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Stable scattering-matrix method for surface acoustic waves
in piezoelectric multilayers

Th. Pastureaud, V. Laude,a) and S. Ballandras
Laboratoire de Physique et Me´trologie des Oscillateurs, CNRS UPR 3203, associe´ à l’Universiti
de Franche-Comte´, 32 avenue de l’Observatoire, 25044 Besangon cedex, France

~Received 13 December 2001; accepted for publication 14 February 2002!

A scattering matrix approach is proposed to avoid numerical instabilities arising with the classical
transfer matrix method when analyzing the propagation of plane surface acoustic waves in
piezoelectric multilayers. The method is stable whatever the thickness of the layers, and the
frequency or the slowness of the waves. The computation of the Green’s function and of the
effective permittivity of the multilayer is outlined. In addition, the method can be easily extended to
the case of interface acoustic waves. ©2002 American Institute of Physics.
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The increase in operating frequencies of telecommun
tion systems warrants the use of fast substrates with h
surface acoustic wave~SAW! phase velocities, enabling th
fabrication of high frequency filters. The use of piezoelect
multilayers on which guided elastic waves can propag
with high velocities and no propagation losses has often b
proposed as an innovative way to avoid some classical l
tations of SAW on single crystals. Consequently, efficie
simulation tools are needed to characterize the electro
chanical behavior of complex stratified structures. As in
case of single crystals, a basic problem is the computatio
the spectral surface Green’s function or of the effect
permittivity.1

Many matrix models have been formulated for the n
merical simulation of stratified structures, most of which re
on the transfer matrix~TM! approach originally proposed b
Fahmy and Adler in 1973.2–4 It will be shown that in the
common situation that the frequency–slowness–thickn
~FST! product becomes large for some layer, numerical
stabilities occur when using the TM approach. This is b
cause a TM links physical quantities at every interface, e
though some of these quantities are decoupled for large
products. Large FST products are, for instance, encount
when analyzing the propagation of a SAW under a grating
all harmonics have to be included in the analysis. As
alternative, we propose the use of a scattering-matrix~SM!
approach, which acts on the amplitudes of partial mode
each layer rather than on the physical quantities themse
As a result of energy conservation, such an approach is g
anteed to be stable. Useful expressions will then be given
the computation of the Green’s function or the effective p
mittivity of a multilayer, encompassing surface as well
interface waves.

The general configuration of Fig. 1 is considered. T
multilayer is composed of a semi-infinite substrate or a pla
considered as the first layer, on top of which are layers nu
ber 2 ton. Each layer, identified by its indexm, is supposed
to be homogeneous, possibly piezoelectric, and has a

a!Electronic mail: vincent.laude@lpmo.edu
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stant thicknesswm . Propagation of plane waves with fre
quencyf is considered along thex1 axis, with slownesss1 .
Assuming plane wave propagation in the structure, the
tribution of the electromechanical fields in each layer is fu
described2 using the eight-component state vectorh
5(u1 ,u2 ,u3 ,f,T21,T23,T23,D2) t where theui are the me-
chanical displacements,f is the electrical potential,T is the
stress tensor, andD2 is the normal electrical displacemen
This state vector is obtained inside a layer as a superpos
of eight partial modes, characterized by their eigenvaluess2

( i )

and their associated eigenvectors.2 The eigenvaluess2
( i ) only

depend on the material constants of the layer, and on
slownesss1 . DenotingF, the 838 matrix of the vertically
arranged eigenvectors, this superposition reads in themth
layer

h~x2!5F (m)D (m)~x2!a(m) exp@2 j p f ~ t2s1x1!#, ~1!

where the dependence of the fields along axisx2 is contained
in the 838 diagonal matrixD (m) whose elements are

D i i
(m)~x2!5exp~22 j p f s2,i

(m)x2!. ~2!

a(m) is the vector of the eight amplitudes of the part
waves, whose values are obtained when the boundary co
tions are specified.

