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Dyadic Green’s Functions of a Laminar Plate
Alexandre Reinhardt, Vincent Laude, Member, IEEE, Abdelkrim Khelif, and Sylvain Ballandras

Abstract—We introduce the concept of dyadic Green’s
functions of a laminar plate. These functions generalize
classical Green’s functions. In addition to relating displace-
ments and stresses at the surface of a medium, they relate
these quantities at both the top and the bottom surfaces
of a medium of finite thickness and infinite extent in the
transverse directions. We describe here the calculation of
these functions in the spectral domain and provide some
academic examples demonstrating their interest.

I. Introduction

Surface Green’s functions, that relate displacements to
stresses at the surface of a semi-infinite or multilayered

substrate, are a powerful tool to study wave propagation.
They are efficient in elastic surface wave analysis where
they enable, for instance, the characterization of modes
and the understanding of their behavior [1]–[3]. They are
also used in the mixed finite element analysis/boundary
element method (FEA/BEM) for fast and efficient calcu-
lation of the electromechanical behavior of structures ra-
diating within a medium [4]–[6], or of guided elastic wave
transducers made of inhomogeneous metal electrodes over
or buried within stratified layers [7], [8]. In all of these
models, surface Green’s functions are calculated assuming
either a semi-infinite or a finite laminar substrate with a
stress-free bottom surface.

Some authors [9], [10] use Green’s functions considering
that the boundary delimiting a laminar layer is made of
both its top and its bottom surfaces. As a consequence,
their Green’s functions tensors are twice the dimension
of classical surface Green’s functions. They also provide
expressions for calculating them for an isotropic layer or
for a composite system made of stacked homogeneous lay-
ers [11].

In the remainder of this paper, we assume the laminar
plate is either a simple homogeneous plate or a multilay-
ered medium of finite thickness. Layers in such a medium
can be made of piezoelectric, insulating, or conducting ma-
terials, as well as of fluids, which can be considered ideal
or can be viscous. They are assumed of infinite extent in
the x1 and x3 directions following axis conventions defined
in Fig. 1, and they present flat interfaces.

The aim of the Green’s function of a laminar plate is to
relate generalized displacements
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Fig. 1. Axes conventions and definitions of displacements and stress
vectors for (a) the structure when applying stresses to the top surface,
and (b) when applying stresses to the bottom surface.
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composed of mechanical normal stresses T2i together with
the normal electric displacement D2, applied on both sides
on the boundaries of the structure, through

u = Gτ, (3)

and also by making use of the linearity of this definition
to introduce notations that will be useful in the remaining
of this paper

(
ut

ub

)
=

(
Gtt Gtb

Gbt Gbb

)(
τ t

τb

)
. (4)

Throughout this paper, we use the t and b superscripts for,
respectively, the top and bottom sides of the plate. There
are eight components for both displacements and stress
vectors. Hence, the Green’s function is an (8,8) matrix, or
dyadic using Smith’s denomination [12].

The calculation method is based on a modified Fahmy-
Adler formulation, described in [13]. We recall shortly the
method and provide definitions that will be necessary in
the remaining of the paper. We then explain the calcula-
tion of the Green’s dyadic and of its inverse. Finally, some
academic examples of calculations are given to validate
and illustrate this method.

II. Definitions

The model used to calculate the Green’s functions of a
laminar plate is based on a Fahmy-Adler formulation for
waves in piezoelectric layers [14]. The vibration of a layer
is described as the superposition of eight partial waves
given by the solution of an eigenvalue problem that de-
pends only on the material constants and on the slow-
nesses s1 and s3 along x1 and x3 directions. The slownesses
s2 of partial waves are obtained as the eigenvalues, and
thus provide the propagation constants of the correspond-
ing partial waves, whereas polarizations are given by the
corresponding eigenvectors. Finally, the electromechanical
fields in layer number l are expressed as the state vector

h =
(
u
τ

)
= Fl∆l(x2)al exp jω(t − s1x1 − s3x3),

(5)

