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Abstract—The finite element method/boundary element
method (FEM/BEM) computation model applied to sur-
face acoustic wave devices requires the solution of a large
linear system for each frequency point. An asymptotic
waveform evaluation technique is used to obtain an approx-
imate solution of the linear system that is valid over a large
frequency bandwidth. The approximate solution was shown
to be very accurate and vastly reduces the computation
time.

I. Introduction

The combination of the finite element method (FEM)
and the boundary element method (BEM) for the sim-

ulation of surface acoustic wave (SAW) devices has been
used by many authors [1]–[6]. Although the FEM/BEM
method only applies to infinite periodic interdigital trans-
ducers (IDTs), and, thus, is only an approximation of a
real finite SAW device, its high degree of accuracy and
reasonable computational burden have made it the basis
of most advanced SAW parameter extraction codes [3], [6]–
[8]. Ventura et al. [8] have especially deeply optimized the
FEM/BEM method by analytically integrating the asymp-
totic contributions of the spectral surface Green’s function.
It also has been used as a mathematical tool for the iden-
tification of the modes guided by the interface between a
piezoelectric substrate and high aspect ratio metallic elec-
trodes [9], and for the analysis of surface waves propagat-
ing obliquely in IDTs [10], [11].

The FEM/BEM method relies on an integral represen-
tation of the substrate surface assuming a semi-infinite
medium through the spectral Green’s function that re-
lates the surface displacements to the surface stresses via a
convolution operation, the BEM part, connected through
a discrete formulation to the diffracting elements in the
structure (i.e., the electrodes), which are treated acousti-
cally by the FEM. The main output of the FEM/BEM
is the harmonic admittance [12], a generalization of the
strip admittance [13], [14]. The FEM/BEM is a spectral
method. Although the spectral Green’s function of a semi-
infinite substrate does not depend on frequency, the FEM
problem for the electrodes has to be solved for every fre-
quency point. In practice, it turns out that this last com-
putation becomes the main burden, especially if many fre-
quency points are required as is almost always the case for
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Fig. 1. Infinite periodic surface acoustic wave transducer.

the high quality-factor SAW resonators that are the basis
of most SAW devices.

The purpose of this paper is to introduce an approxima-
tion method that requires the solution of the FEM problem
only for the central frequency of the bandwidth of inter-
est. This approximation method belongs to the larger class
of asymptotic waveform evaluation (AWE) methods [15]–
[18], although it is here derived analytically from the par-
ticular form of the FEM problem. In particular, the ability
of AWE methods to handle poles is not used. In Section II,
the FEM/BEM method used is summarized briefly. The
approximation method is derived in Section III. A compu-
tation example is given in Section IV, and the results are
discussed. Section V is the conclusion.

II. FEM/BEM Method

The definitions of the axes and the considered geometry
are given in Fig. 1. The structure is composed of a semi-
infinite piezoelectric substrate extending in the half-space
x2 < 0, whose surface supports a periodic infinite metal
strip grating. The grating electrodes are parallel to axis x3,
centered at x1 = np, where n is the electrode index and p is
the grating period. The width of the electrodes is denoted
by a, so that a/p is the metalization ratio. The electrodes
are assumed to be long enough along x3 that any depen-
dence in x3 can be omitted in the following equations. All
considered fields are supposed to exhibit a time depen-
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dence exp(jwt), where j is the imaginary constant and ω
is the angular frequency.

An harmonic excitation is assumed to be applied to the
infinite periodic grating, yielding the following form for the
driving potential applied to the grating electrodes [12]–
[14]:

Vn (γ) = V0 exp (−j2πnγ) , (1)

where γ is the characteristic parameter of the harmonic ex-
citation. The alternating potential +V , −V usually consid-
ered for a practical electrical excitation corresponds to γ =
1/2. For such an harmonic excitation, it has been shown
that the electrode currents have the same dependence as
their voltages [4] and that the ratio Y = In (γ)/Vn (γ) does
not depend on the actual number n of the electrode. It is
the so-called harmonic admittance (HA) [12].

The determination of the grating harmonic admittance
has been the main goal of many theoretical and numerical
works; we use in this paper the method due to Ventura et
al. [4], [8]. Considering the harmonic excitation of (1), only
one period of the infinite grating has to be considered in
the analysis, and the convolution relation can be written:

ui(x1) =
∫ + p

2

− p
2

G
(p)
ij (x1 − x′) tj2 (x′) dx′, (2)

where G
(p)
ij is the periodic Green’s function defined as:

G
(p)
ij (x1) =

+∞∑
q=−∞

Ĝij (γ + q) exp (j2π (q + γ)x1/p) .
(3)

In (2), ui and tj2 are, respectively, the components of
the generalized surface displacement and stress, and u4
and t42 are, respectively, the surface electrical potential
φ and the surface charge density Q, i.e., the difference
between the normal component of the electrical displace-
ment in a vacuum and in the substrate. Ĝij is the Fourier
transform of the surface Green’s function, i.e., the spectral
Green’s function. Its expression for an arbitrary piezoelec-
tric material can be found, for instance, in [12].

