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a b s t r a c t 

Thermal metadevices obtained from transformation optics have recently attracted wide attention due to 

their vast potential for thermal management. However, these devices require extreme material parame- 

ters that are difficult to achieve in large-scale applications. Here, we design a thermal concentrator using 

a machine learning method and demonstrate the thermal concentration performance of the designed 

device. We first define an architecture with a single isotropic material. Deep learning models based on 

artificial neural networks are implemented to retrieve design geometry parameters ensuring that the re- 

quired spatially varying anisotropy is achieved. We implement the optimized architecture into a thermal 

concentrator, fabricate samples and experimentally demonstrate that the designed metamaterial can si- 

multaneously concentrate the heat flux in its core and minimize perturbations to the external thermal 

field. Our approach paves new avenues for the design of thermal management devices and, more gener- 

ally, enables feasible solutions for inverse heat manipulation problems. 

© 2022 Published by Elsevier Ltd. 
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. Introduction 

The effective control or manipulation of heat flow is an evolv- 

ng research field combining transformation thermodynamics and 

etamaterials [1–24] . Following this concept, a class of novel ther- 

al metadevices, i.e. thermal cloaks, concentrators and invisible 

ensors, have been proposed [25–34] . Transformation-based ther- 

al metadevices manipulate heat flows through tailored constitu- 

ive parameters. However, they face the major challenge of requir- 

ng bulk material compositions showing both anisotropy and inho- 

ogeneity. In contrast, it is often desirable in practical applications 

o retain flexibility in structural design by requiring only materials 

ith realistic physical properties. 

Pioneering experimental results on molding heat flows using 

nisotropic composite structures have been reported [30,35–37] . 

nother promising route is to build bi-layer meta-devices involving 

ulk isotropic materials by employing the scattering-cancellation 

ethod [38–43] . Such devices can be designed to be homoge- 

eous, but they are generally limited to regular configurations. 
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esearchers have also designed thermal metadevices using topol- 

gy optimization. These show good performance using regular ma- 

erial compositions [44–46] . However, the complexity of the ob- 

ained configurations adds fabrication difficulties and makes them 

hallenging for real applications. Thermal cloak design methods 

ave further been developed based on inverse problem theory, 

hich removes material anisotropy and is appropriate for irregular 

hapes [47–49] . In general, the so-called inverse homogenization 

heory, which has been developed over the past twenty years to 

etrieve periodic or random mixtures of materials achieving given 

ffective properties (e.g. conductivity), shows that admissible com- 

osites depend notably on the geometry and connectedness of the 

nclusions within the host medium [50,51] . For a given effective 

edium, the challenge is thus to seek feasible structured media 

ithin a very large class of composites that would be hard to fab- 

icate in practice. For instance, an inverse homogenization design 

f an electromagnetic cloak was proposed in reference [52] with 

sotropic dielectric-magnetic and randomly distributed spheroidal 

articles with specific orientation achieving the spatially varying 

nisotropy required by transformation optics. 

We note that the transformed material parameters of metade- 

ices can be also approximated by single-material architectures 

ith tailored anisotropy [2,5,53,54] . Hence, the goal becomes to 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123149
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Fig. 1. Schematic diagram representation of the design problem. A single-material 

structure is designed and optimized by an artificial neural network. We implement 

the optimized design geometry into the thermal concentrator extending in the shell 

region r 1 < r < r 2 and realize the desired thermal concentration effect. 
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eek a particular configuration such that the required constitutive 

roperties are well mimicked [30,53,55] . In this work, we present 

 general road map to build thermal metadevices based on the 

ptimization of single-material architectures, for ease of fabrica- 

ion and availability of realistic materials. A deep learning model 

s employed in the optimization process, resulting in high accuracy 

nd low-cost computation. Such a model can intelligently learn the 

ntrinsic relation linking structural parameters and their influence 

n thermal concentration from a small-size database. In contrast, 

onventional optimization methods may get stuck in local minima 

56] . In addition, the practical implementation requires flexibility 

nd diversity in design parameters due to the presence of external 

onstraints. These properties are efficiently realized by the deep 

earning network using probabilistic prediction. 

