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Abstract

The diffraction of light by sound waves is known as Brillouin scattering. In optical waveguides,
Brillouin scattering can arise from both bulk contributions, modelled by photoelasticity, and surface
contributions, which are due to the waveguide boundaries being shaken by propagating sound. The
reciprocal effect, electrostriction, governs the coherent generation of sound by light. The bulk
photoelastic contribution to Brillouin scattering is generally nonlinear but can be limited to a first-
order expansion for small strain. We investigate the moving-interface contribution to Brillouin
scattering in optical waveguides and show that it is also inherently nonlinear, leading to multi-phonon
processes for large deformations. Limiting the perturbation to first order, we form a Lagrangian
describing the interaction of sound and light. The Lagrangian contains both surface and bulk
contributions to Brillouin scattering and electrostriction, and allows the derivation of optical and
acoustic equations in a single variational formula. A full electrostriction equation is then derived for
the phonon distribution, with both bulk and surface effects included. Numerical simulations in the
case of a silicon nanowire illustrate the different effects and their respective contributions.

1. Introduction

Brillouin scattering in a transparent medium occurs when light interacts coherently with spatio-temporal
periodic variations of the refractive index caused by the propagation of sound waves [1]. The result of the
interaction is that a fraction of the transmitted light wave changes its frequency and wavenumber, as if it were
diffracted by an oscillating and moving grating. In bulk dielectric media, this interaction is described by the
photoelastic effect. Reciprocally, the coherent mixing of two optical waves with different frequency and
wavenumber produces mechanical force-like action on the propagation medium, or electrostriction, that
generates sound within it. The pair of reciprocal physical mechanisms, photoelasticity and electrostriction,
classically forms the basis for the description of stimulated Brillouin scattering (SBS), a nonlinear process by
which light interacts coherently with acoustic vibrations in an optically transparent medium and energy can be
transferred back and forth between them [2].

Light and sound interaction in microstructured optical fibres [3], microwires [4], and nanoscale waveguides
[5-8] has attracted alot of attention in recent years, due to the realization that surface effects can contribute
significantly to the interaction. Rakich et al have shown that radiation pressure can indeed contribute
significantly to the SBS gain in nanoscale optical waveguides [9, 10], allowing one in principle to design slot
optical waveguides where this gain can be maximized [11]. These developments parallel the field of opto-
mechanical interactions in cavities [12], including sound and light interaction in simultaneous photonic and
phononic, or phoxonic, crystal structures [13]. In particular, the important role played by moving interfaces or
surfaces in the coupling between light and sound has now been recognized and its complementarity with the
bulk photoelastic effect is well understood [14, 15].

In this paper, we wish to precise in more detail the surface and bulk contributions to electrostriction, but also
the reciprocity between the moving-interface (MI) effect and radiation pressure. We first summarize the method
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Figure 1. Propagation of an acoustic wave in an optical waveguide and its effect on optical properties. (a) An acoustic wave propagates
along the waveguide, causing both a modulation of the dielectric tensor around its static value €, and a deformation of the boundaries
of the waveguide. (b) Indeed, at each position along the waveguide, the cross-section of the waveguide appears to be modulated
geometrically: each point of the boundary is shifted by the normal displacement u (¢, x). (c) Concurrently, at each point x inside the
waveguide, the dielectric tensor is perturbed by an amount proportional to the strain field accompanying the acoustic wave, the so-
called photoelastic effect. Both basic mechanisms (b) and (c) contribute to coupling of light and sound in the waveguide. (d) Asa
result, the dispersion relation of guided optical waves w(k) is modulated in time at the acoustic frequency €2.

of overlap integrals as applied to estimating coupling coefficients between optical and acoustic modes, before
discussing the contribution of the MI effect to Brillouin scattering in optical waveguides. We had previously
accounted for bulk electrostriction in optical fibres [16] and waveguides [17], excluding surface effects. Here, we
show that the MI effect provides a natural way to describing radiation pressure as its reciprocal process in an
interaction Lagrangian. Finally, we show that the total Lagrangian containing both surface and bulk
contributions to Brillouin scattering and electrostriction leads to an elastodynamic equation for the generation
of sound by light.

2. Theory

The usual approach to estimating quantitatively the interaction of light and sound in an optical fibre or
waveguide is to express coupling coefficients involving overlap integrals of guided optical waves with acoustic
waves; we summarize briefly known results in section 2.1. Sections 2.2 and 2.3 contain our main original
developments.

