as 

𝑢 ( 𝑗 ) 
𝑥 

= 

4 ∑
𝑙=1 

𝐴 

( 𝑗 ) 
𝑙 

exp 
(

i 𝑞 
( 𝑗 ) 
𝑙 

𝑥 ( 𝑗 ) 
)

exp ( − i 𝜔𝑡 ) , 

 

( 𝑗 ) 
𝑥 

= 

4 ∑
𝑙=1 

𝑓 
( 𝑗 ) 
𝑙 

𝐴 

( 𝑗 ) 
𝑙 

exp 
(

i 𝑞 
( 𝑗 ) 
𝑙 

𝑥 ( 𝑗 ) 
)

exp ( − i 𝜔𝑡 ) . (12) 

Substituting Eq. (12) into Eq. (2) , the stress and pressure general

olution are obtained as 

( 𝑗 ) 
xx = 

4 ∑
𝑙=1 

𝑛 
( 𝑗 ) 
𝑙 

𝐴 

( 𝑗 ) 
𝑙 

exp 
(

i 𝑞 
( 𝑗 ) 
𝑙 

𝑥 ( 𝑗 ) 
)

exp ( − i 𝜔𝑡 ) , 

𝑝 ( 𝑗 ) 
𝑥 

= 

4 ∑
𝑙=1 

𝑔 
( 𝑗 ) 
𝑙 

𝐴 

( 𝑗 ) 
𝑙 

exp 
(

i 𝑞 
( 𝑗 ) 
𝑙 

𝑥 ( 𝑗 ) 
)

exp ( − i 𝜔𝑡 ) , (13) 

here 𝑔 
( 𝑗) 
𝑙 

=i 𝑞 
( 𝑗) 
𝑙 
[(2 𝐵 

( 𝑗) 
1 + 𝐵 

( 𝑗) 
2 ) − 𝐵 

( 𝑗) 
3 𝑓 

( 𝑗) 
𝑙 

] , 𝑛 ( 𝑗) 
𝑙 

= i 𝑞 
( 𝑗) 
𝑙 
( 𝐵 

( 𝑗) 
3 − 𝐵 

( 𝑗) 
4 𝑓 

( 𝑗) 
𝑙 

) . 

.3. Transfer matrix 

We now consider the propagation of elastic waves in the isotropic

SP periodic structure with partial-open pore interfaces. To calculate

he transfer matrix, we define the state vector as 𝐕 = [ 𝑢 𝑥 , 𝑤 𝑥 , 𝜎𝑥𝑥 , 𝑝 𝑥 ] T .
or the 𝑑 th unit-cell, the state vectors at the left and right sides of the

 th layer can be written as 

𝐕 

( 𝑗 ) 
𝐿 

]( 𝑑 ) 
= 

[
𝑢 ( 𝑗 ) 

𝑥 
, 𝑤 

( 𝑗 ) 
𝑥 

, 𝜎
( 𝑗 ) 
xx , 𝑝 

( 𝑗 ) 
𝑥 

]T 

𝑥 ( 𝑗 ) =0 

= 𝐏 ( 𝑗 ) 
𝐿 

[
𝐴 

( 𝑗 ) 
1 , 𝐴 

( 𝑗 ) 
2 , 𝐴 

( 𝑗 ) 
3 , 𝐴 

( 𝑗 ) 
4 

]T 
exp ( − i 𝜔𝑡 ) , 

𝐕 

( 𝑗 ) 
𝑅 

]( 𝑑 ) 
= 

[
𝑢 ( 𝑗 ) 

𝑥 
, 𝑤 

( 𝑗 ) 
𝑥 

, 𝜎
( 𝑗 ) 
xx , 𝑝 

( 𝑗 ) 
𝑥 

]T 

𝑥 ( 𝑗 ) = 𝑎 𝑗 

= 𝐏 ( 𝑗 ) 
𝑅 

[
𝐴 

( 𝑗 ) 
1 , 𝐴 

( 𝑗 ) 
2 , 𝐴 

( 𝑗 ) 
3 , 𝐴 

( 𝑗 ) 
4 

]T 
exp ( − i 𝜔𝑡 ) . (14) 

ere 𝐏 ( 𝑗) 
𝐿 

and 𝐏 ( 𝑗) 
𝑅 

are 4 × 4 matrices whose elements are listed in

ppendix A . 

For the interface between two layers of the 𝑑 th unit cell, we obtain

he following relationship using continuity conditions: 

 

 

 

 

 

 

𝑢 1 
𝑥 

𝑤 

1 
𝑥 

𝜎1 
𝑥𝑥 

𝑝 1 
𝑥 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑑 ) 

𝑥 (1) = 𝑎 1 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑢 2 

𝑥 

𝑤 

2 
𝑥 

𝜎2 
𝑥𝑥 

𝑝 2 
𝑥 
+ ℎ �̇� 

2 
𝑥 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑑 ) 

𝑥 (2) =0 

. (15)

Similarly, the continuity conditions at the interface between the ( 𝑑 −
) th and the 𝑑 th unit-cells can be expressed as 

 

 

 

 

 

 

𝑢 1 
𝑥 

𝑤 

1 
𝑥 

𝜎1 
𝑥𝑥 

𝑝 1 
𝑥 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑑 ) 

𝑥 (1) =0 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑢 2 

𝑥 

𝑤 

2 
𝑥 

𝜎2 
𝑥𝑥 

𝑝 2 
𝑥 
− ℎ �̇� 

2 
𝑥 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

( 𝑑−1 ) 

𝑥 (2) = 𝑎 2 

. (16)
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Substituting Eq. (14) into Eqs. (15) and (16) , we derive the following

elation: 

 

1 
𝑅 
𝚿1 

𝑑 
= 

(
𝐏 2 

𝐿 
− i 𝜔ℎ 𝐘 

)
𝚿2 

𝑑 
, 

𝐏 1 
𝐿 
𝚿1 

𝑑 
= 

(
𝐏 2 

𝑅 
+ i 𝜔ℎ 𝐙 

)
𝚿2 

𝑑−1 , (17) 

here Ψ𝑗 

𝑑−1 and Ψ𝑗 

𝑑 
are the amplitude vectors for the 𝑗 th layer of the ( 𝑑 −

) th and 𝑑 th unit-cells. From Eq. (17) , we have the following relation: 

2 
𝑑 
= ( 𝐏 2 

𝐿 
− i 𝜔ℎ 𝐘 ) −1 𝐏 1 

𝑅 
( 𝐏 1 

𝐿 
) −1 ( 𝐏 2 

𝑅 
+ i 𝜔ℎ 𝐙 ) 𝚿2 

𝑑−1 . (18) 

