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Electrically addressed spatial light modulators (EASLM’s) are currently used in many coherent optical signal
processing applications. Within the EASLM the input signal is generally transformed in a nonlinear fashion.
The noise on the input signal that is sent to the EASLM is then also transformed nonlinearly. In particular,
even with additive and homogeneous input noise, the color of the noise as well as the signal-to-noise ratio of the
input signal can be significantly modified. We propose a new general formalism for the determination of the
spatial covariance of the optical field that is due to nonlinear transformation of the input noise. Applications
of this new formalism are illustrated for Gaussian correlated noise.
1. INTRODUCTION
Coherent optical signal processing for image processing,
pattern recognition, correlation, and neural networks has
been a subject of investigations for more than 20 years.1 – 4

Constraints of optical implementation have important
consequences on the capacities of the performed opera-
tion. It is clear that, in general, a classical spatial light
modulator (SLM) will code the input information (the
input signal) on a coherent beam as a complex function.
For example, this is particularly the case with twisted
nematic SLM’s, for which each pixel acts on the incident
light through the birefringence effect. Thus the informa-
tion is not simply a real value for each pixel, as generally
considered in numerical simulations, but a complex func-
tion (i.e., the phase and the modulus of the optical wave
are dependently variable). From a pure signal point of
view, this means that the performed operation is not the
expected classical linear operation but a modified version.
An analogous situation occurs for wave-front compensa-
tion with SLM’s such as deformable mirror SLM’s.

Let x denote the spatial coordinate of a pixel in the
input signal (in general, an input image). Without loss
of generality and in order to simplify the notations, we will
consider one-dimensional notation in what follows. Let
f sxd denote the input signal (or image) that corresponds
to the voltage sent to the electrically addressed spatial
light modulator (EASLM), and let Csxd be the optical field
after passage through the EASLM. Figure 1 sketches
the general problem that we consider here, which corre-
sponds to optical modulation with a SLM.

It is a classical and an important task in signal process-
ing to characterize the statistical properties of the noise
in order to be able to predict or quantify precisely the
deviations from the ideal mathematical linear operation.
Indeed, the characterization of the influence of the input
modulation on the optical processing is important, since
it can condition practical realizations.

The main goal of this paper is thus to characterize
the random optical field when the input signal sent to
the EASLM is corrupted by additive noise. More pre-
cisely, the first moment (mean value) and the second
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moment (correlation function) of the optical field will
be determined.

This situation is illustrated in Fig. 2, which sketches
the modification of the probability density of an input
noise for a modulation law of the form Mszd ­ z expsiKzd.
It will be seen below that such a modulation corresponds
to realistic modulators.

In Fig. 3, the modulation of the spatial correlation of
the fluctuation of the optical field is illustrated when a
constant signal with noise is sent to a spatial modulator
with a modulation law of the form Mszd ­ z expsiKzd.

Few studies5 – 8 have been made about the influence of
input image coding in optical correlation operations. In
a previous paper a first analysis of the influence of input
noise was performed in this context for binary images.9

This research has been extended in Ref. 10 to gray-level
images. It was shown that the input modulation can
have strong effects on the noise robustness of the optical
correlation. However, in Refs. 9 and 10, only the case of
white Gaussian additive input noise was considered with
three typical modulations.

In contrast with the approach of Ref. 10, we will here
insist on the theoretical analysis and propose a new
general formalism. We consider general additive input
noise (i.e., not necessarily white and Gaussian), but spe-
cial attention will be given to homogeneous input noise
(homogeneity for a random function means that it is sta-
tionary in space; see, e.g., Ref. 11). Furthermore, modu-
lation schemes more general than that in Ref. 10 can be
described with our new formalism. Our goal is clearly to
describe quantitatively, with a theoretical analysis, the
profound modifications of the noise statistics (nonlinear-
ity, nonhomogeneity, and modification of the color of the
noise) that are due to phase modulation.