. Methods and results 

.1. Concept design 

Without loss of generality, the thermal concentrating problem 

s discussed in a 2D framework but it could be readily extended to 

 3D framework. Note that the design process is also applicable to 

ther metadevices such as invisibility cloaks. Indeed, the approach 

an be applied to any transformation based medium, and is not 

estricted to thermal problems. 

Let us assume that we want to create a cylindrical ther- 

al concentrator with inner radius r 1 = 0 . 01 m and outer ra-

ius r 2 = 0 . 04 m. In our design, the thermal conductivity of

he background is k b = 132 W · m 

−1 · K 

−1 . Following transforma- 

ion physics [2,5,54] , radial and tangential heat conductivities 

or the shell region are obtained as k ′ r = 264 W · m 

−1 · K 

−1 and 

 

′ 
θ

= 66 W · m 

−1 · K 

−1 , respectively. Their practical implementa- 

ion demands simple-material structures that exhibit prescribed 

nisotropic effective-medium properties, which can be further re- 

lized by artificial architectures with optimized geometry parame- 

ers. 

A single-composition (i.e., copper) architecture is proposed with 

our dimensionless design parameters (see Fig. 1 ). Now we turn to 

ealize the shell region properties by tailoring the anisotropy of the 

roposed architectures, that is, to find the particular design param- 

ters that best mimic the transformed medium. The optimization 

roblem amounts to minimizing the objective function: 

(k 1 , k 2 ;α, β) = α
∣∣k 1 − k ′ θ

∣∣ + β
∣∣k 2 − k ′ r 

∣∣, (1) 
2 
here α and β are weighting factors for the two objective sub- 

unctions such that α + β = 1 , k 1 and k 2 denote the thermal con- 

uctivity of the homogenized unit cell in directions 1 and 2, re- 

pectively (see the insets in Fig. 1 ). We select α = β = 0 . 5 , i.e.

qual weights for the diagonal tensor elements k 1 and k 2 . The 

unction E(k 1 , k 2 ;α, β) measures the overall difference between 

btained and objective values. This function reveals how well 

he effective properties of the established architecture mimic the 

ransformed medium. Ideal parameters achieve zero E(k 1 , k 2 ;α, β) . 

.2. Forward-modeling network 

We propose a forward-modeling network to accurately predict 

he effective thermal conductivity for given design parameters (see 

lso Fig. S1 in the supplementary information). The forward model 

uilds a fully connected network between the design space D = 

 

d 1 , d 2 , d 3 , d 4 ] as the input layer and the result space R = [ k 1 , k 2 ]

s the output layer, as shown in Fig. 1 . For the analysis, we gen-

rate a database containing 10 0 0 data samples for training, 200 

ata samples for validation, and 300 data samples for final test- 

ng. Each data sample is represented by four design parameters 

nd two output parameters. The training data set is used to train 

he network by optimizing the neural network weights, while the 

alidation data serves for checking and avoiding over-fitting, and 

he testing data examines the prediction accuracy of the network. 

e apply the optimal Latin hypercube sampling technique to ob- 

ain the original sample control points. This process is conducted 

o create sample points that spread as evenly as possible within 

esign space: this will increase prediction accuracy and efficiency. 

fter initial estimation, we define ranges of the design parame- 

ers as 0 . 5 < d 1 < 0 . 8 , 0 . 05 < d 2 < 0 . 2 , 0 . 8 < d 3 < 1 . 2 , 0 . 8 < d 4 <

 . 2 . We mention at this point that broader ranges may decrease 

he prediction efficiency, but can be compensated for by building 

ore data samples. Furthermore, the architecture is designed at 

he macro-scale. If distances d i were considered at the micro/nano- 

cale, heat flow could change from diffusive transport to wave (co- 

erent phonon) transport. In such case, the proposed method may 

ot be applicable [57] . 