As a result, the transfer matrix of the adjacent cell can be expressed

s 

 𝑑 = ( 𝐏 2 
𝐿 
− i 𝜔ℎ 𝐘 ) −1 𝐏 1 

𝑅 
( 𝐏 1 

𝐿 
) −1 ( 𝐏 2 

𝑅 
+ i 𝜔ℎ 𝐙 ) , (19) 

here 𝐘 and 𝐙 are 4 × 4 matrices whose elements are listed in

ppendix A . For periodic structures, 𝐓 𝑑 ( 𝑑 = 1 , 2 , ..., 𝑠 ) are the same

nd are simply denoted 𝐓 . Because of periodicity along the 𝑥 direction,

loch’s theorem implies 

2 
𝑑 
= exp ( i 𝑘 𝑥 a ) 𝚿2 

𝑑−1 . (20) 

Substituting Eq. (20) into Eq. (18) , we get 

𝐓 − exp ( i 𝑘 𝑥 a ) 𝐈 
)
𝚿2 

𝑑 
= 0 . (21) 

Finally, we obtain the following eigenvalue equation: 

𝐓 − exp ( i 𝑘 𝑥 a ) 𝐈 || = 0 , (22) 

here 𝑘 𝑥 is the Bloch wavenumber in the 𝑥 direction and 𝐈 is the 4 × 4
dentity matrix. For a given frequency, 𝑘 𝑥 can be obtained by solving

q. (21) . As a result, the complex band structure 𝑘 𝑥 ( 𝜔 ) can be obtained.

.4. Modal distribution 

Combining Eqs. (17) and (21) , we have 

𝐓 − exp 
(
i 𝑘 𝑥 a 

)
𝐈 
)(
𝐏 2 

𝑅 
+ i 𝜔ℎ 𝐙 

)−1 𝐏 1 
𝐿 

[
𝐴 

1 
1 , 𝐴 

1 
2 , 𝐴 

1 
3 , 𝐴 

1 
4 
]T 

exp ( − i 𝜔𝑡 ) = 0 , [
𝐴 

2 
1 , 𝐴 

2 
2 , 𝐴 

2 
3 , 𝐴 

2 
4 
]T − 

(
𝐏 2 

𝐿 
− i 𝜔ℎ 𝐘 

)−1 𝐏 1 
𝑅 

[
𝐴 

1 
1 , 𝐴 

1 
2 , 𝐴 

1 
3 , 𝐴 

1 
4 
]T = 0 . (23) 

Solving Eq. (22) , we obtain the amplitude ratio relations: 

 

1 
2 = 𝑄 1 𝐴 

1 
1 , 𝐴 

1 
3 = 𝑅 1 𝐴 

1 
1 , 𝐴 

1 
4 = 𝑆 1 𝐴 

1 
1 , 

 

2 
1 = 𝑂 2 𝐴 

1 
1 , 𝐴 

2 
2 = 𝑄 2 𝐴 

1 
1 , 𝐴 

2 
3 = 𝑅 2 𝐴 

1 
1 , 𝐴 

2 
4 = 𝑆 2 𝐴 

1 
1 . (24) 

he expressions of the proportionality coefficients are listed in

ppendix B . 

Substituting Eq. (22) into Eq. (12) , the displacement can be written

s 

𝑢 𝑥 1 = 

(
exp 

(
i 𝑞 1 1 𝑥 

)
+ 𝑄 1 exp 

(
i 𝑞 1 2 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) 

+ 

(
𝑅 1 exp 

(
i 𝑞 1 3 𝑥 

)
+ 𝑆 1 exp 

(
i 𝑞 1 4 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) , 

 𝑥 1 = 

(
𝑓 1 1 exp 

(
i 𝑞 1 1 𝑥 

)
+ 𝑓 1 2 𝑄 1 exp 

(
i 𝑞 1 2 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) 

+ 

(
𝑓 1 3 𝑅 1 exp 

(
i 𝑞 1 3 𝑥 

)
+ 𝑓 1 4 𝑆 1 exp 

(
i 𝑞 1 4 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) , 𝑥 ∈

[
0 , 𝑎 1 

]
(25) 

nd 

𝑢 𝑥 2 = 

(
𝑂 2 exp 

(
i 𝑞 2 1 𝑥 

)
+ 𝑄 2 exp 

(
i 𝑞 2 2 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) 

+ 

(
𝑅 2 exp 

(
i 𝑞 2 3 𝑥 

)
+ 𝑆 2 exp 

(
i 𝑞 2 4 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) , 

 𝑥 2 = 

(
𝑓 2 1 𝑂 2 exp 

(
i 𝑞 2 1 𝑥 

)
+ 𝑓 2 2 𝑄 2 exp 

(
i 𝑞 2 2 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) 

+ 

(
𝑓 2 3 𝑅 2 exp 

(
i 𝑞 2 3 𝑥 

)
+ 𝑓 2 4 𝑆 2 exp 

(
i 𝑞 2 4 𝑥 

))
𝐴 

1 
1 exp ( − i 𝜔𝑡 ) , 𝑥 ∈

[
0 , 𝑎 2 

]
. (26) 

he stresses and the pressure can be easily calculated in the same way. 
4 
.5. Stiffness matrix method 

The transfer matrix method may become unstable when the number

f layers is large [44] . Some researchers have proposed stable solution

ethods, such as the stiffness matrix method [45] . In case our consid-

rations were generalized to oblique incidence or to surface waves, it

ay be worthwhile considering scattering-matrix methods [46,47] . In

his work, the stiffness matrix method is employed to calculate trans-

ission spectra. In practice, the stiffness matrix reflects the relationship

etween displacements and stresses. Similarly to Ref. [48] , we also as-

ume that the generalized displacements and stresses are [ 𝝈1 , 𝐮 1 ] T at the

eft boundary of the first layer, [ 𝝈2 , 𝐮 2 ] T at the interface between the

wo sub-layers, and [ 𝝈3 , 𝐮 3 ] T at the right boundary of the second layer.

ccording to the constitutive relation [45] , we have the following rela-

ionship: 

 

𝝈1 
𝝈2 

] 
= 

[ 
𝐊 

𝐴 
11 𝐊 

𝐴 
12 

𝐊 

𝐴 
21 𝐊 

𝐴 
22 

] [ 
𝐮 1 
𝐮 2 

] 
, 

 