2.1. Overlap integrals
Let us consider a dielectric optical waveguide, as depicted by figure 1. Guided optical waves satisfy a dispersion
relation relating their frequency w and wavenumber, or propagation constant, k. This dispersion relation is
determined by the spatial distribution of the dielectric constant, or more generally the dielectric tensor € for
anisotropic media. Such a structure also supports the propagation of acoustic waves, in the form of elastic waves
in solids [18].

Coupling coefficients can be obtained if the originally unperturbed optical and acoustic waves can be
assumed to be known. It seems indeed grounded to write the total electric field as a superposition
E = EW 4 E@ of2 guided modes involved in the acousto-optical interaction. More precisely, each guided
mode (o = 1,2)is written

E@(t, x) = a@(t, xg)e(“)(xl, xz)exp(z(w(“)t — k(“)x3)> + c.c (1)

The a® are modal amplitudes and the modal shapes e can be obtained from the eigenvalue problem defining
the dispersion relation.
We also write the displacements of the acoustic wave as

u(t, x) = u(xl, xz)exp(I(Qt - Kx3)) + c.c. 2)
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This equation implies that the acoustic wave has a definite frequency {2 and a wavenumber K. Actually, the
phase-matching conditions Q@ = w® — w®PandK = k® — k" are assumed to hold exactly. In other words,
among all possible phonons in the waveguide, we consider only those that satisfy the conditions for Stokes
Brillouin scattering. It should not be concluded, however, that the acoustic wave is a particular elastic mode of
the waveguide structure. Indeed, the waveform u (x;, %) in (2) remains in principle arbitrary, aslong as it
satisfies the elastodynamic equations.

As depicted in figure 1, acoustic waves modulate both the dielectric tensor of the medium and the
boundaries of the waveguide. This modulation in time is small and it can be considered as a perturbation.
Considering the optical dispersion relation, the perturbation induces a change in the modal frequency at fixed
wavenumber, but also a change in the modal wavenumber at fixed frequency. These can be characterized by the
relative modulations d w / wor 6k / k. They are related by 6k = —(v,)~ 6w where v, is the group velocity [19, 20],
as figure 1(d) illustrates.

Assuming that the acoustic wave is known, coupling coefficients can then be computed from overlap
integrals (see also Appendix B). Note that we specifically assume vanishing optical loss in this paper. The bulk
contribution to the acousto-optical effect comes from the photoelastic effect and leads to [13]

bw) 1 M) )%
(—)PE =2 j; dS py AP uy, 3)

w

where we have assumed the optical modes are normalized such that J; dS e@* . d@ = 1, with S the cross-

section of the waveguide. In these expressions, d® is the dielectric displacement vector of mode o and p;, is the
photoelastic tensor. We use tensor notations: repeated index summation is implied and an index placed after a
coma indicates a spatial partial derivative, i.e. uy; = Z—ZZ. It should be noted that the strain tensor field uy.
includes both partial derivatives with respect to x; and x, and a term proportional to K. The later contribution is
absent from the similar formula for phoxonic and optomechanical cavities [21]. As a note, expression (3) is
limited to the first-order term in a nonlinear expansion of the relative dielectric tensor with strain. Higher-order
nonlinear terms are not considered in this paper.

The surface contribution to the acousto-optical effect comes from the MI effect and can be given the form of

acontour integral [13, 19]

(5—“’) = —lf dlu, (Ac el e* — Ac 1 dNdP*), )
W /M1 2Jy

with Ae = €, — e;and Ae ! = ¢;! — €5 . In this expression, u,, is the normal displacement at the interface
between the waveguide and the surrounding medium, so that (d! u,,) represents the change in the cross-sectional
area of the waveguide as the acoustic wave is propagating. Significantly, the electromagnetic (EM) field has been
decomposed into normal and tangential components, so that only components that are continuous across the
interface 3 are involved. As argued by Johnson et al, such a formula applies only within the frame of first-order
perturbation theory applied to the variation of the dielectric tensor [19]. It remains that there may well be
perturbation terms other than the linear one to be taken into account, as investigated next. As a final note, mode
labels were not explicited in the left-hand sides of expressions (3) and (4) because only backward intra-mode
Brillouin scattering will be considered in the following examples, but they should in general be indicated if the
two optical modes differ.

2.2. Moving interfaces

As shown in the case of multilayers [14],and 2D [22] and 3D [21] cavities, the MI effect can be investigated
adequately under an quasi-static approximation. We here extend this approach to waveguides. Let us consider
the guided optical mode equation written for the electric field vector

0%(eE)
ot?