Data obtained from the optimal Latin hypercube sampling tech- 

ique are normalized to expedite convergence of the network. 

hen these data are fed into the network, where the neural net- 

ork weights are continuously optimized to accelerate conver- 

ence of the algorithm. The mean square error 1 
n 

∑ n 
1 ( ̂  E − E) 2 is 

sed to represent the loss function between the normalized and 

esired output, where ˆ E and E respectively denote the predicted 

alues and real values. The learning curves for training, validation 

nd testing data are shown in Fig. 2 a as a function of training

pochs. All three errors drop sharply as training proceeds, until 

onvergence is gradually obtained after 400 epochs, implying com- 

letion of the training phase. Errors are small and are evenly dis- 

ributed, suggesting a smooth network without over-fitting issues. 

ue to the unique one-to-one mapping between design space and 

esponse in the forward problem, the training process converges 

traightforwardly. 

To check the prediction accuracy of the trained model, we eval- 

ate it on a group of 200 new data samples that are not used in the

raining process. We compare the results predicted by the trained 

etwork and those from finite element analysis (FEA). The mean 

elative errors are reported in Fig. 2 b, c, where we observe that the 

ean relative errors all fall into the range 0 − 0 . 5% while the mean

rrors are less than 0 . 25% . Since the results demonstrate extremely 

igh prediction accuracy of the proposed network (over 99 . 5% ), we 

an safely conclude that the pretrained network is credible in this 

cenario. 
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Fig. 2. Forward network learning process and results. (a) The learning curves for training, validation and data testing are shown as a function of the training epochs. (b,c) 

Histogram of relative errors for the testing samples. The mean errors are indicated by purple dashed lines. (d) Latent design space and (e-n) sensitivity of the effective 

conductivity to constructed parameters. The green dashed lines mark the deviation ranges within which the built architecture will exhibit effective properties differing by 

less than 6% compared with the target values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Comparison of predicted and target values for the derived 

set of parameters. 

Predicted Targeted Difference 

k 1 ( Wm 

−1 K −1 ) 65.7 66 0.4% 

k 2 ( Wm 

−1 K −1 ) 264.6 264 0.2% 
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.3. Determination of optimal design parameters 

Practical applications often require feasible design parameters 

f the architecture to exhibit required thermal properties. Using 

he established forward network, we generate 10,0 0 0 new sets of 

ata samples within the prescribed range. Note that the 10,0 0 0 

ew samples are created from the neural network directly for op- 

imization, while the original 1500 samples are calculated by finite 

lement analysis as a database. Consequently, we filter out the op- 

imal design parameters that lead to output results closest to the 

arget values within the 10,0 0 0 new samples (see Fig. S2 in the 

upplementary information). Optimal parameters are obtained as 

 1 = 0 . 5364 , d 2 = 0 . 136 , d 3 = 0 . 9028 and d 4 = 0 . 9186 . We calcu-

ate thermal conductivities of the optimized architecture and com- 

are them with the target values in Tab. 1 . It is seen that the ob-

ained parameters closely mimic those of the desired transformed 

edium, thus validating the prediction efficiency. 

.4. Probabilistic design space 

We have obtained one precise set of optimal design parame- 

ers that generates the required thermal conductivity, yet practical 
3

mplementation demands diversity in design parameters due to the 

ossible unavailability of manufacture and deviations from the de- 

ired design parameters. It is essential to enhance the generaliza- 

ion and robustness of the neural network by introducing proba- 

ilistic prediction of the design parameters. Here, the latent space 

oncept is adopted for probabilistic representation [58] . Therefore, 

600 sets of design parameters are generated through the net- 

ork established before, forming the design space. We plot dis- 

ributions of the design space with the criterion of maximum de- 

iation by 6% (from the target values) in Fig. 2 d. Architectures 

uilt using these parameters will exhibit effective thermal con- 

uctivity differing by less than 6% from target values. Such prob- 

bilistic design space reveals the sensitivity of the device’s pa- 

ameters on effective properties, hence further allowing for more 

iversity and flexibility in the design and fabrication of thermal 

eta-devices. 