2. MODELING OF ELECTRICALLY
ADDRESSED SPATIAL LIGHT
MODULATOR TRANSMISSION
In general, in numerical studies of optical correlation
a pure amplitude modulation is assumed, which is de-
fined by CAsxd ­ f sxd. However, this modulation is, in
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Fig. 1. Coding scheme of an input image with an EASLM. f sxd
denotes the input signal sent to the EASLM, and Csxd is the
optical field after passage through the EASLM.

Fig. 2. Modification of the probability density of an input noise
nsxd when the modulation law is of the form M szd ­ z expsiKzd.
m is the signal without noise and Re( )[ Im( )] indicates the real
part (imaginary part) of a complex number.

practice, very difficult to achieve optically. On the other
hand, pure phase modulation can be simply obtained with,
for example, either a perfect deformable mirror SLM or
a birefringent nematic crystal SLM. In that case the
modulation is CP sxd ­ expfiKf sxdg, where K is the maxi-
mum phase shift. In recent papers12,13 we showed that,
for obtaining contrast maximum with a twisted nematic
EASLM, the phase dependency can be approximated by
a linear function of the imposed amplitude modulation.
This result clearly demonstrated that a good approxima-
tion of the modulation performed by this EASLM can be
modeled as the product of a perfect amplitude modulation
and a linear phase shift: CS f f sxdg ­ f sxdexpfiKf sxdg,
where K is again the maximum phase shift.

Here we will consider a more general situation. Let
the nonlinear relation between the input signal f sxd sent
to the EASLM and the optical field Csxd after passage
through the EASLM be denoted by

Csxd ­ Mf f sxdg . (1)

A generalization of the modulation schemes mentioned
above can be described by the polynomial model

Mszd ­
pP

n­0
anzn expsiKzd . (2)

Appendix A below discusses the particularities of this
model.

It can be remarked that only amplitude modulation is
linear. Indeed, f sxd ! 2f sxd does not imply that Csxd !

2Csxd with general coupled amplitude/phase modulation.
In order to obtain tractable expressions, we will write

the input modulation of Eq. (2) as a linear differential
operator A applied to expsiKzd. More precisely, intro-
ducing

A ­
pX

n­0

an

in

≠n

≠Kn
, (3)

with i2 ­ 21, we can write Mszd in Eq. (2) as

Mszd ­ A expsiKzd . (4)

A will thus be called the generating differential op-
erator of the modulation or, more briefly, the generat-
ing operator.

For example, the generating operator of pure phase
modulation is clearly the identity. For coupled ampli-
tude modulation as discussed above hi.e., CS sxdf f sxdg ­
f sxdexpfiKf sxdgj the generating operator is A ­ s1yid
s≠y≠Kd. For pure amplitude modulation fCAsxd ­ f sxdg
the generating operator is A ­ s1yids≠y≠Kd evaluated at
K ­ 0.

3. RANDOM OPTICAL FIELD
CHARACTERIZATION

A. Mean and Covariance of the Optical Field
A general task of signal processing is to process noisy
input signals. This is clearly the case, for instance, for

Fig. 3. Modification of the correlation function of the noise that
is due to a modulation of the form M szd ­ z expsiKzd. f sxd
is the input image, Csxd is the output optical field, and k l is
the ensemble average operator. This example corresponds to a
decorrelation.
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optical correlation or for neural networks. Other sources
of input noise can be the presence of noise on the driving
signal or on the EASLM itself (for example, flicker noise
in liquid-crystal SLM’s). Another well-known situation
is obtained for wave-front compensation, since the driving
input signal is estimated from experimental measures.
It is then known with an estimation error that may be
modeled as additive input noise.

The goal of this section is to derive a model in order to
describe the effect on the optical field Csxd of an input
additive noise on f sxd. More precisely, the mean and
the covariance function of Csxd will be determined as a
function of the input noise characteristics.