V x (iv X E]—i— 0. (5)
I
If the waveguide is perfectly still, the dielectric tensor € is a definite function of the transverse coordinates x; and
X,, and the equation can be solved to obtain propagation modes respecting appropriate boundary conditions.
Now if an acoustic wave is present, it will modulate the dielectric tensor in time by adding to it a perturbation §
€j = Xijkitix, proportional to the strain field'. This modulation is, however, on the time scale of the acoustic wave
and is thus very slow compared to the characteristic optical time (by a factor of 10° slower, approximately). We
can thus imagine that the waveguide is quasi-statically modulated in time and that equation (5) can be solved for
at every particular moment along the acoustic evolution to give the instantaneous optical modes and frequencies.
Furthermore, because of the presence of the acoustic wave, the boundaries of the optical waveguide are also
modulated in time. Each point x of the boundaries moves around its static position by an amount u, according

1 . . . .
Note that the nonlinear tensor y;;ix; is related to the photoelastic tensor by the relation Xy = —€im€jnPmnir [23]-

3
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to the displacement expressed by (2). We can safely ignore the longitudinal motion of the boundaries, as long as
the displacements of the acoustic wave are very small compared to the acoustic wavelength, so that every cross-
section of the waveguide can be thought of as ‘breathing’ slowly in time, at the acoustic frequency. In a practical
numerical implementation, the motion of the interfaces can be incorporated in the mesh used to define the
waveguide, as will be performed in section 3.1. Let us remark that such a computation will result in a function of
time (0 w / w) p(#) that naturally includes the full perturbation caused by the acoustic wave, as opposed to only
the perturbation at frequency 2 in (4).

2.3.Lagrangian approach

Aswe argued in the introduction, our main goal is to formulate a variational principle from which both Brillouin
light scattering by phonons and electrostriction of acoustic phonons by light can be derived simultaneously. As
both elastodynamic and Maxwell’s equations can be formulated using Lagrangians, we investigate how a total
Lagrangian can be derived. In the context of our study, a Lagrangian is a functional depending on a vector field ¢;
and its derivatives ; ; with respect to time and spatial coordinates. Integrated over time, the Lagrangian defines
theaction of the system, which we seek to make stationary. We define the Lagrangian density as £(¢;, ¢;;) so

that the Lagrangian is the volume integral of this density, L (g, ¢;;) = f dV L(; ¢;;). The Euler-Lagrange
equations are

oL 0 or

or _ 9 9% 6
Op;  Ox; a%‘,j ©

where summation over jis implicit (the index j runs over time t and coordinates x; in this equation). The Euler—
Lagrange equations yield the dynamical equations for the system.
For elastic waves, the Lagrangian density is well known to be [24]

1, ..
L.= E(P”i”i - Cijklui,juk,l): (7

with ¢;j; the tensor of elastic constants and p the mass density. This is the kinetic energy density minus the
potential energy density. The elastic Lagrangian density depends only on the partial derivatives of the
displacements with respect to time and space coordinates—velocities i1; and strains uy, ;. From a Legendre
transform, the Hamiltonian density is simply H, = %( pUtl; + cijtijug ), which is also the total energy density
for elastic waves. Note that expression (7) is formally valid for lossless elastic wave propagation; the generalized
Euler—Lagrange equations for the case of loss are given in Appendix C.

For EM waves and the microscopic formulation of Maxwell’s equations, the Lagrangian is known to be given
by [25]

. 1
£0:—p6¢ +]'A+E(60E2—B2//,L0), (8)
where the potentials (¢, A) are used to express the electric field and the magnetic field vectors as
B =V X A4, )
E=-V¢ — A. (10)

The source terms p. and j account for charge and current density distributions. It is important to notice that the
independent variables are the potentials, not the electric and magnetic fields, which are derived. For the
macroscopic formulation of Maxwell’s equations in dielectric media, the previous Lagrangian density can be
rewritten as

EO:%(E-D—B~H), (11)

where the usual definitions D = €¢E and H = B/ are used. The dielectric displacement D in particular
accounts for bound charges and currents. Under this form, the EM Lagrangian density still depends only on the
partial derivatives of the potentials with respect to time and space coordinates. From a Legendre transform, the
Hamiltonian density is simply H, = %(E - D + B - H), whichisalso the total energy density for EM waves.
For convenience, these relations are briefly derived in Appendix A. Note again that we specifically assume
vanishing optical loss.