FIG. 1. Multilayer definitions.
4 © 2002 American Institute of Physics
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The components of the state vector have been explic
chosen such that they are continuous across any inter
inside the multilayer. It is then practical to construct a T
linking state vectors at two interfaces. For instance, this
lation between the (m21)-th to themth interface writes

h~Xm!5Mm21
m h~Xm21!, ~3!

where the transfer matrixMm21
m can be written2

Mm21
m 5F (m)D (m)~wm!~F (m)!21. ~4!

Equations~3! and~4! are easily generalized in a chain-matr
fashion to obtain the relation between any two interfac
and e.g., between the first to thenth interface as

h~Xn!5M1
nh~X1!, ~5!

M1
n5Mn21

n 3¯3Mm21
m 3¯3M1

2 . ~6!

The TM approach is naturally well suited to the analy
of thin piezoelectric layers deposited on a substrate. H
ever, it is numerically unstable whenever the FST produc
large. To prove this, it is sufficient to consider theD (m)(wm)
matrix in Eq.~4!, which according to Eq.~2! has elements

D i i
(m)~wm!5exp~22 j p f wms2,i

(m)!. ~7!

The magnitude of these matrix elements is mostly dicta
by the valuess2,i

(m) . In the example of Table I, the (YXl)/36°
cut of a layer of quartz is considered, for a propagation slo
nesss151023 s/m, corresponding to a velocity of 1000 m/
The eight partial modes have been classified into two gro
of four partial modes, and are termed either reflected (1) or
incident (2), with reference to the upper interface of th
layer. The rules for this classification have been for insta
given in Ref. 4. With the productf wm real and positive, the
matrix elementsD i i

(m)(wm) are either of unit modulus if the
mode is propagative, of modulus smaller than 1 if the par
mode is reflected evanescent@I(s2),0#, or of modulus
larger than 1, if it is incident evanescent@I(s2).0#. When
s1 is larger than the slow-shear wave slowness, all par
modes are always evanescent, whatever the material
stants, and asymptoticallyus2u increases linearly withs1 .5

When the FST productf wms1 is large, reflected, and inciden
evanescent partial modes will then, respectively, cause
TM or its inverse to become singular. Physically, the valu
of displacements and stresses at one interface can no
deduced properly from their values at a distant interfac
evanescent partial modes are involved, since their influe
is vanishingly small.

TABLE I. Partial modes slowness’s2
( i ) for the (YXl)/36° cut of quartz and

s151023 s/m.

Modes numberi s2 (1024 s/m)

Reflected~1! 1 2 j 16.3
2 2 j 13.3
3 2 j 10.1
4 2 j 4.55

incident ~2! 5 j 16.3
6 j 13.3
7 j 10.1
8 j 4.55
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For the stable computation of the electromechanical
sponse of multilayers, we propose using a SM method, ba
on the decomposition of reflected and incident partial mo
inside each layer. Remarking that there are no sources a
bottom of a semi-infinite substrate, or outside and below
plate, the reflected partial modes in the first layer must
uniquely determined by the incident partial modes in th
layer. Proceeding in a recursive manner, from the bottom
the top layer, the same argument holds for any layer from
first to the last. We now exploit mathematically this proper
In order to simplify the derivation, an auxiliary variable
introduced as

g(m)~x2!5D (m)~x2!a(m), ~8!

or using the decomposition in reflected and incident par
modes

g(m)~x2!5S D (m1)~x2! 0

0 D (m2)~x2!
D S a(m1)

a(m2) D . ~9!

We then define a reflection matrix at the bottom of themth
layer as

g(m2)~Xm21!5R(m)g(m1)~Xm21!. ~10!

In the case of a semi-infinite substrate, the amplitudes of
incident partial modes must vanish so that

R(1)50. ~11!

In the case of a plate, we assume no mechanical stress
charge density at the free bottom interface, so that

g(1)~X0!5F (1)21S I 4

04
Dh~X0!5S A

BDb, ~12!

whereI 4 and 04 are, respectively, the 434 identity and null
matrices,A and B are 434 matrices, andb is some four-
component vector. The reflection matrix is then easily o
tained as

R(1)5BA21. ~13!