𝝈2 
𝝈3 

] 
= 

[ 
𝐊 

𝐵 
11 𝐊 

𝐵 
12 

𝐊 

𝐵 
21 𝐊 

𝐵 
22 

] [ 
𝐮 2 
𝐮 3 

] 
, (27) 

here 𝐊 

𝐴 and 𝐊 

𝐵 is 4 × 4 stiffness matrices of the first and the second

ayer. Their expressions are 

𝐊 

𝐴 = 𝐄 

1 
𝜎

( 𝐄 

1 
𝑢 

)−1 
, 

 

𝐵 = 𝐄 

2 
𝜎

( 𝐄 

2 
𝑢 

)−1 
. (28) 

We can easily write the local stiffness matrix of the unit cell by elim-

nating 𝝈2 and 𝐮 2 of Eq. (27) : 

 

𝝈1 
𝝈3 

] 
= 𝐊 

[ 
𝐮 1 
𝐮 3 

] 
, 

𝐊 = 

[ 
𝐊 

𝐴 
11 + 𝐊 

𝐴 
12 

(
𝐊 

𝐵 
11 − 𝐊 

𝐴 
22 

)−1 𝐊 

𝐴 
21 − 𝐊 

𝐴 
12 

(
𝐊 

𝐵 
11 − 𝐊 

𝐴 
22 

)−1 𝐊 

𝐵 
12 

𝐊 

𝐵 
21 

(
𝐊 

𝐵 
11 − 𝐊 

𝐴 
22 

)−1 𝐊 

𝐴 
21 𝐊 

𝐵 
22 − 𝐊 

𝐵 
12 

(
𝐊 

𝐵 
11 − 𝐊 

𝐴 
22 

)−1 𝐊 

𝐵 
21 

] 
. (29) 

When the periodic structure is composed of 𝑏 unit cells, the 𝐊 

𝐴 and

 

𝐵 matrices can be treated as the global stiffness matrix 𝐊 

𝑏 −1 for the

eft ( 𝑏 − 1) unit cells and the local stiffness matrix 𝐊 

𝑏 of the 𝑏 th unit cell.

n addition, the stiffness matrix expression of the whole structure can

e written 

𝐊 = 

[ 
K 11 K 12 
K 21 K 22 

] 
, 

 11 = 𝐊 

𝑏 − 1 
11 

+ 𝐊 

𝑏 − 1 
12 

(
𝐾 

𝑏 
11 
− 𝐾 

𝑏 − 1 
22 

)− 1 𝐊 

𝑏 − 1 
21 

, 

 12 = − 𝐊 

𝑏 − 1 
12 

(
𝐾 

𝑏 
11 
− 𝐾 

𝑏 − 1 
22 

)− 1 𝐊 

𝑏 
12 

, 

 21 = 𝐊 

𝑏 
21 

(
𝐾 

𝑏 
11 
− 𝐾 

𝑏 − 1 
22 

)− 1 𝐊 

𝑏 − 1 
21 

, 

 22 = 𝐊 

𝑏 
22 
− 𝐊 

𝑏 
12 

(
𝐾 

𝑏 
11 
− 𝐾 

𝑏 − 1 
22 

)− 1 𝐊 

𝑏 
21 

. (30) 

It should be stressed that the above derivation assumes that the gen-

ralized displacements and stresses are continuous at the interface. How-

ver, there is a pressure drop at the interface for the partial-open pore in-

erface. Therefore, we should write down the equivalent pressure to keep

ontinuous generalized stresses at the interface. Substituting Eq. (1) into

q. (28) , we can calculate the local stiffness matrix of the unit-cell. 

For the first unit cell, we need to write the equivalent pressure at

he interface between two sub-layers. The elements of matrices 𝐄 

1 
𝑢 1 

, 𝐄 

1 
𝜎1 

,

 

1 
𝑢 2 

and 𝐄 

1 
𝜎2 

are listed in Appendix C . For the remaining unit cells, the

ressure is continuous not only at the interface of the two sub-layers, but

lso at the interface of the adjacent cells. The elements of the matrix

 

2 
𝜎1 

are given in Appendix C . The other matrices obey the following

elations: 𝐄 

2 
𝑢 1 

= 𝐄 

1 
𝑢 1 

, 𝐄 

2 
𝑢 2 

= 𝐄 

1 
𝑢 2 

, and 𝐄 

2 
𝜎2 

= 𝐄 

1 
𝜎2 

. 

We assume that the periodic structure is placed between two semi-

nfinite homogeneous media. The 𝑃 2 wave is incident from the left. As a

esult, the displacements of the incident wave field can be written as 
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Fig. 3. Complex band structure for one-dimensional FSPPC with the open-pore interface. Panel (a) consists of two parts: the left and right parts show the relation 

of reduced frequency with the real and imaginary parts of the wave number, respectively. The black dots represent the complex band structure calculated by FEM. 

The color scale from blue to red represents the relative energy ratio from 0 to 1. The transmission curves for 50-unit cells structure are plotted in panel (b). The red 

(blue) line represents the displacement transmission coefficient 𝑇 𝑃1 ∕ 𝑈 0 ( 𝑇 𝑃2 ∕ 𝑈 0 ) under the incidence of the P1 (P2) wave. The gray regions represent the complete 

band gaps for both P1 and P2 waves in panel (a), while the light gray region shows the Bragg band gap for P1 wave. Panel (c) shows the normalized displacement 

distribution red 𝑢 𝑥 for and blue for 𝑤 𝑥 at the marked points in panel (a) at 429 m/s. The relative energy ratio is 0.7719 at point M1 and 0.2436 at point M2. The 

black dashed lines are the results obtained by FEM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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c  
𝑢 𝑥 0 = exp 
(
i 𝑞 1 1 𝑥 0 