If the input signal f sxd is corrupted by an additive input
noise [i.e., f sxd ! f sxd 1 nsxd], the optical field Csxd is
modified in a nonlinear fashion:

Csxd ­ Mf f sxd 1 nsxdg . (5)

In order to determine the mean and the covariance of
the random field Csxd, one needs to know the probability
density P fnsxdg as well as the joint probability density
P fnsxd, ns ydg of the noise.

Let k l denote the ensemble average. Thus the mean
value of the optical field after the EASLM is

kCsxdl ­ kMf f sxd 1 nsxdgl

­
Z

Mf f sxd 1 nsxdgP fnsxdgdnsxd . (6)

The covariance function of Csxd is defined by

CC,Csx, yd ­ kfdCs ydgpdCsxdl , (7)

where zp means the complex-conjugate value of z and

dCsxd ­ Csxd 2 kCsxdl . (8)

Using the generating operator of Eqs. (3) and (4), one
can easily determine kCsxdl and CC,Csx, yd. For this pur-
pose we introduce the notation

A1 ­
pX

n­0

an

in

≠n

≠K1
n

, (9)

and we summarize our results with the following
property.

Property 1. The mean and the covariance function of
Csxd are completely determined with the first and second
characteristic functions of the noise. The mean is

kCsxdl ­ AhexpfiKf sxdgGxsKdj , (10)

where GxsKd is the first characteristic function of P fnsxdg:

GxsKd ­ kexpfiKnsxdgl . (11)

The covariance function is
CC,Csx, yd ­ A1A2
phexpfiK1f sxd 2 iK2 f s ydg

3 DGx,y sK1, K2djjK1­K2­K , (12)

where the notation jK1­K2­K means that the final expres-
sion must be evaluated at K1 ­ K2 ­ K, where

DGx,y sK1, K2d ­ Gx,y sK1, K2d 2 GxsK1dGy sK2dp (13)

and Gx,y sK1, K2d is the second characteristic function of
P fnsxd, ns ydg:

Gx,y sK1, K2d ­ kexpfiK1nsxd 2 iK2ns ydgl . (14)

The first and second characteristic function can also be
written as

GxsKd ­
Z

expfiKnsxdgP fnsxdgdnsxd , (15)

Gx,y sK1, K2d ­
ZZ

expfiK1nsxd 2 iK2ns ydg

3 P fnsxd, ns ydgdnsxddns yd . (16)

This property can be shown as follows:

kCsxdl ­ kAsssexphiKf f sxd 1 nsxdgjdddl . (17)

Only expfiKnsxdg is dependent on the noise, and since A

is linear, we have

kCsxdl ­ AhexpfiKf sxdg kexpfiKnsxdglj . (18)

Furthermore,

fCs ydgpCsxd ­ A1hexpfiK1f sxd 1 iK1nsxdgj

3 Ap
2 hexpfiK2 f s yd 1 iK2ns ydgjp . (19)

Here again, only expfiK1nsxd 2 iK2ns ydg is dependent on
the noise, and since A1 and A2 are linear, it follows that

kfCs ydgpCsxdl ­ A1Ap
2 hexpfiK1f sxd 2 iK2 f s ydg

3 kexpfiK1nsxd 2 iK2ns ydglj , (20)

and property 1 is obtained with Eqs. (7) and (8). j

This property shows that the modeling of the modula-
tion with the generating operator of Eq. (3) leads to very
simple expressions for the moments of Csxd [Eqs. (10) and
(12)]. Indeed, we have shown that the first two moments
of Csxd can be deduced from the characteristic functions
of the noise of first and second orders.

B. Case of Homogeneous Input Noise
Let us assume that the input noise is strictly homoge-
neous. In other words,
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P fnsxd, ns ydg ­ P fnsx 2 yd, ns0dg . (21)

For the first and second moments we also have

knsxdl ­ mn , (22)

where mn is independent of x and

knsxdnsx 1 ydl 2 mn
2 ­ Gy , (23)

mn is the mean value of the input noise, and Gy is the
covariance function of the input noise. The first and
second characteristic functions satisfy

GxsKd ­ GsKd , (24)

Gx,y sK1, K2d ­ Gx2y sK1, K2d . (25)

In other words, GxsKd is independent of x and Gx,y is
dependent on only x 2 y.