To give more details on the latent space, we plot the sensi- 

ivity of the effective conductivity to constructed parameters in 

ig. 2 (e-n). We show the deviation range of each parameter that 

ill exhibit effective properties differing by less than 6% from tar- 

et values. As expected, we observe a significant influence of pa- 

ameter d 4 on k 1 , and a significant influence of parameter d 3 on 

 2 . In Fig. 2 j,n nearly null sensitivity is observed, since the con- 

uctivity changes by less than 1% even though parameter d 2 (or 

 4 ) changes by 20% . Also note in Fig. 2 (e-n) that optimized pa-

ameters slightly deviate from ideal ones. This corresponds to the 

act that the obtained effective conductivity values differ slightly 

rom target values. We stress that this difference is negligible, and 

an be improved by generating more data samples in the filtering 

rocess. 
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Fig. 3. Temperature fields: (a) without convection, obtained from Eq. (5) ; (b) with transformed convective terms, obtained from Eq. (3) ; (c-d) with convective terms ( h = 

15 W · m 

−2 · K −1 ), obtained from Eq. (2) . 
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. Transformed couplet heat equation 

After integrating the heat equation with respect to the z vari- 

ble and combining with the top and bottom surface boundary 

onditions (convection and radiation), the problem is expressed in 

wo dimensions (x, y ) as: 

 · ( k ∇T ) − ρc 
∂T 

∂t 
− P 

[
h ( T − T a ) + ε 

(
T 4 − T 4 a 

)]
= 0 , (2) 

here T a is the ambient temperature, h represents the convection 

oefficient and ε denotes surface emissivity. P = 2 /δ where δ is the 

hickness. In principle all terms of the governing equation should 

e transformed, namely, not only the conductivity (as very of- 

en reported) but also the emission and the convective terms. We 

hall consider the convective term to include a Jacobian det (J) 

hen applying a coordinate change in Eq. (2) . The nonlinear term 

 

(
T 4 − T 4 a 

)
, however, is not suitable for direct transformation, but 

ortunately it has relatively small influence for low temperature 

ifferences [59] . 

Consider the coordinate transformation from original space 

x, y, z) to physical space (x ′ , y ′ , z ′ ) , the transformed heat gov-

rning equation without emissive terms takes the form 

 ·
(
k ′ ∇T 

)
− ρ ′ c ′ ∂T 

∂t 
− P h 

′ ( T − T a ) = 0 , (3) 

here the transformed parameters satisfy 

 

′ = 

J KJ T 

det (J) 
, (ρc) ′ = 

ρc 

det (J) 
, h 

′ = 

h 

det (J) 
, (4) 

ith J = ∂(x ′ , y ′ , z ′ ) /∂(x, y, z) the Jacobian matrix and J T its trans-

ose. 

If we neglect convection and radiation, as is often assumed in 

he literature, Eq. (3) simplifies to 

 ·
(
k ′ ∇T 

)
− ρ ′ c ′ ∂T 

∂t 
= 0 . (5) 

Figure 3 shows the simulation results obtained when consid- 

ring the different contributions (plate thickness 2 mm and am- 

ient temperature 293 K ). The results in Fig. 3 c,d show that the

onvective term deteriorates concentration especially for high tem- 

eratures, for which the external temperature profile is disturbed. 

owever, thermal metadevices including the transformed convec- 

ive term show good thermal neutrality in Fig. 3 b (see also Fig. S3

n the supplementary information). Actually, though heat is ex- 

ected to diffuse along the plate, heat radiation and convection 

o the ambient air seem more or less unavoidable. Heat dissipa- 

ion via convection and radiation decrease the amount of heat that 

s transported via conduction along the plate, which is detrimen- 

al to thermal neutrality. We note in passing that the transforma- 

ion theory for thermal convection and manipulation of heat fluid 
4 
ow can be physically implemented with anisotropic porous me- 

ia, though this is beyond our considerations [60,61] . The relevant 

omogenization literature includes e.g Ref. [62] . 