)
U 0 + exp 

(
i 𝑞 1 2 𝑥 0 

)
R 𝑃 2 + exp 

(
i 𝑞 1 

4 
𝑥 0 
)
R 𝑃1 , 

 𝑥 0 = 𝑓 1 1 exp 
(
i 𝑞 0 1 𝑥 0 

)
U 0 + 𝑓 1 2 exp 

(
i 𝑞 1 2 𝑥 0 

)
R 𝑃 2 + 𝑓 1 

4 
exp 

(
i 𝑞 1 

4 
𝑥 0 
)
R 𝑃1 , (31) 

here 𝑈 0 is the amplitude of the incident waves. 𝑅 𝑃 2 and 𝑅 𝑃 1 are the

mplitudes of the reflected waves. The subscript 0 represents the left

nfinite structure. Similarly, we can write the transmitted displacement

s 

𝑢 xs = exp 
(
i 𝑞 2 1 𝑥 𝑠 

)
𝑇 𝑃 2 + exp 

(
i 𝑞 2 3 𝑥 𝑠 

)
𝑇 𝑃 1 , 

 xs = 𝑓 2 1 exp 
(
i 𝑞 2 1 𝑥 𝑠 

)
𝑇 𝑃 2 + 𝑓 2 3 exp 

(
i 𝑞 2 3 𝑥 𝑠 

)
𝑇 𝑃 1 , (32) 

here 𝑇 𝑃 2 and 𝑇 𝑃 1 are the transmitted amplitudes and the subscript 𝑠

epresents the right infinite structure. Therefore, the relation between

isplacements and stresses at the boundaries can be expressed by using

he stiffness matrix as 
 

𝝈0 
𝝈𝑠 

] 
= 𝐊 

[ 
𝐮 0 
𝐮 𝑠 

] 
, (33) 

here 𝝈0 = 

[
𝜎𝑥 0 , 𝑝 𝑥 0 

]T 
and 𝐮 0 = 

[
𝑢 𝑥 0 , 𝑤 𝑥 0 

]T 
are the stresses and the dis-

lacements of the incident wave. 𝝈𝑠 = 

[
𝜎𝑥𝑠 , 𝑝 𝑥𝑠 

]T 
and 𝐮 𝑠 = 

[
𝑢 𝑥𝑠 , 𝑤 𝑥𝑠 

]T 
are

he transmitted stresses and displacements. Substituting Eqs. (30) and

31) into Eq. (32) , we obtain the transmission and reflection coeffi-

ients: 

𝑅 𝑃 2 
𝑈 0 

𝑅 𝑃 1 
𝑈 0 

𝑇 𝑃 2 
𝑈 0 

𝑇 𝑃 1 
𝑈 0 

]
= 𝐌 

−1 𝐍 𝑃 2 , (34) 

here 𝑅 𝑃 2 ∕ 𝑈 0 and 𝑅 𝑃 1 ∕ 𝑈 0 are reflection displacement coefficients.

 𝑃 2 ∕ 𝑈 0 and 𝑇 𝑃 1 ∕ 𝑈 0 are transmitted displacement coefficients. The el-

ments of matrices 𝐌 and 𝐍 𝑝 2 are listed in Appendix D . When the inci-

ent wave is the P1 wave, 𝐍 𝑃 2 must be replaced by 𝐍 𝑃 1 . The elements

f 𝐍 𝑃 1 are also listed in Appendix D . 

. Numerical results and discussion 

In this section, we consider Bloch wave propagation in 1D FSP

hononic crystal with partial-open pore interfaces. Complex band struc-

ures, transmission spectra, as well as eigenmodes are calculated by us-

ng the theory in section 2 for the same material parameters as in Ref.

26] . The ratio of the thicknesses of the two materials (saturated soil

nd concrete) is arbitrarily chosen as 13 ∶ 7 , for definiteness. We have

hecked that the conclusions are not significantly affected if this ratio

s modified. For comparison with previous finite element results [26] ,

he open pore case is considered first, before moving to the partial-open

ore case. The influence of porosity is considered last. 
5 
.1. Open pore interface 

First, we consider the case of open pore interface by setting ℎ = 0
a.s/m. There is no pressure difference at the interface, so the displace-

ent, the stress and the pressure are all continuous at the interface. As a

ote, we choose 𝛼𝑗 (∞) = 1 . 02 throughout this paper. The complex band

tructure is shown in Fig. 3 (a). The black dots represent the results ob-

ained by the finite element method (FEM). They are fully consistent

ith the transfer matrix method. The color scale represents the relative

nergy ratio of the kinetic-energy in the solid skeleton to the total kinetic

nergy: 

 𝑠 = 

∫ 𝑒 𝑠 𝑑𝑥 

( ∫ 𝑒 𝑠 + 𝑒 𝑓 ) 𝑑𝑥 
, (35) 

here 𝑒 𝑠 = (1 − 𝜙) 𝜌𝑠 𝜔 

2 𝑢 2 
𝑥 
∕2 and 𝑒 𝑓 = 𝜙𝜌𝑓 𝜔 

2 𝑈 

2 
𝑥 
∕2 represent the kinetic

nergy densities for the solid skeleton and the pore fluid, respectively.

he line integration is along the unit cell. The consideration of the rel-

tive energy ratio allows us to identify the relation of each band with

he fast longitudinal wave (P1 wave) and the slow longitudinal wave

P2 wave). The first two bands are of almost pure relative energy ra-

io but undergo an anti-crossing around a reduced frequency of 1000

/s [26] . Note that the relative energy ratio of Bloch waves is generally

ixed with P1 and P2 components. In the following, bands whose color

s close to red are termed quasi-P1 (QP1), whereas bands whose color is

lose to blue are termed quasi-P2 (QP2). 

In addition, the transmission spectra of a finite structure with 50 unit

ells are calculated by using the stiffness matrix method and are shown

n Fig. 3 (b). The red (blue) line represents the displacement transmission

oefficient 𝑇 𝑃 1 ∕ 𝑈 0 ( 𝑇 𝑃 2 ∕ 𝑈 0 ) under the incidence of a source P1 (P2)

ave. The eigenmodes at the selected points M1 and M2 just below the

nti-crossing of the P1 and the P2 waves are plotted in Fig. 3 (c) and are

btained according to Eqs. (25) –(26) . For comparison, the eigenmodes

alculated by FEM are also plotted in Fig. 3 (c) with black dash lines.

hey match almost exactly with the transfer matrix results. As a note, the

ransfer matrix method is faster than 1D FEM and is in principle much

ore precise, since its derivation does not rely on any approximation. Its

ain disadvantage is that it is specialized to one-dimensional structures.

.2. Partial-open pore interface 

In this section, we focus on wave propagation in 1D FSP phononic

rystal with partial-open pore interfaces by varying the pore blockage
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Fig. 4. Complex band structure for the 1D FSPPC with the partial-open pore interface. The left and right parts in panel (a) stand for the relation of the reduced 

frequency with the real and imaginary parts of the wave number, respectively. The color scale is the same as that in Fig. 3 . The black dots represent the complex 

band structure calculated by FEM. The inset represents a larger view of the imaginary part of the wave number. The calculated transmissions of a finite structure 

with 50 unit cells are plotted in panel (b). The red (blue) line represents the displacement transmission coefficient 𝑇 𝑃1 ∕ 𝑈 0 ( 𝑇 𝑃2 ∕ 𝑈 0 ) under the incidence of the P1 

(P2) wave. Panel (c) shows the normalized displacement distribution at the marked points in panel (a). The relative energy ratio at marked points is 0.7719 (M3), 

0.2416(M4), 0.7725(M5), 0.2106 (M6), 0.986 (M7) and 0.0957 (M8). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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oefficient ℎ . In this case, the displacement and stress at the interface re-

ain continuous, but the pressure is discontinuous according to Eq. (1) .

he numerical results are summarized in Fig. 4 . 