As proposed by several authors [4], [20], a Chebyshev
polynomial expansion of the electromechanical fields is in-
serted in (2) as:

t2j(x1) =
1√

1 − x2

+∞∑
m=0

C
(m)
t2j

Tm (x) , (4)

Q(x1) =
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C
(m)
Q Tm (x) , (5)

ui(x1) =
+∞∑
m=0

C(m)
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Tm (x) , (6)

φ(x1) =
+∞∑
m=0

C
(m)
φ Tm (x) , (7)

where the expansion is only applied at the interface Γ be-
tween the substrate and the electrode (|x1| < a/2) and

x = 2x1/a. In (4)–(7), the electrode is assumed to be sym-
metric and centered at the origin, extending along x1 from
−a/2 to a/2, and Tm represents the Chebyshev polyno-
mial of order m.

{
C

(m)
f

}
is the vector of the Chebyshev

expansion coefficients for the considered function f . In ad-
dition to (6) and (7), it is assumed that the stress t2 and
electrical charge Q are zero in between the electrodes. By
inserting (3)–(7) into (2), the following equation relating
the Chebyshev expansion coefficients can be obtained for
the electromechanical behavior of the substrate [4], [8]:{
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}
. (8)

Although an infinitely thin electrode can be assumed
for the electrical behavior of the metal, it has been shown
that the mechanical (acoustic) contribution of the strip
must be taken into account [21] and is here modeled us-
ing FEM. The result of the FEM analysis, projected onto
the Chebyshev polynomial expansion, can be symbolically
written as [4], [8]:{

C(m)
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}
=

1
p
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PkTm

][
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]−1
Γ,kl
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PlTn

]{
C
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}
, (9)

where
[
K − ω2M

]
Γ is the usual finite element factoriza-

tion matrix, where the subscript Γ indicates that it is re-
stricted to the electrode-substrate boundary. Matrix nota-
tion

[∫
PkTm

]
represents the conversion of the Chebyshev

expansion to a FEM polynomial interpolation P . The in-
verse of matrix

[
K − ω2M

]
Γ,kl

in (9) should not be under-
stood literally, but as representing the solution of a linear
system. The mechanical contribution of the electrode then
can be expressed in matrix form as:{

C(m)
ui

}
= But

{
C

(n)
t2j

}
. (10)

The electrical boundary condition under the electrode
at the origin is that the potential φ is constant and equal
to V0. From this condition the vector C

(m)
φ is easily deter-

mined. The mechanical contribution in (8) can be elimi-
nated by inserting (10), and the resulting system solved for
C

(n)
Q . The total electrical charge Q0 under the electrode is

computed by integration of the charge density. The result
is [19]:

Y (γ) = j
π

2
ωa

(
C

(0)
Q

V0

)
. (11)

III. Approximation of FEM System Solution

As (9) indicates, the solution of the FEM/BEM problem
summarized in the preceding section requires the solution
of a linear problem of the form:

(K − ω2M)u = y, (12)
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where y represents a certain number of right-hand side vec-
tors, for instance, one for each retained Chebyshev poly-
nomial. Significantly, these right-hand side vectors and the
matrices K and M are independent of the frequency. The
dimension of the square matrices K and M is the number
of degrees of freedom.

Considering the usual situation in which one is in-
terested in computing the harmonic admittance over a
given finite frequency bandwidth (e.g., in the vicinity of
the stop-band), (12) has to be solved for every frequency
point, which represents the main burden of the FEM/BEM
method. However, observing the particular form of (12), it
is seen that the only frequency dependence is explicitly in
the aggregation of static matrices K and M . This prop-
erty makes possible the analytic calculation of the Taylor
expansion of the solution of the linear system, as we next
show. Our purpose is to obtain an approximate but fast
solution of (12) limited to some frequency bandwidth.

Using the notation λ = ω2, we consider the neighbor-
hood of the solution u0 of (12) obtained for λ0, i.e., the
solution of:

(K − λ0M)u0 = y. (13)

Considering the small variation λ = λ0 + dλ with associ-
ated solution of the linear system u = u0 +du, (12) reads:

(K − λ0M − dλM) du = dλMu0. (14)

Note that this equation is obtained without approxima-
tion.

Let us define the matrices A and B by:

A = K − λ0M, (15)

B = A−1M. (16)

The following series identity holds with a unit radius of
convergence:

(A − dλM)−1 =
(
I + dλB + dλ2B2 + · · ·

)
A−1.

(17)

Injecting this identity in (14), we obtain:

du = dλ
(
I + dλB + dλ2B2 + dλ3B3 + · · ·

)
Bu0.

(18)

When truncated, this formula yields an approximate
solution of the linear system for angular frequencies close
to ω0, which is a special form of the general AWE method.