where Fl is the matrix containing the polarizations of par-
tial waves, ∆l(x2) = diag (exp−2jπfs2ix2) is the diagonal
matrix containing terms describing propagation along the
x2 direction, and al is the vector containing the amplitudes
of partial waves. This formulation has been extended to
fluids, ideal or with viscosity, and to perfectly conducting
materials [15], [16]. For these materials, the number of par-
tial waves can decrease because two partial waves of purely
electrostatic polarizations (i.e., with polarizations along Φ
and D2 components only) are lost when considering per-
fectly conducting materials, and the partial waves of shear
polarizations are also lost in nonviscous fluids. For these
reasons, the Fl, ∆l(x2) matrices as well as the al and h
vectors can shrink from dimension 8 to 6, 4, or even 2. For

the sake of simplicity, we will describe the calculation for
piezoelectrics (or also for viscous insulating fluids, which
have mathematically the same behavior), and give only a
few indications of the treatment of other types of materials
when needed.

To be more stable at high frequencies the original for-
mulation has also been modified by separating partial
modes into two groups, using the following rules [13], [17]:

1. Transmitted partial waves have their acoustic power
fleeing from the excitation surface, or are decaying ex-
ponentially when leaving the excitation surface. They
correspond to homogeneous waves traveling away from
the excitation surface (i.e., waves propagating from the
top surface into the bulk for a semi-infinite medium)
or to inhomogeneous waves guided at the vicinity of
the surface.

2. Reflected partial waves have a Poynting vector di-
rected towards the excitation surface, or are grow-
ing exponentially when leaving the excitation sur-
face. They correspond to homogeneous waves incident
on the excitation surface or to inhomogeneous waves
guided at the vicinity of the excitation surface.

As a consequence of this definition, the partial waves selec-
tion is not the same in the two cases depicted in Fig. 1(a)
and (b). Actually, the transmitted and reflected modes are
exchanged between the two configurations.

From this partial waves selection rule, it is possible to
introduce the reflection matrix Rl(x2) linking the reflected
to transmitted partial waves in layer l [13], [15] as

∆R
l (x2)aR

l = Rl(x2)∆T
l (x2)aT

l , (6)

where the superscripts T and R indicate the restriction of
matrices and vectors to transmitted and reflected partial
waves, respectively.

III. Green’s Functions Calculation

From (3), every component of the Green’s matrix is de-
fined as the ratio of a displacement over an applied stress,
provided that all the other stress components are zero.
Consequently, we first calculate the submatrices Gtt and
Gbt by considering that stresses are applied at the top of
the structure while the bottom surface is assumed stress-
free. We then calculate Gtb and Gbb by considering stresses
at the bottom of the structure while the top surface is
stress-free.

A. Application of Stresses at the Top Surface

The stress-free bottom surface condition is expressed as

∆1(xb)a1 = F−1
1 h(xb) = F−1

1

(
I4
04

)
ub =

(
A
B

)
ub,

(7)

where I4 is the identity matrix of dimensions (4, 4), 04
is the null matrix of the same dimensions, and ub is the
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bottom displacements vector, not yet known. On the other
hand, from the definition of reflection matrices, we also
have

∆1(xb)a1 =
(

I4
R1(xb)

)
∆T

1 (xb)aT
1 . (8)

Equating these two expressions, the reflection matrix can
be determined without the need to know explicitly the
values of the bottom displacements, according to

R1(xb) = BA−1. (9)

The calculation for materials of a type other than piezo-
electric was described in [15]; it is symbolically the same
provided that the dimensions of the matrices are modified.

Once the reflection matrix at the bottom of the first
layer is known, it is transferred to the top of this layer using
the relation between reflection matrices at two points, x2
and x′

2, within the same layer l, [15]

Rl(x′
2) = ∆R

l (x′
2 − x2)Rl(x2)∆T

l (x2 − x′
2).