In Eq. ~12!, the eigenvector matrixF (1) can be modified to
account for the permittivity of vacuum2 according to the rule

F8,i
(1)←F8,i

(1)2 j e0us1uF4,i
(1) , i 51 . . . 8. ~14!

The recursion to compute the reflection matrix from o
layer to the next can be obtained as follows. We have fir

g(m2)~Xm!5D (m2)R(m)D (m1)g(m1)~Xm!, ~15!

with the notations D (m2)5D (m2)(2wm) and D (m1)

5D (m1)(wm). Second, from the continuity of the state ve
tor,

g(m11)~Xm!5~F (m11)!21F (m)g(m)~Xm!, ~16!

from which we obtain the reflection matrix for the (m
11)-th layer as

R(m11)5DC21, ~17!

where the 434 matricesC andD are defined as

~F (m11)!21F (m)S I 4

D (m2)R(m)D (m1) D5S C
D D . ~18!

The key point is that the moduli of the elements of the dia
onal matricesD (m2) andD (m1) involved in Eq.~18! are all
P license or copyright, see http://apl.aip.org/apl/copyright.jsp
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smaller than 1. This ensures the stability of the recurs
algorithm, and justifiesa posteriori the decomposition into
incident and reflected modes.

The surface Green’s function of the multilayer is eas
obtained using the reflection matrix for the last layer a
reads

G5FE21, ~19!

with the 434 matrices E and F defined by

F (n)S I 4

D (n2)R(n)D (n1) D5S E
F D . ~20!

As in Eq.~12!, the eigenvector matrixFn can be modified to
account for the permittivity of a vacuum. Additionally, th
effective surface permittivity can be obtained from t
Green’s function as1

«eff5
1

j «0us1uG44
. ~21!

Figure 2 shows the effective surface permittivity com
puted using the TM and SM methods for a (YXl)/36° quartz
plate, with a frequency-thickness productf w533 GHzmm,
over a semi-infinite (YXl)/36° quartz substrate. This comb
nation is obviously equivalent to a single semi-infinite qua
substrate, and is considered only for illustration purpose

FIG. 2. Surface permittivity of a layer of (YXl)/36° quartz (f w
533 GHzmm) over a semi-infinite (YXl)/36° quartz substrate, compute
using either the TM~dotted line! or the SM~solid line! method. TM curves
are translated vertically by an arbitrary amount to ease the comparison
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can be seen that the results are strictly the same for s
slownesses, but that after some point numerical instabili
arise in the TM computation. As a result, neither the seco
transverse mode nor the Rayleigh wave can be observe
this case. The SM result is free of numerical instabilities,
expected.

It is simple to apply the SM algorithm to simulate a
excitation on the bottom side of the multilayer. In this ca
the recursion must be initiated at the upper interface,
incident and reflected modes have to be interchanged, an
layer thicknesses has to be taken negative. Once th
changes have been made, Eqs.~8!–~21! apply unchanged.

The SM method can also be easily extended to interf
acoustic waves in multilayers. In this case, the interface p
mittivity can be computed by separating the multilayer in
two subsets, divided by the excitation interface. The SM
gorithm is then applied to both multilayers, considering
electrical excitation on the top surface of the low
multilayer, and on the bottom surface of the upper multilay
With the reflection matrices of each multilayer, the elect
mechanical solutions can be connected using the boun
conditions~continuity of all fields excepted for the norma
electrical displacement!, which gives a relation between th
electrical potential and the charge density at the excita
interface in the form

f5« intDD2 . ~22!

In conclusion, a SM approach has been proposed to r
edy to numerical instabilities arising with the classical T
method when analyzing surface acoustic waves in multil
ers. The SM method enables the stable computation of
spectral Green’s function of a multilayer, whatever the thic
ness of the layers, and the frequency or the slowness of
wave. In addition, the method can be extended easily to
case of interface waves.
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