In order to describe Brillouin scattering in the optical waveguide, we propose to sum the EM and the elastic
Lagrangians to form a total Lagrangian for the waves in interaction. This procedure is justified by the possibility
to use a double Legendre transform to transform this total Lagrangian to a total Hamiltonian, so that the total
energy of the system is taken into account in the interaction. As implied by the discussion in sections 2.1 and 2.2,
and within the quasi-static approximation, the low-frequency variations of the EM energy originate solely from
the variations of the dielectric tensor caused by the acoustic wave. We consequently separate the dielectric tensor

4
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into its unperturbed and its first-order parts to write
. I I3 2 Z12
L=Lot Lot = | dSxuuBiBju + 2 | dlu, (Ae |B||”— Ac'D?), (12)
s b

with [; some axial length introduced to write the integration volumeas V = S, L, = f dV L,,and

L.= f dV L.. We have further intentionally separated the bulk and the surface contributions in the first-order
part. The surface integral accounts for the bulk photoelastic effect, while the contour integral accounts for the
moving interface effect. It can be seen that the coupling coefficients (3) and (4) can be directly derived from them
by inserting the optical modal superposition (1) and the acoustic waveform (2), and then keeping only terms at
the acoustic frequency €. The validity of the moving interface Lagrangian is as before limited to the conditions of
application of first-order perturbation theory.

Taking the variation of the total Lagrangian (12) with respect to the EM potentials, we are led back to the
dynamical equation (6), including the photoelastic effect. The variation of the contour integral specifically leads
to an expression of the MI effect as a boundary condition to the optical waveguide equation, combining the
incident optical wave and the acoustic wave displacements at the interface .. The procedure we outlined in
section 2.2 is actually a variant where the waveguide geometry is deformed at each time step within the acoustic
period instead of modifying the boundary conditions.

The previous observations are intended to emphasize the consistency of the Lagrangian approach, but its real
usefulness reveals in the description of electrostriction. We can indeed reinterpret the contour integral in (12) as
the work done by the boundary of the waveguide when subjected to a surface optical force, or optical pressure,
defined by

E= %(As = AE*IDj). (13)

Following [16] we further define an electrostriction stress tensor as Tj;* = % Xy Ex E1- With these definitions, the
dynamical equations for the elastic wave are derived using the Euler—Lagrange equations as

0 0
pii; — %(ijkzuk,z) + 8—ij§S =0, (14)
complemented with the boundary condition that the optical pressure F; applies on every boundary where the
dielectric tensor is discontinuous. The physical meaning of this equation is that the elastodynamics of the
waveguide are forced by the combination of a bulk electrostriction stress distribution and of an electrostriction
pressure, both of purely optical origin. As we illustrate in section 3.2, this formulation allows one to obtain the
acoustic phonon distribution generated by light including both bulk and surface contributions to
electrostriction.

3. Numerical results

Let us consider the simple rectangular silicon nanowire depicted in figure 2. The refractive index of silicon at a
wavelength in a vacuum of 1550 nm is taken as # = 3.48 and refractive index dispersion is neglected. With a
cross-sectional area S &~ 0.1 um?, this waveguide supports a fundamental TE mode with effective index

Nesf = kc /w ~ 2.24and groupindexng, = ¢/ v, ~ 4.5.As canbe noticed from figure 2, the optical mode
extends significantly in air around the central core. This situation is specifically chosen so as to maximize surface
over bulk effects in Brillouin scattering, following Rakich’s analysis [9, 10]. The chosen dimensions are also close
to those used in Van Laer’s experiments [8].

3.1. Quasi-static MI effect
Let us consider first the direct numerical simulation of the moving interface effect that we outlined in section 2.2.
We consider specifically backward intra-mode Brillouin scattering, so that K ~ 2k, with the implication that
the acoustic wavelength is half the effective optical wavelength. The silicon nanowire supports a total of 29 elastic
modes with frequencies ranging between 12 and 30 GHz, and of course many more above. For each of these
modes, normalized so that L, = 0.1 ] (with 3 = 1 m), 24 snapshots were created within an acoustic period and
the variation of the fundamental TE optical mode was recorded. As an illustration, figure 3 displays the optical
mode at 4 different times (+ = 0, T/4, T/2, 3T /4) with T the acoustic period, for the second and the third elastic
modes. These elastic modes have very close frequencies, about 13.7 and 13.8 GHz respectively, but the former is
of arotational type while the latter is of the symmetric flexural type. The maximum total displacement and the
symmetries of elastic modes are listed in table 1.