Thus, using property 1, we can see that the mean value
kCsxdl is dependent on x, and this result is analogous to
amplitude modulation, since k f sxd 1 nsxdl is also depen-
dent on x. Then, in order to avoid characterizing a ran-
dom field as nonhomogeneous as a result of this trivial
problem, we consider the random field dCsxd. However,
even in that case, CC,Csx, yd is not a function of only x 2 y,
which means that the random field dCsxd is not homoge-
neous, although it is generated by a homogeneous input
noise. Indeed,

CC,Csx, yd ­ A1Ap
2 hexpfiK1f sxd 2 iK2 f s ydg

3 Gx2y sK1, K2d 2 GsK1dGsK2dpjjK1­K2­K . (26)

The term expfiK1f sxd 2 iK2 f s ydg in this expression shows
that, in general, CC,Csx, yd cannot be written as CC,Csx 2

yd. This nonconservation of the homogeneity comes from
the nonlinear coupling between f sxd and nsxd, which re-
sults from the modulation Mf f sxdg.

However, spatially independent noises defined by the
property

P fnsxd, ns ydg ­ P fnsxdgP fns ydg (27)

lead to the following property.

Property 2. If the input noise nsxd is homogeneous and
spatially independent, then the output field dCsxd is white
and its variance is given by

CC,Csx, xd ­ A1Ap
2 hexpfisK1 2 K2df sxdg

3 GsK1 2 K2d 2 GsK1dGsK2dpjjK1­K2­K . (28)

This relation can be proved, noting that, if x fi y, then

Gx,y sK1, K2d ­
ZZ

expfiK1nsxd 2 iK2ns ydg

3 P fnsxdgP fns ydgdnsxddns yd (29)

and thus
Gx,y sK1, K2d ­ GsK1dGsK2dp . (30)

Hence, with Eq. (12), one can see that CC,Csx, yd ­ 0. On
the other hand, if x ­ y, then

P fn1sxd, n2sxdg ­ P fn1sxdgdfn1sxd 2 n2sxdg . (31)

We can then deduce that

Gx,xsK1, K2d ­ GsK1 2 K2d , (32)

where GsK1 2 K2d is now the first-order characteristic
function; this last result proves the property. j

4. EXAMPLES OF APPLICATIONS:
GAUSSIAN NOISE

A. Introduction
We now propose to illustrate the application of the above
method to the determination of the mean and the covari-
ance function of Csxd for a colored Gaussian input noise
and for linearly coupled amplitude phase modulation and
pure phase modulation. These cases generalize the re-
sults given in Ref. 10, in which only the case of homoge-
neous white Gaussian input noise was analyzed.

Let N denote the number of pixels of the EASLM and of
the input signal. A Gaussian noise can be characterized
by the probability density

P fns0d, ns1d, . . . , nsN 2 1dg

­ A0 exp

2642
1
2

N21X
x­0

N21X
y­0

nsxdGx,y
21ns yd

375 , (33)

where A0 is a normalization constant.
The characteristic function of first order is equal to

GxsKd ­ exps21/2Gx,xK2d . (34)

It can also be shown with Gaussian integrals that the
characteristic function of second order is

Gx,y sK1, K2d ­ exps21/2Gx,xK1
2 2 1/2Gy,yK2

2 1 Gx,yK1K2d .
(35)

B. Linearly Coupled Amplitude Phase Modulation

1. Correlation of the Optical Field Fluctuations
Let us consider the example of a linearly coupled ampli-
tude phase modulation CS f f sxdg ­ f sxdexpfiKf sxdg; the
generating operator is thus A ­ s1yids≠y≠Kd.