(10)

Partial wave conversion at the interface between two
layers, indexed respectively l and l + 1, is determined by
stating that the components of the state vector are con-
tinuous across the interface. This leads to

∆l+1(xl)al+1 =
(

C
D

)
∆T

l (xl)aT
l , (11)

where xl is the coordinate of the interface along x2, and(
C
D

)
= F−1

l+1Fl

(
I4

Rl(xl)

)
(12)

when the interface between two piezoelectric layers is con-
sidered. Since, in the general case, the size of matrices for
layers l and l + 1 may not be the same, it is necessary
to make some hypotheses about the mechanical or electric
behavior of materials at the interface. This involves con-
sidering a zero electric potential for conducting layers and
making shear displacements vanish within nonviscous flu-
ids. This leads to writing (11) in a symbolically analogous
way, although the definitions of the C and D matrices are
totally modified. Expressions for these matrices are pro-
vided in [15] as well as the exact hypotheses made to solve
the partial wave conversion problem. Finally, the reflexion
matrix is obtained as

Rl+1(xl) = DC−1. (13)

Then, the reflection matrix is once again transferred to
the top of the (l+1)-th layer using (10), and partial waves
are converted to the next layer, and so on recursively until
the top surface of the plate is reached.

At this step, the stress-free boundary condition applied
to the bottom of the structure is transferred to the surface
where the excitation stress is applied. We then write the
definition of the state vector at the top surface as

h(xt) =
(
ut

τ t

)
=

(
E
F

)
∆T

n (xt)aT
n , (14)

where n is the index of the topmost layer and
(

E
F

)
= Fn

(
I4

Rn(xt)

)
(15)

in the case of a piezoelectric layer, and where xt is the
coordinate along the x2 direction of the top surface of the
structure. For other types of materials, the expression re-
mains the same but the dimension of matrices is changed.

Selecting the last four lines of (14) yields the amplitudes
of the transmitted partial waves under the excitation sur-
face as a function of the applied stress as

aT
n = ∆T−1

n (xt)F−1τ t. (16)

Top displacements are then given by the remaining part
of (14),

ut = E∆T
n (xt)aT

n , (17)

and thus submatrix Gtt can be determined. It is interesting
to note that when inserting (16) into (17), the formula used
for classical surface Green’s functions [13], [15] is retrieved,

Gtt = EF−1, (18)

which shows that the approach described here is an exten-
sion of the usual one.

Considering again the conversion of partial waves at
the interface between two layers, expressed by (11), one
obtains

aT
l = ∆T

l (xl)−1C−1∆T
l+1(xl)aT

l+1. (19)

This relation shows that knowing the amplitudes of trans-
mitted partial waves within a layer, it is possible to deter-
mine transmitted partial waves in the layer immediately
underneath. Thus, by applying this formula recursively, it
is possible to transfer the aT vector from the topmost layer
to the bottommost one. It is interesting to note that all
matrices involved in this expression have already been cal-
culated, so that this step does not represent a huge calcu-
lation overhead. Then, from (7) the bottom displacements
are known as

ub = A−1∆T
1 (xb)aT

1 , (20)

where xb is the coordinate along the x2 direction of the
bottom interface of the structure. The knowledge of the
bottom displacements and of the top stress excitation en-
ables the determination of submatrix Gbt.

B. Application of Stresses at the Bottom Surface

To calculate the second half of the Green’s functions
matrix, it is necessary to consider stresses applied at the
bottom of the structure while the top surface remains
stress-free. To do this, we apply the same scheme as when
imposing stresses at the top surface.
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We start by writing the definition of the reflexion matrix
on the stress-free surface,

∆n(xt)an =
(

I4
Rn(xt)

)
∆T

n (xt)aT
n =

(
A
B

)
ut,

(21)

where (
A
B

)
= F−1

n

(
I4
04

)
. (22)

These equations are obviously similar to (8) and (7), with
the only difference being that the considered layer is n and
not 1. Thus, (9) remains valid in our case provided that the
index of the layer is changed. As the definition of reflection
matrices remains unchanged, (10) also remains valid. How-
ever, this time, reflection matrices are transferred from the
top to the bottom of the layers, so that the sign of the ar-
gument of the ∆ matrices, which physically corresponds to
the algebraic propagation length of waves, becomes neg-
ative; it was positive when application of stresses at the
top surface were considered. This is caused by the fact
that the partial waves selection rule inverts the classifica-
tion of partial modes in the two configurations and thus,
for propagating waves, their propagation directions or, for
inhomogeneous waves, the directions in which they are de-
creasing.