Different elastic modes actually have a quite different impact on the variations of the optical frequency.
These variations are plotted in figure 4 for the previous two elastic modes, plus those with numbers 4 and 6. For
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Figure 2. A rectangular silicon nanowire waveguide. (a) The silicon core has width w = 450 nm and height b = 220 nm. Itis
surrounded by air. (b) The finite element mesh comprises an additional 1000 nm of air around the core for optical mode calculations.
Note that elastodynamic calculations are limited to the core only, with free boundary conditions. (c) The H, and H,, components of the
fundamental transverse-electric (TE) mode are depicted for a wavelength inavacuum A = 1550 nm.

each of them, the plot shows the value of (6 w / w) as caused by the MI effect and the photoelastic effect. The MI
value is obtained from the previously described method, while the PE value is obtained directly from coefficient
(3). Elastic modes 3 and 6 show rather strong MI and PE modulations, with similar amplitude and the same
phase. The MI modulation is mostly sinusoidal at the frequency €2 of the elastic mode. In contrast, elastic modes
2 and 4 show a very small PE modulation and a small MI modulation. Moreover, the PI modulation is mostly at
the double frequency 2). Following the analysis by Psarobas et al, the acousto-optical response of the waveguide
is nonlinear and is the siege of multi-phonon processes [14]. It must be stressed that this nonlinearity originates
here solely from the MI effect and is of geometrical origin, since the PE effect was explicitly considered to be
linear in expression (3). Itis dependent on the acoustic mode energy: it was checked that diminishing the elastic
mode energy by a factor of 2, the MI response was linearly decreased for elastic modes 3 and 6, while it was
decreased by roughly a factor 4 for elastic modes 2 and 4. This is consistent with the fact that two-phonon
processes are dominant in the latter case. Note that the vanishing of the linear PE and MI effects can be traced
back to the symmetry properties of the considered elastic mode [26].

Finally, figure 5 shows the absolute values of the PE and MI modulation coefficients estimated using
formulas (3) and (4) for all 29 elastic modes. It must be stressed that the M1 coefficient is obtained for the first
variation with respect to the dielectric tensor and is thus an estimate of the MI effect at frequency €2 only. A clear
correspondence is found with the numerical results in figures 3 and 4, i.e. formula (4) for the MI effect correctly
gives the linear contribution at frequency §2. On figure 5, four elastic modes with the largest modulation
coefficients can be identified, those with numbers 3, 6, 12, and 20.
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Figure 3. Variation of the fundamental TE optical mode inside an acoustic period for elastic modes number (a) 2 and (b) 3. The
rectangular silicon nanowire waveguide is depicted in figure 2 and the wavelength ina vacuum A = 1550 nm. The normalized |H, |
component is depicted with a grey scale ranging from 0 (black) to 1 (white). Please note that the depicted modal displacements (see
table 1) are much larger than the typical displacements in backward Brillouin scattering experiments.

Table 1. Maximum total displacement and symmetry properties of some elastic modes
of the rectangular silicon nanowire waveguide of figure 2. The maximum total dis-
placement is given for modes normalized so that L, = 0.1]J. With respect to the hor-
izontal axis (Ox) and the vertical axis (Oy), modes are either symmetric (S) or

antisymmetric (AS).

Mode Max.

number |u| (nm) Sym./Ox Sym./Oy

uy 758 U3 Uy 758 Uz

2 57 AS S AS S AS AS

3 49 S AS S AS S S

4 48 N AS S S AS AS

6 23 S AS S AS S

12 14 S AS S AS S

20 15 S AS S AS N S

. . . . : : : 0.003 i ; ; : : . .
5 0.05 1 g
kS kS
3 =}
38 8 0] 1
£ 1S
8 3
g 0 g
P S -0.003 1
(2] (2]
3 =}
Q Q
O Q
< <
-0.05 R -0.006 -
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time (ps) Time (ps)
(@ #3, Ml ——  #6, Ml —=— () #2, Ml ——  #4, M| ——
#3, PE —+— #6,PE —=— #2,PE —+— #4,PE ——