The first moment of Csxd is then

kCsxdl ­ 2i
≠

≠K
expfiKf sxd 2 1/2Gx,xK2g . (36)

Thus

kCsxdl ­ f f sxd 1 iGx,xKgexpfiKf sxd 2 1/2Gx,xK2g . (37)

It can be shown (see Appendix B below) that the second
moment CC,C sx, yd is
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CC,Csx, yd ­ fEsx, yd 2 F sx, ydgLsx, yd , (38)

with

Esx, yd ­ hfif sxd 2 Gx,xK 1 Gx,yKgf2if s yd 2 Gy,yK

1 Gy,xKg 1 Gy,xj expsGx,yK2d ,

F sx, yd ­ f f sxd 1 iGx,xKgf f s yd 2 iGy,yK2g ,

Lsx, yd ­ exphiKf f sxd 2 f s ydg 2 1/2K2sGx,x 1 Gy,y dj . (39)

2. Modification of the Color of the Noise
Let us consider the simple case of a constant signal, f sxd ­
m, with a homogeneous input noise. In that case the
covariance of the spatial fluctuations of the optical field is
homogeneous and can be written as CC,Csx, yd ­ CC,Csx 2

yd. We then have

Esx, yd ­ fm2 1 K2sGx2y 2 G0d2 1 Gx2y gexpsGx2yK2d ,

F sx, yd ­ m2 1 G0
2K2 ,

Lsx, yd ­ exps2G0K2d . (40)

In what follows, x will be used instead of x 2 y for rea-
sons of simplicity. In order to study the modification of
the color of the noise, we introduce the factor r defined
below, which permits one to compare the correlation of the
input signal with that of the optical field. The correlation
coefficient of the noise on the input signal is gsxd ­ GxyG0.
The correlation coefficient of the spatial fluctuations of the
optical field is bsxd ­ CC,CsxdyCC,C s0d. The coefficient r

is then defined by r ­ bsxdygsxd, or, in other words,

r ­
G0

Gx

CC,Csxd
CC,Cs0d

. (41)

In order to simplify the analysis, one can introduce the
reduced variables

a ­ K2G0, m ­ m2yG0 ; (42)

m is thus the input signal ratio. From Eq. (41) it is not
difficult to deduce the mathematical expression for r:

r ­
1
g

fasg 2 1d2 1 m 1 ggexpsagd 2 s m 1 ad
s1 1 mdexpsad 2 s m 1 ad

. (43)

The definition of g implies that 21 # g # 1. So, in
order to study the modification of the noise color, from
Eq. (43) we see that it is sufficient to study r as a function
of g. For a given value of g, if r is equal to 1, the
coding does not modify the color. If jrj # 1, the spatial
fluctuations are decorrelated; on the other hand, if r $ 1,
their correlation is increased. With K ­ 0 we find the
straightforward result of pure amplitude modulation.

In Fig. 4, r is plotted as a function of g for different
values of a with m ­ 0 (i.e., m ­ 0). We can see that,
except for a ­ 0 (i.e., K ­ 0), jrj is always smaller than
1. This means that the optical coding decorrelates the
input noise. In Fig. 5 the same curves are plotted but
for m ­ 1. We obtain globally the same conclusion. One
can thus conjecture that a linear coupled phase modula-
tion will necessarily decorrelate the input noise in com-
parison with a pure amplitude coding. Furthermore, the
decorrelation is higher not only if K increases but also
if the input noise increases. However, this decorrelation
decreases if m increases.

3. Modification of the Signal-to-Noise Ratio
Let us now analyze the transformation of the power of the
noise or, more precisely, the output signal-to-noise ratio as
a function of the input signal-to-noise ratio. We consider
now f sxd fi 0, and we study CC,Csx, xd. One has

Esx, xd ­ f f 2sxd 1 G0gexpsG0K2d ,

Fig. 4. r (which is the ratio of the correlation coefficient of the
spatial fluctuations of the optical field versus the ratio of the
correlation coefficient of the input noise) is plotted as a function
of g (the correlation coefficient of the input noise) for different
values of a with m ­ 0 (i.e., m ­ 0).