When the value of the pore blockage coefficient is rather small

 ℎ = 10 5 Pa·s/m), the main change compared to the open pore condition

s the appearance of a small imaginary part of the Bloch wavenumber,

ven at low frequencies. The real part of the complex band structure

oncurrently shows very limited changes. The degenerated evanescent

ands in the avoided-crossing start to separate gradually. The imagi-

ary part of the QP2 wave increases slightly at all frequencies and thus

urns into an evanescent wave. This change reflects in the decrease of

he transmission coefficient 𝑇 𝑃 2 ∕ 𝑈 0 under P2 wave incidence, whereas

 𝑃 1 ∕ 𝑈 0 is almost unchanged. Looking at the relative energy ratio just

elow the anti-crossing, the modal distribution at point M3 (M4, re-

pectively) is almost identical to that at point M1 (M2, resp.) for the

pen pore case. 

Increasing the pore blockage coefficent ( ℎ = 10 6 Pa·s/m), the real

and structure is further stretched around the anti-crossing as a system

f two complex bands is forming, separating more neatly the QP1 and

he QP2 waves. The imaginary part of the Bloch wavenumber for the

P2 wave increases notably. The Bragg gaps for the QP2 wave almost

isappear, leaving only a reduced damping at the lower folding points on
6 
he first Brillouin zone boundary. The QP1 wave acquires an imaginary

omponent of the Bloch wavenumber around the frequencies of the anti-

rossing, owing to the coupling between the QP1 and QP2 waves in this

ange. The transmission 𝑇 𝑃 2 ∕ 𝑈 0 for the QP2 wave is strongly reduced

t all frequencies. Meanwhile, the transmission coefficient 𝑇 𝑃 1 ∕ 𝑈 0 for

he QP1 wave is strengthened inside the first Bragg band gap but is

ot significantly changed otherwise. Looking at the relative energy ratio

ust below the anti-crossing, the modal distribution at point M5 is again

lmost identical to that at point M1 for the open pore case, but the modal

istribution at point M6 differs from that at point M2 along the unit cell.

When the pore blockage coefficient is further increased ( ℎ = 10 9 
a·s/m), the real part of the dispersion relation for the QP2 wave lo-

ates mostly around the high symmetry points of the Brillouin zone. Its

maginary part is actually very large at all frequencies. Meanwhile, the

maginary part of the dispersion of the QP1 wave is not affected, except

nside the first Bragg gap where the attenuation is enhanced. As whole,

he QP1 and QP2 waves become almost completely decoupled. Looking

t the relative energy ratio just below the anti-crossing, the modal distri-

ution at point M7 (QP1 branch) is almost purely in the solid skeleton,

hereas the modal distribution at point M8 (QP2 branch) is dominantly

n the pore fluid and is strongly attenuated by the partial-open pore

nterface boundary condition. 
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Fig. 5. Influence of the porosity parameter 𝜙 on the complex band structure for the 1D FSPPC with the partial-open pore interface ( ℎ = 10 5 Pa.s/m). Panel (a) shows 

the reduced frequency as a function of the real and of the imaginary parts of the reduced wavenumber. The color scale is the same as that in Fig. 3. Transmission 

spectra are plotted in panel (b). The red (blue) line represents the displacement transmission coefficient 𝑇 𝑃1 ∕ 𝑈 0 ( 𝑇 𝑃2 ∕ 𝑈 0 ) under the incidence of the P1 (P2) wave. 

The relative energy ratio at marked points is 0.8824 (N1), 0.0984 (N2), 0.8147 (N3), 0.1827 (N4), 0.800 (N5) and 0.2126 (N6). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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Before ending this section, we would like to mention that since there

s no connection between two porous media for the sealed pore interface,

t is equivalently modeled by adding an impermeable membrane at the

nterface. This could be implemented by setting both ℎ = ∞ and �̇� 𝑛 = 0
n Eq. (1) . In this case, however, the pressure would not be specified and

he pressure drop would remain uncertain. The complex band structure

ence can not be solved for. Anyway, we can anticipate the infinite limit

y removing the QP2 wave in the complex band structure and keeping

nly the QP1 bands. In the limit, the FSP phononic crystal behaves as

n elastic phononic crystal for the QP1 wave only and a periodic lossy

tructure for the QP2 wave. 

.3. Influence of porosity 

In this section, we focus on the influence of porosity on wave propa-

ation through the FSP PCs with partial-open pore interfaces, for ℎ = 10 5 
a·s/m. The complex band structures and the transmission spectra are

hown in Fig. 5 for selected values of the porosity. For comparison pur-

oses, the band structure of the single-phase elastic PC is also plotted

ith dotted lines ( 𝜙 = 0 ), for which case there is only one longitudinal

ave. When a small porosity ( 𝜙 = 0 . 04 ) is introduced, the phase velocity

f the QP1 wave decreases. The QP2 wave branches cross four times the
7 
P1 wave branches in the considered frequency range, inducing four

voided crossings. 

When the porosity increases, the phase velocity of the QP2 wave

ncreases. Concurrently, the phase velocity of the QP1 wave decreases,

ut only slightly. As a result of the change in the slope of the branches,

he number of avoided-crossings decreases. There are only two of them

hen 𝜙 = 0 . 1 and only one when 𝜙 = 0 . 4 . 
For the first anti-crossing, the frequency at which the QP1 and QP2

hould intercept is given by the following relation [2] : 

 𝑝 1 ( 𝜔 ) = 2 𝜋∕ 𝑎 − 𝑘 𝑝 2 ( 𝜔 ) . (36)

he following avoided-crossings are obtained by equating similar com-

inations of ± 𝑘 𝑝 1 and ± 𝑘 𝑝 1=2 with exactly a reciprocal lattice spacing.