When considering the conversion of partial waves be-
tween two layers, this time we know the reflection matrix
at the bottom of the upper layer, say, l+1, and our goal is
to calculate the reflection matrix in the layer underneath,
say, l. Thus, the continuity of electromechanical fields at
the interface is expressed as

∆l(xl+1)al =
(

C
D

)
∆T

l+1(xl+1)aT
l+1, (23)

where xl+1 is the coordinate of the interface along x2, and
(

C
D

)
= F−1

l Fl+1

(
I4

Rl+1(xl+1)

)
(24)

when two piezoelectric layers are considered. Once again,
these relations are formally equivalent to (11) and (12) al-
though indices l and l + 1 need to be exchanged because
of the inversion of the order in which layers are considered
when the reflection matrices are calculated. So, in the same
way as we have transferred the bottom stress-free surface
boundary condition to the top surface in Section III-A, we
are able here to transfer the top stress-free surface bound-
ary condition to the bottom surface of the structure.

Finally, let us consider the application of stresses at the
bottom of the multilayer

h(xb) =
(
ub

τb

)
=

(
E
F

)
∆T

1 (xb)aT
1 , (25)

where (
E
F

)
= F1

(
I4

R1(xb)

)
(26)

for a piezoelectric layer. These relations are also formally
equivalent to those written when stresses at the top of the
structure are applied.

So, instead of rewriting all the equations, we rather use
the same algorithm for the excitation both at the top and
at the bottom of the multilayer, with the following differ-
ences when exciting at the bottom:

1. The partial modes selection rule needs to be inverted
according to the general rule expressed earlier.

2. The algorithm processes the layers in an upwards way
when exciting at the top of the structure, whereas it
operates downwards when exciting at the bottom. To
reuse exactly the same equations, it is convenient to
reverse the order of the layers. This causes also the t
and b subscripts to be exchanged.

3. The transfer of reflection matrices needs to be per-
formed only from one side of a layer to the other side.
So, only its thickness is to be considered. Thus, when
exciting at the bottom, it is convenient to use the same
transfer equations, but with “negative” thicknesses.

Albeit these three points, all of the algorithm applied in
the Section III-A remains totally valid, and hence the cal-
culations of Gtb and Gbb is respectively the same as those
of Gbt and Gtt.

IV. Calculation of the Inverse of the Green’s

Functions

The inverse of the dyadic Green’s function is defined as

τ = G−1u, (27)

and can be divided into submatrices

G−1 =
(

G−1
tt G−1

tb

G−1
bt G−1

bb

)
. (28)

Simply inverting the 8 × 8 matrix can lead to numerical
instabilities, as we have experienced, because some compo-
nents can exhibit singularities, especially the electrostatic
ones (i.e., G44 and G88) which have a logarithmic behav-
ior when surface slownesses are close to zero. Thus, it is
necessary to calculate separately the inverse of the Green’s
function matrix. The algorithm used is very similar to the
one described in Section III.

First, the calculation of the reflection matrix is initial-
ized at the bottom of the structure. Instead of being con-
cerned with a stress-free surface, the definition of the in-
verse of the Green’s function matrix in (27) implies that
each component in the matrix is the ratio of a generated
stress component over an imposed displacement, while the
other displacements are forced to zero. Thus, when a dis-
placement is imposed on the top surface, the bottom sur-
face needs to be considered clamped. This condition is
written in a form similar to (7) as

∆1(xb)a1 = F−1
1

(
04
I4

)
τb =

(
A′

B′

)
τb. (29)
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This leads to the expression of the reflection matrix at the
bottom of the structure

R1(xb) = B′A′−1. (30)

Once the calculation of the reflection matrix is initiated,
its transfer to the top surface is performed in the same
way as for the standard algorithm.