Figure 4. Variation of the relative acousto-optical frequency modulation (6 w / w) caused by the moving-interface (MI) effect and the
photoelastic (PE) effect, for elastic modes (a) number 3 and 6, and (b) number 2 and 4. The rectangular silicon nanowire waveguide is
depicted in figure 2 and the wavelength in a vacuum A = 1550 nm. The maximum total displacement and the symmetry properties of
the considered elastic modes are listed in table 1.
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Figure 5. Absolute values of the photoelastic (PE) and moving-interface (MI) modulation coefficients |fw/w | estimated using
formulas (3) and (4) for all 29 elastic modes. Numbers on the main peaks refer to elastic mode numbers. The rectangular silicon
nanowire waveguide is depicted in figure 2 and the wavelength in a vacuum A = 1550 nm. The maximum total displacement and the
symmetry properties of the elastic modes are listed in table 1.
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Figure 6. Lineic total elastic (or phonon) energy originating from electrostriction in the waveguide of figure 2. Two counter-
propagating guided optical waves with unit power are assumed to be incident. The phonon frequency is determined by the detuning
frequency (2 between the two optical waves. The individual and added contributions of the photoelastic (PE) and moving-interface
(MI) effects are presented. Numbers on the main peaks refer to elastic mode numbers. A logarithmic scale version of this graph can be
found in the supplementary material.

3.2. Surface and bulk electrostriction

From the previous numerical results, we are comforted with the idea that the contour integral term in the
Lagrangian (12) is indeed representative of the MI effect at frequency 2. We can now proceed to solve the
boundary value problem (14), the solution of which ultimately gives the elastodynamic response of the
waveguide subjected to the combined bulk optical stress and surface optical pressure. For that purpose, we again
use the finite element method. Introducing test functions v;, the weak form of (14) is obtained after application
of the divergence theorem to transfer a partial derivative on the test functions as

—Q% | dSpviu; + | dSviicimur; = | dSvi; TS + v,dl E, (15)
s s SRS s I D)

an equation that is valid for all considered test functions. The bulk electrostriction stress term had already been
obtained before [16, 17] butis here derived on a firmer ground from the Lagrangian. The electrostriction
pressure term was absent from our previous works. The weak formulation (15) of the electrostriction process
lends itself easily to implementation in a finite element code. It is here presented in the frame of waveguide
problems, but it applies to cavity problems as well, the main difference being the presence or not of the acoustic
wavenumber K.

The results presented in figure 6 assume that two guided optical waves with unit power and opposite
wavevectors are propagating in the waveguide. The acoustic wavenumber is then K & 2k™" as before. Because of
phase matching, the detuning frequency 2 is also the phonon frequency. The total phonon energy is plotted as a
function of 2 by considering either only bulk electrostriction (the photoelastic contribution), or only radiation
pressure (the MI contribution), or both. As a note, viscoelastic damping in silicon is included in the computation
by adding a frequency-dependent imaginary complex term to the elastic tensor [17, 27]. Sharp resonant peaks

8
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are observed, each associated with a previously identified elastic mode. For the first two peaks, around the
natural frequencies of modes number 3 and 6, the PE and MI contributions are of the same order of magnitude.
For the two peaks at higher frequencies, around the natural frequencies of modes number 12 and 20, the PE
contribution dominates over the MI contribution. Both contributions are found to interfere constructively to
form the total electrostriction response.

4. Discussion

We have shown in the previous sections that both Brillouin scattering and electrostriction of phonons by light
can be described by a single Lagrangian, from which the dynamical equations for optical and acoustic waves can
be directly derived. Kroll had already undertook such a program back in 1965 [28], soon after SBS had been
discovered [29]. His Lagrangian was also the sum of an optical and of an acoustic Lagrangian, complemented
with an interaction Lagrangian. Only plane waves were considered and acousto-optical interaction was limited
to the photoelastic effect, i.e. surface effects were not considered. Recently, Wolff et al also derived a Lagrangian
to describe SBS in integrated photonic waveguides [15]. The independent optical variables in their Lagrangian
are, however, different from ours, as they consider the electric and magnetic fields directly instead of the
potentials in our formulation. They also do not make use of the total Lagrangian to derive dynamical equations,
but to give a firm ground to the evaluation of coupling coefficients as overlap integrals of the form (3) and (4) and
to argue that the energy that appears as mechanical work per acoustic cycle is precisely the change in the average
optical energy density. The latter result also follows from the form of our Lagrangian (12), by construction, since
we have added interaction terms to the Lagrangian as perturbations to the EM energy as caused by acoustic
motion. In this sense, our results are complementary.

We have also obtained that the MI overlap integral approach applies only in the limit of neglecting processes
other than one-phonon processes. It remains that under strong acoustic excitation such nonlinear effects could
be observable in nanoscale waveguides. Using an external source or transducer for acoustic waves, it would
probably be necessary to reach very high phonon energy densities for the phenomenon to be noticeable. In all-
optical experiments such as SBS, however, there may be a possibility that the acoustic wave grows sufficiently
intense, but this has not been observed so far to the best of our knowledge.

