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Stable scattering-matrix method for surface acoustic waves
in piezoelectric multilayers
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A scattering matrix approach is proposed to avoid numerical instabilities arising with the classical
transfer matrix method when analyzing the propagation of plane surface acoustic waves in
piezoelectric multilayers. The method is stable whatever the thickness of the layers, and the
frequency or the slowness of the waves. The computation of the Green’s function and of the
effective permittivity of the multilayer is outlined. In addition, the method can be easily extended to
the case of interface acoustic waves. 2002 American Institute of Physics.
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The increase in operating frequencies of telecommunicastant thicknessv,,. Propagation of plane waves with fre-
tion systems warrants the use of fast substrates with highuencyf is considered along the; axis, with slowness; .
surface acoustic wavgSAW) phase velocities, enabling the Assuming plane wave propagation in the structure, the dis-
fabrication of high frequency filters. The use of piezoelectrictribution of the electromechanical fields in each layer is fully
multilayers on which guided elastic waves can propagatélescribed using the eight-component state vectdr
with high velocities and no propagation losses has often beeff (Uz,Uz,Ug, &, T21,T23,T23,D,)" where theu; are the me-
proposed as an innovative way to avoid some classical limichanical displacements is the electrical potentiall’ is the
tations of SAW on single crystals. Consequently, efficientstress tensor, and, is the normal electrical displacement.
simulation tools are needed to characterize the electromé-his state vector is obtained inside a layer as a superposition
chanical behavior of complex stratified structures. As in thedf €ight partial modes, characterized by their eigenvaiifés
case of single crystals, a basic problem is the computation gind their associated eigenvectbBhe eigenvalues}’ only
the spectral surface Green’s function or of the effectivedePend on the material constants of the layer, and on the
permittivity.t slownesssl.' DenotingF, the 8x8 matr'i>'< of the vertically

Many matrix models have been formulated for the nu-arranged eigenvectors, this superposition reads innitte
merical simulation of stratified structures, most of which rely!2Yer

on the transfer matriXTM) approach originally proposed by _ = (m) A (m) (m) . B
Fahmy and Adler in 1973:* It will be shown that in the hixg)=FTAT (xp)a™ ex 2j wi(t=spx)], @
common situation that the frequency—slowness—thicknesgnere the dependence of the fields along axiis contained

(FST) product becomes large for some layer, numerical injn the 8x 8 diagonal matrixA(™ whose elements are
stabilities occur when using the TM approach. This is be-

cause a TM links physical quantities at every interface, even  A{™(x,) = exp( —2j wfsyTx,). 2
though some of these quantities are decoupled for large FST

products. Large FST products are, for instance, encountereaf™ is the vector of the eight amplitudes of the partial
when analyzing the propagation of a SAW under a grating, awaves, whose values are obtained when the boundary condi-
all harmonics have to be included in the analysis. As arions are specified.

alternative, we propose the use of a scattering-ma8i)

approach, which acts on the amplitudes of partial modes of z3

each layer rather than on the physical quantities themselves. /

As a result of energy conservation, such an approach is guar-
anteed to be stable. Useful expressions will then be given for
the computation of the Green’s function or the effective per- Xn-1
mittivity of a multilayer, encompassing surface as well as Xn_2
interface waves.

The general configuration of Fig. 1 is considered. The
multilayer is composed of a semi-infinite substrate or a plate, layer 2
considered as the first layer, on top of which are layers num-
ber 2 ton. Each layer, identified by its indem, is supposed Xo
to be homogeneous, possibly piezoelectric, and has a con-

Xn ----------------- - Z1
layer n

layer n — 1 !

substrate or layer 1

Z2

¥Electronic mail: vincent.laude@Ipmo.edu FIG. 1. Multilayer definitions.
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TABLE I. Partial modes slowness for the (Y X1)/36° cut of quartz and For the stable computation of the electromechanical re-
— —3 . .
8,=107" s/m. sponse of multilayers, we propose using a SM method, based

Modes numbei s, (104 s/m) on the decomposition of reflected and incident partial modes
inside each layer. Remarking that there are no sources at the
Reflected(+) ; R igg bottom of a semi-infinite substrate, or outside and below a
3 _} 101 plate, the reflected partial modes in the first layer must be
4 —j 455 uniquely determined by the incident partial modes in that
o _ layer. Proceeding in a recursive manner, from the bottom to
incident(~) g ! 122 the top layer, the same argument holds for any layer from the
7 i 101 first to the last. We now exploit mathematically this property.
8 j 455 In order to simplify the derivation, an auxiliary variable is
introduced as
9™ (x) =AM (xy)alm, 8)

The components of the state vector have been explicitly  ~ o o _
chosen such that they are continuous across any interfa@ using the decomposition in reflected and incident partial
inside the multilayer. It is then practical to construct a TM modes

linking state vectors at two interfaces. For instance, this re- AM)(x,) 0 a(m)
lation between theri—1)-th to themth interface writes gM(x,)= 0 AT (xy) a(m))' (9)
h(Xm) =M 1h(Xin-1). ©) We then define a reflection matrix at the bottom of thih
where the transfer matriki_, can be writteh layer as
M™ = FMAM (g (Fm) -1, (4) 9™ (Xim- ) =RMg™ (X 1). (10)