 𝑝 1 and 𝑘 𝑝 2 are the wavenumbers of the P1 and P2 phonons, respec-

ively, when they are unfolded into the extended Brillouin zone. As such,

q. (36) describes a phonon-phonon scattering similar to an Umklapp

cattering. It is worth noting that the second band gap is a bit complex,

ike a ‘wavenumber’ bandgap. In the pass band of QP2 wave, the imagi-

ary wave number increases monotonically with porosity, leading to an

verall small transmission ( 𝑇 𝑃 2 ∕ 𝑈 0 ). It is also observed that the attenu-

tion in the lowest avoided-crossing is more pronounced, as well as the
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ragg gap for the QP1 wave. These gaps also get wider with an increase

n porosity, as verified with the transmission curves ( Fig. 5 (c)). 

Furthermore, we have also considered the influence of the fluid vis-

osity on wave propagation in the FSPCs with partial-open pore inter-

aces. The results are similar to those for open pore interfaces [26] and

re gathered in Appendix E . 

. Conclusions 

In this paper, we have investigated wave propagation in 1D fluid-

aturated porous phononic crystals with partial-open pore interfaces.

omplex band structures and modal distributions were calculated by

 transfer matrix method. Transmission spectra were calculated by a

tiffness matrix method. Both transmission and transfer matrix methods

ere devised specifically for fluid-saturated porous media. The results

or the open-pore interface agree exactly with previous finite element

esults [26] . The pore blockage coefficient, the fluid viscosity and the

orosity all strongly influence wave propagation, and especially the ex-

stence of avoided-crossings between the fast and the slow longitudinal

aves of fluid-saturated porous media. The value of the pore blockage is

ound to influence significantly both the dispersion of poroelastic waves

ut also the partition of wave energy between solid skeleton and pore

uid. The effects of porosity and viscosity in the case of the partial-open

ore interface condition are similar to what was previously obtained in

he fully open pore case. The present work could be extended to 2D and

D cases, with the added consideration of shear waves. It would also

e interesting to consider porous/fluid or porous/solid interfaces. The

elated problems are of great significance for the practical application

f fluid-saturated porous phononic crystals and metamaterials. 
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ppendix A. Transfer matrices 

The transfer matrices in Eqs. (17) –(19) are 

 

𝑗 

𝐿 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 

𝑓 
𝑗 

1 𝑓 
𝑗 

2 𝑓 
𝑗 

3 𝑓 
𝑗 

4 

𝑔 
𝑗 

1 𝑔 
𝑗 

2 𝑔 
𝑗 

3 𝑔 
𝑗 

4 

𝑛 
𝑗 

1 𝑛 
𝑗 

2 𝑛 
𝑗 

3 𝑛 
𝑗 

4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

𝐘 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
0 0 0 0 
0 0 0 0 
0 0 0 0 
𝑓 2 1 𝑓 2 2 𝑓 2 3 𝑓 2 4 

⎞ ⎟ ⎟ ⎟ ⎠ , 

 

𝑗 

𝑅 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

exp 
(
i 𝑞 

𝑗 

1 𝑥 
( 𝑗 ) ) exp 

(
i 𝑞 

𝑗 

2 𝑥 
( 𝑗 ) ) exp 

(
i 𝑞 

𝑗 

3 𝑥 
( 𝑗 ) ) exp 

(
i 𝑞 

𝑗 

4 𝑥 
( 𝑗 ) )

𝑓 
𝑗 

1 exp 
(
i 𝑞 

𝑗 

1 𝑥 
( 𝑗 ) ) 𝑓 

𝑗 

2 exp 
(
i 𝑞 

𝑗 

2 𝑥 
( 𝑗 ) ) 𝑓 

𝑗 

3 exp 
(
i 𝑞 

𝑗 

3 𝑥 
( 𝑗 ) ) 𝑓 

𝑗 

4 exp 
(
i 𝑞 

𝑗 

4 𝑥 
( 𝑗 ) )

𝑔 
𝑗 

1 exp 
(
i 𝑞 

𝑗 

1 𝑥 
( 𝑗 ) ) 𝑔 

𝑗 

2 exp 
(
i 𝑞 

𝑗 

2 𝑥 
( 𝑗 ) ) 𝑔 

𝑗 

3 exp 
(
i 𝑞 

𝑗 

3 𝑥 
( 𝑗 ) ) 𝑔 

𝑗 

4 exp 
(
i 𝑞 

𝑗 

4 𝑥 
( 𝑗 ) )

𝑛 
𝑗 

1 exp 
(
i 𝑞 

𝑗 

1 𝑥 
( 𝑗 ) ) 𝑛 

𝑗 

2 exp 
(
i 𝑞 

𝑗 

2 𝑥 
( 𝑗 ) ) 𝑛 

𝑗 

3 exp 
(
i 𝑞 

𝑗 

3 𝑥 
( 𝑗 ) ) 𝑛 

𝑗 

4 exp 
(
i 𝑞 

𝑗 

4 𝑥 
( 𝑗 ) )

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

(A.1) 
⎣
8 
 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
0 0 0 0 
0 0 0 0 
0 0 0 0 

𝑓 2 1 exp 
(
i 𝑞 2 1 𝑎 2 

)
𝑓 2 2 exp 

(
i 𝑞 2 2 𝑎 2 

)
𝑓 2 3 exp 

(
i 𝑞 2 3 𝑎 2 

)
𝑓 2 4 exp 

(
i 𝑞 2 4 𝑎 2 

)
⎞ ⎟ ⎟ ⎟ ⎠ . 