We had previously considered electrostriction in optical fibres [ 16] and waveguides [17], but without taking
into account surface effects. In the particular example we have considered, the transverse dimensions of the
waveguide were intently chosen sufficiently small that the MI effect would become comparable to the bulk
photoelastic effect. In usual optical fibres and also in most microstructured optical fibres, it can be expected that
bulk effects are dominant over surface effects, because of the involved dimensions. In the case of micro-fibres
with small cores, however, surface contributions have been shown to be present [4] and must thus be taken into
account for the smallest cores.

Overall, when the aim is to obtain coupling coefficients between coupled waves, it is an underlying
assumption that the acoustic wave is a mode [30]. In our approach to electrostriction, the acoustic wave is
generally not a mode but the solution to the forced elastodynamic equation [10, 16]: it depends on the driving
bulk optical stress and optical pressure. The phonon distribution that we obtain is as a consequence different
from a mere single mode, though it could still be expressed as a superposition of all available modes [16]. In the
response shown in figure 6, for instance, only at frequencies corresponding to a strong peak does the phonon
distribution approach that of a particular dominant elastic mode.

Furthermore, previous works had envisioned the possibility of an optical radiation pressure causing the
boundaries of the waveguide to deform and hence to participate in the generation of the acoustic wave [10, 11].
This optical radiation pressure is clearly perfectly coherent with the bulk optical stress, having the same
frequency and wavenumber. If one accepts that bulk electrostriction is the dual effect to the photoelastic effect,
then one should also admit that radiation pressure is the dual of the moving interface effect, as was shown by
Wolff et al based on thermodynamic arguments [ 15]. This duality is explicitly contained in the form of the
Lagrangian (12).

5. Conclusion

In this paper, we have contributed to the modelling of the interaction of light and sound in optical waveguides.
We have specifically investigated the MI contribution to Brillouin scattering and have shown that it is inherently
nonlinear, leading to multi-phonon processes for large deformations. We have then proposed a total Lagrangian
describing the interaction of sound and light, formed by summing the unperturbed optical and elastic wave
Lagrangians with an interaction Lagrangian containing the first-order perturbation of the dielectric tensor. The
total Lagrangian contains both surface and bulk contributions to Brillouin scattering and electrostriction, and
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allows the derivation of optical and acoustic equations in a single variational formula. It also evidences clearly the
duality of photoelasticity and bulk electrostriction, on the one hand, and of the MI effect and radiation pressure,
on the other hand. A full electrostriction equation was then derived for the phonon distribution in the
waveguide, with both bulk and surface effects included. Numerical simulations in the case of a silicon nanowire
were used to illustrate the different effects and their respective contributions. For the dimensions chosen, the MI
and the photoelastic contributions to both Brillouin scattering and electrostriction were found to be of
comparable order of magnitude, in accordance with previous theoretical [10] and experimental [7, 8]
observations. One salient aspect of the proposed model of electrostriction is that it avoids specifying the acoustic
wave as a mode of the waveguide, but instead derives precisely the phonon distribution generated by the bulk
optical stress and the optical pressure. For a complete description of SBS, and as a perspective, this phonon
distribution could be inserted back in the optical coupled-wave equations to derive the exact Brillouin gain [10].
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Appendix A. EM lagrangian

The derivation of the EM Lagrangian for the microscopic Maxwell’s equations is well known but will be useful
for the derivation of the macroscopic version. Let us rewrite (8) in tensor form

. 1
Lo=—p.d+jAi + E(eoEiEi - B,-Bi/uo) (A.1)
and express the components of the electric and magnetic field vectors
B,‘ = e,‘jkAj)k (AZ)
Ei=—¢; — A, (A.3)

where e;j. is the permutation tensor. The Euler—Lagrange equation obtained by variation with respect to ¢ gives
Gauss’ law at once

pe = €Eij, (A4)
while variation with respect to A; leads to Ampere’s law
. . 0 1 . 1
j; = —€ki — —| —ekjBx | = —&Ei + —(V x B);, (A.5)
9x; \ 1o Fo

where the antisymmetric property of the permutation tensor has been used in the last transformation. Asa
whole, it is seen that the usual microscopic Maxwell’s equations are derived from the Lagrangian as Euler—
Lagrange equations.

