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Nonlinear joint-transform correlation: an optimal solution
for adaptive image discrimination and input noise robustness
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We develop a processor for pattern recognition that is optimum in terms of discrimination and is tolerant to

variations of the object to be recognized. This optimum processor is found to be adaptive nonlinear joint-

transform correlator.

Within the past decade different architectures for
optical correlators have been demonstrated.'13 Al-
though the spatial matched filter is optimal for
noise robustness, its limitations, such as broad cor-
relation peaks, sensitivity to distortion, and low
discrimination capabilities,4 are well known. As a
result, different filters for optical correlation have
been proposed.4 9 On the other hand, nonlinear
joint-transform correlators3 (JTC's) have been shown
to be discriminant with good correlation performance.
For optical correlation, different criteria have been
proposed to characterize the filter performances.'0

It has been shown'0 that some of the most interest-
ing criteria are related to the noise robustness of the
filter and the sharpness of the correlation function.
Furthermore, the importance of finding trade-offs
among different criteria is now well established. 8 "0

It has been shown that this approach8 leads to useful
filters and figures of merit.

However, until now the discrimination capabilities
of the filter have been optimized indirectly by min-
imization of either the sharpness of the correlation
function8 or the energy of the correlation function
with false objects (that is, objects to be rejected) or
background models to be discriminated against." It
is one of the main purposes of this Letter to determine
an optimal method for discrimination capabilities of
the processor that does not need a priori knowledge
of the false objects or of the background. We show
that this optimal processor has strong analogies with
nonlinear JTC's.3

In the analysis, one-dimensional notations are used
for simplicity with no loss of generality. Let r(t)
and s(t), respectively; denote the reference and in-
put images. The output of the optimum processor,
C(t) = {_1 h(t + 6)*s(6), is the correlation between
the input image and a filter function h(t), where *
denotes complex conjugation and N is the total num-
ber of pixels. In the derivation of the optimum pro-
cessor, we will not restrict the filter function h(t) to
being linear.

When the input image is the same as the reference
object, it is imposed that the filter produces the corre-
lation peak C0 = C(0). This leads to the constraint

h(t)*r(t) = Co. (1)

If the input image is a modified or a distorted version
r(t) + ar(t) of the reference image r(t), one generally
requires the variation in the correlation peak that is
due to perturbation 3r(t) to be very small, that is,
Ft h(t)*[r(t) + 8r(t)] = Co or Et h(t)*3r(t)] 0 O. A
classical method for achieving this requirement is to
minimize the mean-squared value of the correlation
with the perturbation 8r(t). In the Fourier domain,
the correlation energy that is due to the perturba-
tion is Yk Ih(k)121 r(k)12, where h(k) and er(k) denote
the Fourier transform of h(t) and 8r(t), respectively.
With no a priori knowledge of perturbation 8r(t), let
us consider that it is a zero-mean white random vec-
tor. The mean-squared value of >Lk Ih(k)I121er(k)12 is

then

(2)7m 2 [h] = Y. Ih(k)120r 2,

k

where c-r
2 = (l r(t)12) and the angle brackets denote

the mean value.
To optimize the discrimination capabilities of the

processor, one may minimized the energy of the cor-
relation function that is due to any input image s(t).
Because we consider Eq. (1) as a constraint, this is
equivalent to minimizing:

(3)E,[h] = Y Jh(k)12 1(k)12,

where s(k) is the Fourier transform of s(t).
The problem is now clearly defined: cm2[h]

[Eq. (2)] and EJh] [Eq. (3)] have to be minimized
under the constraint of Eq. (1). The optimum pro-
cessor corresponds to the optimal trade-off8 between
cm2 [h] and E8[h]. After appropriate substitution
and taking into account that Co is arbitrary,' 2 it can
be shown that the optimum processor is

h(k) = o.2 - l(k)±` + 1(k) 12 (4)
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where cr2 is given positive constant. With Eq. (4),
the Fourier transform of the correlation output is

CPkk= _ _ §_ _k_

C(k) - 0(2 + 19(k)12 (5)

It is obvious from Eq. (5) that this optimal proces-
sor is a nonlinear filter, because it requires nonlinear
transformation of the input image Fourier transform.
The nonlinearity results from minimization of Ej[h]
in Eq. (3). This nonlinear processor is adaptive be-
cause the filter function is dependent on the input
image energy spectrum.

The optimum nonlinear processor can be gener-
alized when (I r(t)12 ) has a power spectral density
A(k). The nonlinear filter would then be h(k) =
P(k)/[/uDA(k) + (1 - pu)J§(k)12], where the parameter
Au (,u E [0; 1]) is optimally balanced between noise
robustness and discrimination capabilities.