Equationg3) and(4) are easily generalized in a chain-matrix !n t_he case qf a seml-infinite sub_strate, the amplitudes of the
fashion to obtain the relation between any two interfaces',nCIdent partial modes must vanish so that

and e.g., between the first to théh interface as RM=0. (11
h(X,)=M7h(Xy), (5) In the case of a plate, we assume no mechanical stresses or
) charge density at the free bottom interface, so that
MI=Mp_ X XMD_ XX M7. (6) y A
. : . W)(x.)=ED-1 —
The TM approach is naturally well suited to the analysis 9 (Xo)=F 0, h(Xo) (B b, (12

of thin piezoelectric layers deposited on a substrate. How- . . .
ever, it is numerically unstable whenever the FST product isvvherel 4 and G, are, respectively, thex4 identity and null

large. To prove this, it is sufficient to consider th@“)(wm) matrices,A and B are 4x4 matrices, and is some four-

matrix in Eq. (4), which according to Eq(2) has elements cqmponent vector. The reflection matrix is then easily ob-
tained as
(m

Ai(im)(wm) =exp —2j wamsz,i ). (7) RO=BAL (13)

The magnitude of these matrix elements is mostly dictateg, Eqg. (12), the eigenvector matri€®) can be modified to

by the valuess}? . In the example of Table I, the¥(X)/36°  account for the permittivity of vacuufraccording to the rule
cut of a layer of quartz is considered, for a propagation slow-

nesss; =103 s/m, corresponding to a velocity of 1000 m/s. F%)‘—Fg)_j €0|51|F%)v i=1...8. (14
The eight partial modes have been classified into two groups  The recursion to compute the reflection matrix from one
of four partial modes, and are termed either reflectedl Or  |ayer to the next can be obtained as follows. We have first
incident (=), with reference to the upper interface of the (m-) M=) B (M) ()

layer. The rules for this classification have been for instance 9" (Xm) =D 'REVDT G (Xp), (15
given in Ref. 4. With the produdtw,, real and positive, the with the notations D(m‘)=A(m‘)(—wm) and D(™H)
matrix elementasi(im)(wm) are either of unit modulus if the :A(m+)(wm)_ Second, from the continuity of the state vec-
mode is propagative, of modulus smaller than 1 if the partiator,
mode is reflected evanescei(s,)<<0], or of modulus _
larger than 1, if it is incident ev(ar?;sce[m(sz)>0]. When g (X = (R TIE MM (X, (16)
s, is larger than the slow-shear wave slowness, all partiafrom which we obtain the reflection matrix for them(
modes are always evanescent, whatever the material cor-1)-th layer as

stants, and asymptoticallls,| increases linearly witts, .° RM+1_pc-1 1
When the FST produdiw,s; is large, reflected, and incident B ' 17
evanescent partial modes will then, respectively, cause thehere the 44 matricesC andD are defined as
TM or its inverse to become singular. Physically, the values

of displacements and stresses at one interface can not be (F(m+1))~1g(m)
deduced properly from their values at a distant interface if

evanescent partial modes are involved, since their influenc&he key point is that the moduli of the elements of the diag-

is vanishingly small. onal matriceD (™) andD(™*) involved in Eq.(18) are all
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g ul ' | ' iy ' 4 L; . 1 can be seen that the results are st_rictly the same for _s_n_1a||
L: ? “*fm“"”ﬂ “é"é" !? slownesses, but that after some point numerical instabilities
& 8¢ i L arise in the TM computation. As a result, neither the second
& 5 ALL_# transverse mode nor the Rayleigh wave can be observed in
\% this case. The SM result is free of numerical instabilities, as
< 2r s s s expected.
g i ' ' ' ] It is simple to apply the SM algorithm to simulate an
o *-’“}“‘“f*’]""‘.#i“’&!f-" excitation on the bottom side of the multilayer. In this case,
g 2r U 1 the recursion must be initiated at the upper interface, the
I ' incident and reflected modes have to be interchanged, and all
% T layer thicknesses has to be taken negative. Once these
5 20 . . . ] changes have been made, E@—(21) apply unchanged.

0 1 2 3 4 The SM method can also be easily extended to interface

Slowness (10™ s/m) acoustic waves in multilayers. In this case, the interface per-

FG. 2 Surt ity of & | FYIX1)/36 2 mittivity can be computed by separating the multilayer into
. 2. Surface permittivity of a layer o ° quartz fw - s . )
=33 GHzum) over a semi-infinite Y X1)/36° quartz substrate, computed tWO_ SUbS.etS’ dIVIded, by the exmtaﬂqn interface. The ,SM al
using either the TMdotted liné or the SM(solid line) method. TM curves ~ dOrithm is then applied to both multilayers, considering an
are translated vertically by an arbitrary amount to ease the comparison. electrical excitation on the top surface of the lower

multilayer, and on the bottom surface of the upper multilayer.

smaller than 1. This ensures the stability of the recursionVith the reflection matrices of each multilayer, the electro-

algorithm, and justifie posteriorithe decomposition into Mechanical solutions can be connected using the boundary
incident and reflected modes. conditions(continuity of all fields excepted for the normal

The surface Green’s function of the multilayer is easily €/€ctrical displacemeptwhich gives a relation between the
obtained using the reflection matrix for the last layer andgélectrical potential and the charge density at the excitation

reads interface in the form
G=FE !, (19) ¢=€inAD>. (22
with the 4x 4 matrices E and F defined by In conclusion, a SM approach has been proposed to rem-
edy to numerical instabilities arising with the classical TM
=) 4 _ ( E) (20) method when analyzing surface acoustic waves in multilay-
DMIRMDMH TR ers. The SM method enables the stable computation of the

As in Eq.(12), the eigenvector matrik, can be modified to spectral Green’s function of a multilayer, whatever the thick-

account for the permittivity of a vacuum. Additionally, the Ness of the layers, and the frequency or the slowness of the
effective surface permittivity can be obtained from theWave. In addition, the method can be extended easily to the

Green’s function ds case of interface waves.
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