ppendix B. Modal distribution 

The coefficients used to calculate the modal distribution are 

𝐃 = 
(
𝐓 − exp 

(
i 𝑘 𝑥 a 

)
𝐈 
)(

𝑃 2 
𝑅 
+ i 𝜔ℎ 𝐙 

)−1 𝐏 1 
𝐿 
, 

𝐄 = 
(
𝐏 2 

𝐿 
− i 𝜔ℎ 𝐘 

)−1 𝐏 1 
𝑅 
, 

 1 = − 
(
𝐷 34 𝐷 43 − 𝐷 33 𝐷 44 

)(
𝐷 44 𝐷 21 − 𝐷 24 𝐷 41 

)
+ 
(
𝐷 44 𝐷 23 − 𝐷 24 𝐷 43 

)(
𝐷 31 𝐷 44 − 𝐷 34 𝐷 41 

)(
𝐷 34 𝐷 43 − 𝐷 33 𝐷 44 

)(
𝐷 44 𝐷 22 − 𝐷 24 𝐷 42 

)
+ 
(
𝐷 44 𝐷 23 − 𝐷 24 𝐷 43 

)(
𝐷 32 𝐷 44 − 𝐷 34 𝐷 42 

) , 

𝑅 1 = 
(
𝐷 31 𝐷 44 − 𝐷 34 𝐷 41 

)
+ 
(
𝐷 32 𝐷 44 − 𝐷 34 𝐷 42 

)
𝑄 1 

𝐷 34 𝐷 43 − 𝐷 33 𝐷 44 
, 

𝑆 1 = − 
𝐷 41 + 𝑄 1 𝐷 42 + 𝑅 1 𝐷 43 

𝐷 44 
, 

𝑂 2 = 𝐸 11 + 𝐸 12 𝑄 1 + 𝐸 13 𝑅 1 + 𝐸 14 𝑆 1 , 

 2 = 𝐸 21 + 𝐸 22 𝑄 1 + 𝐸 23 𝑅 1 + 𝐸 24 𝑆 1 , 

𝑅 2 = 𝐸 31 + 𝐸 32 𝑄 1 + 𝐸 33 𝑅 1 + 𝐸 34 𝑆 1 , 

𝑆 2 = 𝐸 41 + 𝐸 42 𝑄 1 + 𝐸 43 𝑅 1 + 𝐸 44 𝑆 1 . (B.1) 

ppendix C. Stiffness matrices 

The matrices in Eq. (28) are expressed as 

 

1 
𝑢 1 

= 

 

 

 

 

 

 

 

1 1 1 1 

𝑓 1 2 𝑓 1 4 𝑓 1 1 𝑓 1 3 

exp 
(
i 𝑞 1 2 𝑎 1 

)
exp 

(
i 𝑞 1 4 𝑎 1 

)
exp 

(
i 𝑞 1 1 𝑎 1 

)
exp 

(
i 𝑞 1 3 𝑎 1 

)
𝑓 1 2 exp 

(
i 𝑞 1 2 𝑎 1 

)
𝑓 1 4 exp 

(
i 𝑞 1 4 𝑎 1 

)
𝑓 1 1 exp 

(
i 𝑞 1 1 𝑎 1 

)
𝑓 1 3 exp 

(
i 𝑞 1 3 𝑎 1 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

 

1 
𝜎1 

= 

 

 

 

 

 

 

 

𝑔 1 2 𝑔 1 4 𝑔 1 1 𝑔 1 3 

𝑛 1 2 𝑛 1 4 𝑛 1 1 𝑛 1 3 

𝑔 1 2 exp 
(
i 𝑞 1 2 𝑎 1 

)
𝑔 1 4 exp 

(
i 𝑞 1 4 𝑎 1 

)
𝑔 1 1 exp 

(
i 𝑞 1 1 𝑎 1 

)
𝑔 1 3 exp 

(
i 𝑞 1 3 𝑎 1 

)
𝑛 1 2 exp 

(
i 𝑞 1 2 𝑎 1 

)
𝑛 1 4 exp 

(
i 𝑞 1 4 𝑎 1 

)
𝑛 1 1 exp 

(
i 𝑞 1 1 𝑎 1 

)
𝑛 1 3 exp 

(
i 𝑞 1 3 𝑎 1 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

 

1 
𝑢 2 

= 

 

 

 

 

 

 

 

1 1 1 1 

𝑓 2 2 𝑓 2 4 𝑓 2 1 𝑓 2 3 

exp 
(
i 𝑞 2 2 𝑎 2 

)
exp 

(
i 𝑞 2 4 𝑎 2 

)
exp 

(
i 𝑞 2 1 𝑎 2 

)
exp 

(
i 𝑞 2 3 𝑎 2 

)
𝑓 2 2 exp 

(
i 𝑞 2 2 𝑎 2 

)
𝑓 2 4 exp 

(
i 𝑞 2 4 𝑎 2 

)
𝑓 2 1 exp 

(
i 𝑞 2 1 𝑎 2 

)
𝑓 2 3 exp 

(
i 𝑞 2 3 𝑎 2 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

 

1 
𝜎2 

= 

 

 

 

 

 

 

 

𝑔 2 2 𝑔 2 4 𝑔 2 1 𝑔 2 3 

𝑛 2 2 − i 𝜔ℎ𝑓 2 2 𝑛 2 4 − i 𝜔ℎ𝑓 2 4 𝑛 2 1 − i 𝜔ℎ𝑓 2 1 𝑛 2 3 − i 𝜔ℎ𝑓 2 3 

𝑔 2 2 exp 
(
i 𝑞 2 2 𝑎 2 

)
𝑔 2 4 exp 

(
i 𝑞 2 4 𝑎 2 

)
𝑔 2 1 exp 

(
i 𝑞 2 1 𝑎 2 

)
𝑔 2 3 exp 

(
i 𝑞 2 3 𝑎 2 

)
𝑛 2 2 exp 

(
i 𝑞 2 3 𝑎 2 

)
𝑛 2 4 exp 

(
i 𝑞 2 4 𝑎 2 

)
𝑛 2 1 exp 

(
i 𝑞 2 1 𝑎 2 

)
𝑛 2 3 exp 

(
i 𝑞 2 3 𝑎 2 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (C.1) 

 

2 
𝜎1 

= 

 

 

 

 

 

 

𝑔 1 2 𝑔 1 4 𝑔 1 1 𝑔 1 3 

𝑛 1 2 − i 𝜔ℎ𝑓 1 2 𝑛 1 4 − i 𝜔ℎ𝑓 1 4 𝑛 1 1 − i 𝜔ℎ𝑓 1 1 𝑛 1 3 − i 𝜔ℎ𝑓 1 3 

𝑔 1 2 exp 
(
i 𝑞 1 2 𝑎 1 

)
𝑔 1 4 exp 

(
i 𝑞 1 4 𝑎 1 

)
𝑔 1 1 exp 

(
i 𝑞 1 1 𝑎 1 

)
𝑔 1 3 exp 

(
i 𝑞 1 3 𝑎 1 

)
1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ 
. 
 2 2 1 4 4 1 1 1 1 3 3 1 ⎦ 

https://doi.org/10.13039/501100001809


S.-Y. Zhang, D.-J. Yan, Y.-S. Wang et al. International Journal of Mechanical Sciences 195 (2021) 106227 

Fig. E.1. Influence of the fluid viscosity 𝜂 (Pa ⋅s) on the complex band structure for the 1D FSPPC with partial-open pore interfaces ( ℎ = 10 5 Pa·s/m). The dashed lines 

represent the results for lossless case ( 𝜂 = 0 ). All parameters except viscosity are the same as in Fig. 3 . 
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ppendix D. Matrices elements 