It is interesting to note that if one replaces 9(k)
with P(k) in Eq. (4), the optimal trade-off filter for
peak sharpness and noise robustness is obtained.8
It can be shown that the optimal trade-off among
input noise robustness Urm

2[h], discrimination E,[h],
and correlation peak sharpness characterized by the
correlation energy Xk Ih(k) 12IJ(k)12 leads to the opti-
mum processor: h(k) = P(k)/[cr2 + (1 - AL) Ii(k)12 +

,4t§(k)J2]. For the particular value A = 1/2, the ex-
pression for the Fourier transform of the optimum
nonlinear processor output is

C(k) = 20r2 + IP(k)12 + I(k)l2
.* (6)

Equations (5) and (6) are similar to the Fourier trans-
form of a nonlinear JTC output,3 which can be imple-
mented optically. Indeed, the nonlinear solution is
similar to the first-order output of the nonlinear JTC.
Both have the same Fourier phase, and the ampli-
tude modulation requires nonlinear transformation
of both Fourier magnitudes of the reference function
and the input function. Similarities between the op-
timum solutions in Eqs. (5) and (6) and the nonlinear
JTC are due to the optimization of the discrimination,
which requires adaptive nonlinear transformations
on the input image Fourier magnitude. Maximiza-
tion of the peak sharpness requires nonlinear trans-
formation on the reference image Fourier magnitude
as in Eq. (6).

Let us now illustrate the performance of the
optimum nonlinear processor with numerical
simulations performed on images of 256 x 256
pixels with gray levels. The reference image r(t)
is a car shown in Fig. 1 in an array of 64 X 64
pixels. The input image is shown in Fig. 2 and
contains the reference object placed both on the top
left-hand side and in the center of the input. On
the bottom right-hand side the reference object has
been rotated by 7 deg. This composite image has
been placed in presence of white noise with uniform
probability density in [0; a] (the mean is thus a/2
and the variance is a2/12). The noise is additive
except within the object in the center, where it is
spatially disjoint (or nonoverlapping).'3 As a result,

the reference objects with overlapping noise are not
clearly visible in Fig. 2 owing to the very low input
signal-to-noise ratio (-7 dB).

Numerical experiments were performed with the
nonlinear filter given by Eq. (5). Input and refer-
ence images were normalized such that their maxi-
mum values were equal to unity, and we chose cr2 =

1000. The correlation function is shown in Fig. 3.
The results are found to be not very sensitive to the
particular value of -2 (acceptable correlation perfor-
mance is obtained with cr2 = 1). It can be seen from
Fig. 3 that the optimal nonlinear filter in Eq. (4) has
a robust behavior to reference object distortion and
overlapping nonoverlapping input noise.

The same numerical experiment was performed
with the following linear filters: optimal trade-off,
phase-only, inverse, and matched. The best results

Fig. 1. Image of a car used as the reference object for
numerical simulations.

Fig. 2. Input image used for correlation tests.
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Fig. 3. Correlation function obtained with the proposed
nonlinear filtering (nonlinear JTC) technique.

Fig. 4. Correlation function obtained with an optimal
trade-off linear filter.

with linear filtering were obtained with an optimal
trade-off filter, and its output correlation function is
shown in Fig. 4. The optimal trade-off filter is ob-
tained by replacing s(t) in Eq. (4) with r(t) and set-
ting cr2 = 1. The very low correlation peak value for
the reference object in the center of the input image is
due to the low mean value of the object in comparison
with the mean value of the background noise, which
is spatially disjoint with the object in the center.' 3

The matched filter performance is very poor for the
image used here.

The inverse filter and the phase-only filter pro-
duced only one detectable correlation peak corre-
sponding to the reference object without rotation and
with additive noise. Furthermore, as in Fig. 4, the
correlation appears on a noisy background. These
linear filters are too discriminant against the ro-

tated reference object, and they are not discriminant
enough against the input noise background. On the
other hand, it can be seen from Fig. 3 that the nonlin-
ear processor is very discriminant against noise back-
ground and tolerant to small rotations/distortions of
the reference object.

In conclusion, we have designed a processor that is
optimum in terms of discrimination and input noise
robustness. This optimum processor is a nonlinear
filter that can be implemented with a nonlinear JTC3

and presents new theoretical insight into obtaining
optimal nonlinear transformations. Computer sim-
ulations have illustrated the performance of the pro-
cessor for noisy and distorted objects in the presence
of both overlapping and nonoverlapping input noise.
Further studies are necessary to characterize the per-
formance of the proposed nonlinear processor.

The authors are grateful to J.-P. Huignard for his
support in this research.
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