Fig. 5. r (which is the ratio of the correlation coefficient of the
spatial fluctuations of the optical field versus the ratio of the
correlation coefficient of the input noise) is plotted as a function
of g (the correlation coefficient of the input noise) for different
values of a with m ­ 1.
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Fig. 6. Ratio of output signal-to-noise ratio to input signal-
to-noise ratio as a function of a for different values of m.

F sx, xd ­ f f 2sxd 1 G0
2K2g ,

Lsx, xd ­ exps2G0K2d , (44)

and thus

CC,Csx, xd ­ f f 2sxd 1 G0g 2 f f2sxd 1 G0
2K2gexps2G0K2d .

(45)

Furthermore,

jkCsxdlj2 ­ f f 2sxd 1 G0
2K2gexps2G0K2d . (46)

In order to obtain a meaningful signal-to-noise ratio, one
must define a useful signal. For that purpose let us
consider the modulus squared of the mean value of Csxd
when there is no signal [i.e., when f sxd ­ 0]. We write
this value as jkC0sxdlj2. We thus define the useful signal
as

DjkCsxdlj2 ­ jkCsxdlj2 2 jkC0sxdlj2 , (47)

and the output signal-to-noise ratio is thus

SNRout ­
DjkCsxdlj2

CC,Csx, xd
. (48)

With the reduced variables one obtains

SNRout ­
m

s1 1 mdexpsad 2 s m 1 ad
, (49)

with m ­ f 2sxdyG0 (i.e., the input signal-to-noise ratio). If
K ­ 0, one obtains the input signal-to-noise ratio.

In Fig. 6, SNRoutym is plotted as a function of a for dif-
ferent values of m. One can see that an increase of a
(i.e., in K ) decreases the signal-to-noise ratio. Further-
more, SNRoutym decreases as m increases, which means
that the deterioration of the signal-to-noise ratio is worse
when the input SNR increases. It is very easy to ana-
lyze this result, since

SNRout

m
­

1
expsad 2 a 1 mfexpsad 2 1g

, (50)

which is a decreasing function of m and a decreasing
function of a. At the limit of small input SNR (i.e., small
m) one obtains

SNR out

m
.

1
expsad 2 a

. (51)

This is a positive result, since, at low m, which cor-
responds to the most critical practical situations, the
decrease of the SNR is linear with a factor that can be
determined very easily.

C. Pure Phase Modulation
Let us now analyze the case of pure phase modulation
for homogeneous Gaussian input noise with the same
assumptions as those in Subsection 4.B.2 above. One
has

GxsKd ­ exps21/2G0K2d , (52)

DGx,y sK, Kd ­ exps2G0K2 1 Gx2yK2d 2 exps2G0K2d .

(53)

With the reduced variables defined above, one obtains

CC,Csxd ­ exps2adhexpfagsxdg 2 1j , (54)

and thus

r ­
1

gsxd
expfagsxdg 2 1

expsad 2 1
. (55)

It is easy to check that r ­ 1 if x ­ 0 [since, in that case,
gsxd ­ 1]. In order to study r as a function of g, we
analyze its series expansion:

r ­
a

expsad 2 1

1X̀
n­0

sagdn

sn 1 1d!
, (56)

which is an increasing function of g. We can thus de-
duce that pure phase modulation will decorrelate an
input Gaussian field.

5. CONCLUSION
In this paper we have proposed a general formalism for
the determination of the spatial correlation of the optical
field that is due to a nonlinear transformation of the input
signal with SLM’s. We have developed this formalism
for the case of monotonic phase variation as a function
of input voltage.

We have illustrated the application of this method to
colored Gaussian noise. In particular, we have demon-
strated that linear coupled amplitude phase modulation
decorrelates the input noise and decreases the signal-to-
noise ratio. We have also shown that the noise is decor-
related with pure phase coding.