The elements of matrices 𝐌 , 𝐍 𝑃 2 and 𝐍 𝑃 1 are 

(1 , 1) = 

(
𝐾 𝑁 

(1 , 1) + 𝐾 𝑁 

(1 , 2) 𝑓 1 2 − 𝑔 1 2 
)
exp 

(
i 𝑞 1 2 𝑥 0 

)
, 

(1 , 2) = 

(
𝐾 𝑁 

(1 , 1) + 𝐾 𝑁 

(1 , 2) 𝑓 1 4 − 𝑔 1 4 
)
exp 

(
i 𝑞 1 4 𝑥 0 

)
, 

(1 , 3) = 

(
𝐾 𝑁 

(1 , 3) + 𝐾 𝑁 

(1 , 4) 𝑓 2 1 
)
exp 

(
i 𝑞 2 1 𝑥 𝑠 

)
, 

(1 , 4) = 

(
𝐾 𝑁 

(1 , 3) + 𝐾 𝑁 

(1 , 4) 𝑓 2 3 
)
exp 

(
i 𝑞 2 3 𝑥 𝑠 

)
, 

(2 , 1) = 

(
𝐾 𝑁 

(2 , 1) + 𝐾 𝑁 

(2 , 2) 𝑓 1 2 − 𝑛 1 2 
)
exp 

(
i 𝑞 1 2 𝑥 0 

)
, 

(2 , 2) = 

(
𝐾 𝑁 

(2 , 1) + 𝐾 𝑁 

(2 , 2) 𝑓 1 4 − 𝑛 1 4 
)
exp 

(
i 𝑞 1 4 𝑥 0 

)
, 

(2 , 3) = 

(
𝐾 𝑁 

(2 , 3) + 𝐾 𝑁 

(2 , 4) 𝑓 2 1 
)
exp 

(
i 𝑞 2 1 𝑥 𝑠 

)
, 

(2 , 4) = 

(
𝐾 𝑁 

(2 , 3) + 𝐾 𝑁 

(2 , 4) 𝑓 2 3 
)
exp 

(
i 𝑞 2 3 𝑥 𝑠 

)
, (D.1) 

(3 , 1) = 

(
𝐾 𝑁 

(3 , 1) + 𝐾 𝑁 

(3 , 2) 𝑓 1 2 
)
exp 

(
i 𝑞 1 2 𝑥 0 

)
, 

(3 , 2) = 

(
𝐾 𝑁 

(3 , 1) + 𝐾 𝑁 

(3 , 2) 𝑓 1 4 
)
exp 

(
i 𝑞 1 4 𝑥 0 

)
, 

(3 , 3) = 

(
𝐾 𝑁 

(3 , 3) + 𝐾 𝑁 

(3 , 4) 𝑓 2 1 − 𝑔 1 2 
)
exp 

(
i 𝑞 2 1 𝑥 𝑠 

)
, 

(3 , 4) = 

(
𝐾 𝑁 

(3 , 3) + 𝐾 𝑁 

(3 , 4) 𝑓 2 3 − 𝑔 1 4 
)
exp 

(
i 𝑞 2 3 𝑥 𝑠 

)
, 

(4 , 1) = 

(
𝐾 𝑁 

(4 , 1) + 𝐾 𝑁 

(4 , 2) 𝑓 1 2 
)
exp 

(
i 𝑞 1 2 𝑥 0 

)
, 

(4 , 2) = 

(
𝐾 𝑁 

(4 , 1) + 𝐾 𝑁 

(4 , 2) 𝑓 1 4 
)
exp 

(
i 𝑞 1 4 𝑥 0 

)
, 

(4 , 3) = 

(
𝐾 𝑁 

(4 , 3) + 𝐾 𝑁 

(4 , 4) 𝑓 2 1 − 𝑛 1 2 
)
exp 

(
i 𝑞 2 1 𝑥 𝑠 

)
, 

(4 , 4) = 

(
𝐾 𝑁 

(4 , 3) + 𝐾 𝑁 

(4 , 4) 𝑓 2 3 − 𝑛 1 4 
)
exp 

(
i 𝑞 2 3 𝑥 𝑠 

)
, 

 𝑃 2 (1 , 1) = − 

(
𝐾 𝑁 

(1 , 1) + 𝐾 𝑁 

(1 , 2) 𝑓 1 1 − 𝑔 1 1 
)
exp 

(
i 𝑞 1 1 𝑥 0 

)
, 

 𝑃 2 (2 , 1) = − 

(
𝐾 𝑁 

(2 , 1) + 𝐾 𝑁 

(2 , 2) 𝑓 1 1 − 𝑛 1 1 
)
exp 

(
i 𝑞 1 1 𝑥 0 

)
, 

 𝑃 2 (3 , 1) = − 

(
𝐾 𝑁 

(3 , 1) + 𝐾 𝑁 

(3 , 2) 𝑓 1 1 
)
exp 

(
i 𝑞 1 1 𝑥 0 

)
, 

 𝑃 2 (4 , 1) = − 

(
𝐾 𝑁 

(4 , 1) + 𝐾 𝑁 

(4 , 2) 𝑓 1 1 
)
exp 

(
i 𝑞 1 1 𝑥 0 

)
, (D.2) 

 𝑃 1 (1 , 1) = − 

(
𝐾 𝑁 

(1 , 1) + 𝐾 𝑁 

(1 , 2) 𝑓 1 3 − 𝑔 1 3 
)
exp 

(
i 𝑞 1 3 𝑥 0 

)
, 

 𝑃 1 (2 , 1) = − 

(
𝐾 𝑁 

(2 , 1) + 𝐾 𝑁 

(2 , 2) 𝑓 1 3 − 𝑛 1 3 
)
exp 

(
i 𝑞 1 3 𝑥 0 

)
, 

 𝑃 1 (3 , 1) = − 

(
𝐾 𝑁 

(3 , 1) + 𝐾 𝑁 

(3 , 2) 𝑓 1 3 
)
exp 

(
i 𝑞 1 3 𝑥 0 

)
, 

 𝑃 1 (4 , 1) = − 

(
𝐾 𝑁 

(4 , 1) + 𝐾 𝑁 

(4 , 2) 𝑓 1 3 
)
exp 

(
i 𝑞 1 3 𝑥 0 

)
. 

ppendix E. Fluid viscosity 

The effect of the fluid viscosity coefficient ( 𝜂) on the complex band

tructure for the 1D FSPPC with the partial-open pore interface is shown

n Fig. E.1 . 
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