. Experimental validation 

We have fabricated the proposed thermal concentrator with 

opper and characterized such a device that molds the flow of 

eat. The background thermal conductivity k b = 132 W · m 

−1 · K 

−1 

s not readily available in naturally existing materials. We achieve 

t by drilling holes into the copper plate (thermal conductivity 

 c = 394 W · m 

−1 · K 

−1 ), and the holes are filled with air in the 

oom temperature (thermal conductivity k a = 0 . 026 W · m 

−1 · K 

−1 ). 

ccording to Maxwell-Garnett theory [63,64] , the effective conduc- 

ivity is k b = k c 

[ 
1 + 

2 ( k a −k c ) f 
k a + k c −( k a −k c ) f 

] 
, where f denotes the fraction 

rea of holes. Following this approach, we obtain f = 0 . 5 and thus

ntroduce an array of holes (diameter 1 . 6 mm ) in the plate with

qual spacing 2 mm . 

A photograph of the experimental system is shown in Fig. 4 a, 

here local heating on the left side of the plate is realized by a 

ank filled with hot water whereas the right side is immersed in 

n identical tank filled with water at room temperature. The other 

ides are left free. An elevator is used to adjust the position of the 

nfrared camera to capture images of the temperature profiles. The 

NC machining technique is used to produce the pattern shown in 

ig. 4 a. Note that increasing the number of layers and sectors, one 

an accurately approximate the idealized thermal concentrator pa- 

ameters. However, a large number of layers will increase the fabri- 

ation complexity. Considering the trade-off between performance 

nd easiness of fabrication, we have made a thermal concentrator 

ith 5 radial layers and 25 tangential sectors (see Fig. 4 a). 

To measure the temperature profiles via Planck thermal emis- 

ion, we used an infrared thermal camera (FLIR A6702sc) to cap- 

ure thermal images. Considering that copper is highly reflec- 

ive, we cover the sample with acrylic paint to reduce the sur- 

ace reflectivity and with insulating tape to facilitate the cap- 

ure of images. The thermal conductivity of acrylic is around 

 . 2 W · m 

−1 · K 

−1 and is 4 orders of magnitude smaller than the 

hermal conductivity of copper, thus hardly influencing the heat 

iffusion process. Numerical and experimental results are shown 

n Fig. 4 b,c. We observe that the proposed device successfully ful- 

lls its tasks in that heat flux is focused to the central region 

nd that simultaneously the thermal field remains unaffected out- 

ide the device. The heat density is larger in the inner domain 

han in its surroundings. Furthermore, the temperature field out- 

ide the device is almost not affected. The experimental results are 

onsistent with numerical calculations, validating the design. Note 

hat experimental results show a better agreement with numeri- 

al simulation considering that the thermal convection coefficient 
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Fig. 4. (a) Photograph of the experimental system. (b) Simulated and (c) measured temperature distributions. The white lines denote temperature iso-lines and the black line 

denotes the observation line. (d) Bottom: temperature along the observation line considering different thermal convection coefficients. Top: temperature difference between 

the convective case and the zero-convection case. 
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 = 15 W · m 

−2 · K 

−1 . The larger the thermal convection coefficient, 

he worse the thermal concentration effect. 

. Conclusion 

Summarizing, we have demonstrated the machine learning 

riven design of a thermal concentrator through the optimiza- 

ion of single-material architectures. An artificial neural network is 

roposed to accurately predict the effective material property for 

iven design geometry parameters. Optimal design parameters are 

hen retrieved for target thermal conductivities. The probabilistic 

pace of the design parameters is used to reveal the sensitivity of 

he design parameters to the effective conductivity and the gener- 

tion of desired results with miscellaneous design. 

We implement a thermal concentrator based on the optimized 

rchitectures and fabricate a sample by the CNC machining tech- 

ique. Both numerical simulations and experimental results show 

ood thermal concentration. We emphasize that the approach can 

e used to automate the design process with more complex ar- 

hitectures, offering a non-unique solution space. Finally, our ap- 

roach would work equally well for other diffusion (e.g. mass, mat- 

er) or wave (acoustic, electromagnetic, elastodynamic, hydrody- 

amic) fields governed by linear partial differential equations. 
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