We next consider the macroscopic form of Maxwell’s equations and rewrite the Lagrangian (11) in tensor
form

1 1
EO = — Ei 61'jEj - —B,‘Bi . (A6)

2 0

By following the same rationale as in the microscopic case, the Euler—Lagrange equations are
0= (fijEj)4 =V D, (A7)
8(61]15]) 1 X
0=———>+—(V xB)j=—-Di+(V x H);, (A.8)
ot Ho

or the macroscopic versions of Gauss’ law and Amperes law. Again, it can be concluded that the usual
macroscopic Maxwell’s equations are derived from the Lagrangian as Euler—Lagrange equations.

The EM Hamiltonian can now be derived from the Lagrangian by a Legendre transform. The generalized
momenta are defined as

oL,

— =0, A.
9% 0 (A.9)
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‘ = _fijEj = —D,‘. (A.lO)

The Hamiltonian density is then
Ho=(d Ai) - (0, =Di) = Lo,
7_(0 = - AiDi - EO)
Ho=¢;D; + E-D — L,
1
Ho=¢,D;+ (E-D + B H).
Except for the first term, this is the result we announced in section 2.3. Now since

fv dve,D; = —fv dVeD,; = 0, (A.11)

the Hamiltonian is finally

1
Ho_fv dV_(E-D + B - H). (A.12)

Appendix B. Variation for an eigenvalue problem

Modal problems for wave equations can generally be cast under the form of a generalized eigenvalue problem
A |x) = w?B |x), (B.1)

where A and B are square matrices. If the matrices are varied by amounts 0A and 6B, then there are corresponding
variations in the eigenvalue § w and eigenvector | 6x). Limiting the expansion to first order terms only (i.e., the
first variation), we have

0A |x) + A|6x) ~ 2wéwB |x) + w?6B |x) + w?B|dx). (B.2)
For lossless materials, matrix B is real symmetric, while matrix A is generally Hermitian. Their left- and right-
eigenvectors are then complex conjugates and we obtain
1 (x| 6A |x) — w?(x| 6B |x)  w (x| 6A |x) — w?(x| 6B |x)

bw ~ = . (B.3)
2w (x| B |x) 2 (x| A |x)

Formulas (3) and (4) for the coupling coefficients are obtained from the optical mode equation (5). In this
particular case, A is a constant matrix, so that 0)A = 0,and B = esothat{B = Je.

Appendix C. Euler-Lagrange equations in the case of mechanical loss

The case of mechanical loss can be encompassed by considering a dissipation function in addition to the elastic
Lagrangian density. Following Landau and Lifshitz [24], the general form of a dissipation function describing
internal friction in a deformed body is the quadratic form

with g% the phonon viscosity tensor. This quadratic form cannot be incorporated in the elastic Lagrangian

density since friction forces are not conservative. The dynamical equations are instead obtained from the
following generalized Euler-Lagrange equations

99L. 9 L. 9 IR _

_9 (C.2)
ot Ou; 6)(3]' 8111',]' ax]‘ 81/‘11‘,]‘
Given the expressions (7) and (C.1), the dynamical equations for purely elastic motion are
. 0 0 .
pi; — —(Cijkluk,l) - _(Mijkluk,l) =0. (C.3)

Ox J Ox yi

In case the displacements are caused by a time-harmonic elastic wave with angular frequency €2, the previous
equation simplifies to

pil; — aa—xj([cijkz + lQM,jkz]Mk,l> = 0. (C4)

As a consequence, the elastic tensor becomes complex-valued with a frequency-dependent imaginary part
proportional to the phonon viscosity tensor. This complex elastic tensor can be used in the elastodynamic
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Figure D1. Lineic total elastic (or phonon) energy originating from electrostriction in the waveguide of figure 2. Two counter-
propagating guided optical waves with unit power are assumed to be incident. The phonon frequency is determined by the detuning
frequency 2 between the two optical waves. The individual and added contributions of the photoelastic (PE) and moving-interface
(MI) effects are presented.

equation (14) to account for mechanical losses. Alternatively, the dynamical equations for the elastic wave
generated by electrostriction and radiation pressure are

y 0 0 . 0 s
pu; — 8_xj(czjkluk,l) - 6_99(%‘]‘1(1“1(,1) + 8_ijij =0, (C.5)
again complemented with the boundary condition that the optical pressure F; applies on every boundary where
the dielectric tensor is discontinuous.

Appendix D. Figure 6 plotted in logarithmic scale

Figure D1 shows the same information as figure 6, but with the phonon energy plotted with alogarithmic scale
instead of alinear scale.
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