At the top surface, displacements rather than stresses
are imposed, but (14) remains valid. We can consequently
use its first four lines to obtain the amplitudes of partial
transmitted modes within the first layer

aT
n = ∆T

n (xt)−1E′−1ut. (31)

Using the last four lines of (10) we get the stress compo-
nents at the top surface

τ t = F ′∆T
n (xt)aT

n , (32)

and thus the components of the submatrix G−1
tt . As for the

calculation of the direct Green’s function, inserting (31)
into (32) provides the relation

τ t = F ′E′−1ut, (33)

which corresponds to the expression used for calculating
the inverse of the classical Green’s functions [13]. But un-
like the calculation of direct Green’s functions, this is only
a symbolic analogy. In fact, we previously calculated the
classical Green’s functions with a bottom stress-free sur-
face condition, whereas here it is obtained for a bottom
clamped surface. So, in this case, the current approach is
also an extension of the classical concept.

The next step in the algorithm is to calculate the am-
plitudes of transmitted partial waves in all other layers,
as explained in the Section III-A subsection. Then at last,
the bottom stress vector is obtained using the four first
lines of (29) as

τb = A′−1∆T
1 (xb)aT

1 . (34)

This provides the components of G−1
bt .

The remaining part of the matrix is calculated after
an inversion of the structure, using the rules described in
subsection Section III-B, and a new run of the algorithm
we have just described.

V. Numerical Examples

Now that we have shown how to calculate the dyadic
Green’s functions of a laminar plate, we will provide some
academic examples.

A. Thickness Extensional Response of a Plate

We consider in this example a simple plate on which
harmonic traction forces F = F0 exp jωt are applied at
each side, as shown in Fig. 2. This problem can be solved
analytically by considering that solely a longitudinal wave

Fig. 2. A simple plate on which traction forces are applied.

Fig. 3. Comparison between analytical expression and calculated
Green’s functions for the thickness extension of a simple plate.

travels vertically in the plate. As demonstrated in the ap-
pendix, normal top displacements are given by

ut
2 =

F0

2πfsc
tan(πfsl exp jωt), (35)

where s is the slowness of the longitudinal wave within the
material, c is its elastic modulus in the vertical direction,
and l is the thickness of the plate. In Fig. 3, we compare
both the analytical formula and the displacements given by
the use of the Green’s function ut

2 = (G22+G26)F0 exp jωt.
The two approaches agree very well, and provide an ana-
lytical validation for the model.

B. Acoustic Coupling Between Two Resonators in a
Coupled Resonator Filter

The second example consists of the study of the
coupling between resonators in coupled resonator filters
(CRF). Such devices, introduced by Lakin et al. [18], are
made of two or more resonators piled up vertically, sep-
arated by a few quarter-wavelength layers, so that vibra-
tions generated by one of the resonators are partially trans-
mitted to the other, as depicted in Fig. 4. A set of coupled
resonators is thus created and, provided their resonances
are close enough, a filter transmission function is achieved.
The coupling of the resonators is directly related to the
isolation layers inserted between them [19]. These layers
act as a Bragg mirror that causes acoustic power to be
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Fig. 4. Basic structure for a coupled resonator filter.

Fig. 5. G22 and G62 for various isolation layers configurations.
From top to bottom: a single silica quarter-wavelength layer,
silica/AlN/silica, and silica/AlN/silica/AlN/silica. Each layer is
quarter-wavelength thick at the center frequency of 5.25 GHz.

trapped within the resonators. Thus the coupling is per-
formed through evanescent fields.