The transformation of input noise that is due to EASLM
has not been a subject of precise investigations, in par-
ticular for the simulation and the characterization of
optical signal processing architectures. However, its con-
sequences can be as important as those of an inappropri-
ate signal processing algorithm. The present proposed
method should permit progress in this direction. Fur-
ther generalization of this research can be analyzed in
the future. In particular, it should be possible to intro-
duce the effect of nonuniformity (K dependent on x) with
this approach.
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APPENDIX A
Without loss of generality, the nonlinear relation between
the input signal f sxd sent to the EASLM and the optical
field Csxd after passage through the EASLM can be writ-
ten as

Csxd ­ Mf f sxdg , (A1)

with

Ms yd ­ Ds ydexpfiBs ydg . (A2)

With physical systems one expects that the phase and
the modulus of Ms yd are continuous functions of y.
So, amplitude and phase are continuous functions on
a bounded interval. Thus they can be approximated
by polynomials with an arbitrary precision.14 We will
thus write

Ds yd ­
pP

n­0
dnyn, Bs yd ­

qP
n­0

bnyn . (A3)

If Bs yd is a monotonic function of y [i.e., the phase of
the modulation of the optical field is a strictly increasing
or decreasing function of the input driving signal f sxd],
one can consider the new variable defined by

Bs yd ­ Kz . (A4)

In that case Bs yd is a bijective function of y. It is thus
always possible to apply to the input signal f sxd an input
lookup table such that the input driving signal V sxd at
pixel x satisfies

BfV sxdg ­ Kf sxd . (A5)

The input modulation is thus given by

Mf f sxdg ­ Af f sxdgexpfiKf sxdg , (A6)

with

Af f sxdg ­ DhB21f f sxdgj . (A7)

We will consider an approximation of Aszd with a poly-
nomial:

Af f sxdg ­
pP

n­0
anf nsxd . (A8)

In the present paper we concentrate on this model. In
that case the optical field Csxd is still given by Eq. (1),
with

Mszd ­
pP

n­0
anzn expsiKzd . (A9)

APPENDIX B
One has

A1Ap
2 ­

≠

≠K1

≠

≠K2

. (B1)

It is easier to determine each term separately. The dif-
ferential operator A1A

p
2 must be applied to
expfiK1f sxd 2 iK2 f s yd 2 1/2Gx,xK1
2

2 1/2Gy,yK2
2 1 Gx,yK1K2g . (B2)

One thus has the formal rule

≠

≠K1
! if sxd 2 Gx,xK1 1 Gx,yK2 , (B3)

≠

≠K1

≠

≠K2
! fif sxd 2 Gx,xK1 1 Gx,yK2g

3 f2if s yd 2 Gy,yK2 1 Gy,xK1g 1 Gx,y . (B4)

We are now able to determine that

kCsxdpCs ydl ­ hGx,y 1 fif sxd 2 Gx,xK 1 Gx,yKg

3 f2if s yd 2 Gy,yK 1 Gy,xKgjexphiKf f sxd 2 f s ydgj

3 exphiKf21/2K2sGx,x 1 Gy,y d 1 Gx,yK2gj . (B5)

We have seen that

kCsxdl ­ f f sxd 1 iGx,xKgexpfiKf sxd 2 1/2Gx,xK2g . (B6)

Thus

kCs ydlpkCsxdl ­ f f sxd 1 iGx,xKgf f s yd 2 iGy,yKg

3 exphiKf f sxd 2 f s ydgj 2 1/2K2sGx,x 1 Gy,y d . (B7)

Since

CC,Csx, yd ­ kCs ydpCsxdl 2 kCs ydlpkCsxdl ,

one thus obtains

CC,Csx, yd ­ fEsx, yd 2 F sx, ydgLsx, yd , (B8)

with

Esx, yd ­ hfif sxd 2 Gx,xK 1 Gx,yKg

3 f2if s yd 2 Gy,yK 1 Gy,xKg 1 Gy,xjexpsGx,yK2d , (B9)

F sx, yd ­ f f sxd 1 iGx,xKgf f s yd 2 iGy,yKg , (B10)

Lsx, yd ­ exphiKf f sxd 2 f s ydg 2 1/2K2sGx,x 1 Gy,y dj .

(B11)
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