In this example, we focus only on the transmission prop-
erties of the coupling layers. In Fig. 5 we show the cal-
culated displacements at the top and bottom surfaces of
the isolation layers when a harmonic stress is applied at
the top surface. For a single layer, the displacements are
quite regular, but one can note that at the center frequency
the transmitted and reflected longitudinal waves interfere
destructively at the top of the quarter-wavelength layer,
and thus the displacements are kept near zero at the top
surface. When more layers are involved, the spectrum be-
comes more complicated, due to partial reflections inside
the structure. In particular, two thickness modes appear.
They are used to provide the filter function, although the
mass loading of the resonators shifts their resonance fre-
quencies.

We define a displacement ratio as

ρu =
∣∣∣∣u

b
2

ut
2

∣∣∣∣ =
∣∣∣∣G22

G26

∣∣∣∣ , (36)

which is reported in Fig. 6. The isolation layers exhibit
a peak in the displacement ratio at the center frequency,
which favors the coupling between the two resonators in a
CRF. However, the transmission decreases with the num-
ber of layers, which is consistent with the fact that for a
Bragg mirror the reflection coefficient increases with the
number of layers. It is also interesting to note that the

Fig. 6. Displacement ratio of bottom normal displacements over top
normal displacements versus frequency for the same isolation layers
as in the previous figure. Top: full scale spectrum; bottom: zoom of
the spectrum near unity value.

two mechanical resonances seen earlier are located at fre-
quencies where the displacement ratio is equal to 1. This
corresponds to the transition between the regions where
acoustic power is transmitted (corresponding to the filter
passband in a CRF) and the one where acoustic power is
reflected (corresponding to the rejection band in filters).

VI. Conclusions

We have introduced the concept of dyadic Green’s func-
tions of a laminar plate, which relate displacements at
the top and bottom surfaces to the stresses applied at
these surfaces for a medium of finite thickness. We have
described an algorithm to calculate these functions and
their inverse for multilayered plates of infinite extent in the
horizontal directions, consisting of piezoelectric, dielectric,
and conducting materials, as well as fluids, viscous or not.
Some examples have then been given to validate the model
and demonstrate some applications it can be useful for.

The main foreseen application of this tool is its inclusion
within an FEA/BIM. It should now become possible to
introduce boundary elements within complicated meshes,
and not only at their extremities. Although the dimension
of the matrices to manipulate is increased, compared to
classical Green’s functions, the gain in calculation com-
plexity should be noticeable.

Appendix A

Analytic Calculation of the

Thickness-Extensional Response of a Single

Plate

Let us consider the plate depicted in Fig. 2 in which
a longitudinal wave propagates vertically with slowness
s =

√ρ
c , where ρ is the mass density of the material,

and c its elastic modulus. Thus, the expression of vertical
displacements is
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u2 = A exp jω(t − sx2) + B exp jω(t + sx2).
(37)

From Hooke’s law,

Tij = cijklSkl (38)

where cijkl are the components of the elastic tensor, and
Skl the components of the strain tensor. From the defini-
tion of the strain components

Skl =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
(39)

and the symmetry properties of the elastic tensor, one gets

T22 = c
∂u2

∂x2
. (40)

This equation remains valid for piezoelectric materials if
the stiffening of elastic constants due to piezoelectricity is
applied. Inserting (37) into this expression provides the ex-
pression of stresses associated with the longitudinal wave:

T22 = −jωs(A exp(jω(t − sx2)) − B exp(jω(t + sx2))).
(41)

The boundary conditions are that the stresses are im-
posed on both sides of the plate, or

T22

(
x2 =

l

2

)
= F0 exp jωt, (42)

T22

(
x2 = − l

2

)
= −F0 exp jωt. (43)

From the expression of stresses, the following equations
are obtained

(A − B) cos
ωsl

2
= 0, (44)

2ωcs(A + B) sin
ωsl

2
= 2F0. (45)

Thus,

A = B =
F0

2ωcs sin ωsl
2

, (46)

and the expression for displacements of the top surface
become

ut
2 =

F0

ωcs
tan

(
ωsl

2

)
exp jωt. (47)
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