Although A−1 appears explicitly in (17), it is practically
not advisable to compute the inverse of matrix A, because
this matrix is not always well conditioned. However, we
next show that only a factorization of this matrix is re-
quired. Because of the positive definite character of the
FEM matrices in (13), a Cholesky factorization of matrix
A can be performed. Alternatively, a Crout factorization
also can be used. The first step is to solve (13) for the
central angular frequency ω0, i.e., u0 is obtained where
Au0 = y. This linear equation is easily solved using the

Fig. 2. Harmonic admittance for a substrate of Y + 128 lithium nio-
bate supporting rectangular aluminum electrodes with h/(2p) = 0.1
and for a metalization ratio a/p = 0.5. The harmonic conductance
(a) and harmonic susceptance (b) computed with the FEM/BEM
and the harmonic conductance (c) and harmonic susceptance (d)
computed with the frequency-accelerated FEM/BEM are plotted.
Curves b and d cannot be distinguished visually.

factorization of matrix A, without having to compute the
inverse of matrix A. The first order approximation of the
solution in (18) reads:

du ≈ dλA−1Mu0. (19)

The A−1Mu0 term is in fact the solution of (13) with
Mu0 used as the right-hand side instead of y, so that the
first order approximation of the solution is readily obtained
in practice. For the second order approximating term, the
same procedure can be repeated, i.e., (13) must be solved
with MBu0 used as the right-hand side. Iteratively, the
approximating solution can be obtained to any order.

A practical iterative algorithm is the following. The ap-
proximate solution is written:

u ≈ u0 + dλu1 + dλ2u2 + · · · . (20)

u0 is first obtained as the solution of Au0 = y, then u1 is
obtained as the solution of Au1 = Mu0, u2 is obtained as
the solution of Au2 = Mu1, and so on.

IV. Results and Discussion

Fig. 2 shows a comparison between the frequency-
accelerated and nonaccelerated (exact) FEM/BEM com-
putation of the harmonic admittance of a substrate of
Y +128 lithium niobate. The harmonic admittance is plot-
ted as a function of the frequency period product fp, for
rectangular aluminum electrodes with h/(2p) = 0.1 and
for a metalization ratio a/p = 0.5. A value fp = 2000 m/s
has been chosen as the center for the frequency-accelerated
FEM/BEM computation, and seven orders are used in the
approximation of (20). Seven Chebyshev polynomials for
BEM, and 50 finite elements and Lagrange polynomials of
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degree 2 for FEM are used in both computations. For 1000
frequency points, a 67-fold acceleration factor of the com-
putation time is obtained. It can be observed that the com-
putation results are indistinguishable over a large band-
width extending from fp = 1000 m/s to fp = 2500 m/s.
Above fp = 2500 m/s, only the harmonic conductance dif-
fers. This gives the upper limit until which the frequency-
accelerated computation is accurate in this case.

The same computations as shown in Fig. 2 also were
performed on various substrates, including Y + 42 lithium
tantalate and Y + 36 − Z quartz, and for several values
of the parameter h/(2p). The same features as described
above were observed in all cases. The number of orders re-
tained in the Taylor expansion of (20) was varied from
3 to 20 to verify whether the range of validity of the
approximation could be extended. This range of validity
was found to be only slightly dependent on the order of
the approximation, and it could not be extended signifi-
cantly over the seven orders approximation used for plot-
ting Fig. 2. It also was verified that the approximation
is correct when the central frequency is shifted. For in-
stance, with a central value fp = 3000 m/s, the frequency-
accelerated FEM/BEM computation closely approximates
the exact solution from fp = 2000 m/s to fp = 3500 m/s.

The range of validity of the approximation of (20) is
certainly limited to frequencies for which a Taylor expan-
sion can be considered for the acoustic fields inside the
electrodes. This is certainly not the case when some mode
of the electrode is excited because a resonant behavior is
then expected. Conversely, for all frequencies sufficiently
far from a mechanical resonance inside the electrodes, or
if the resonance is damped out by losses (for instance, due
to radiation inside the substrate), the approximation is
expected to be valid. This has been the situation with all
piezoelectric cuts and waves considered during this work,
and no resonances in the electrodes were observed. How-
ever, when considering a metal different from aluminum
for the electrodes or fast surface acoustic waves (e.g., lon-
gitudinal leaky SAWs), care should be taken that the ac-
celerated results are meaningful. Although this is not done
in this work, it should be noted that AWE methods can
take care of poles, i.e., resonances. This would complicate
and probably slow down the method presented in this pa-
per.

V. Conclusions

The FEM/BEM computation model applied to SAW
devices requires the solution of a large FEM linear sys-
tem for each frequency point. A Taylor expansion of the
solution of this system has been proposed to obtain an
approximate solution that is valid on a large frequency
bandwidth. The Taylor expansion orders are easily and ef-
ficiently computed with a simple recursion formula. The
approximation method belongs to the class of asymptotic
evaluation waveform methods. The approximate solution
has been shown to be very accurate, provided resonance
modes of the electrodes are not excited, and it vastly re-

duces the computation time. The AWE models could pos-
sibly benefit other ultrasonics applications that are mod-
eled in the spectral domain using FEM, as exemplified
by [22].
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Solal for enlightening discussions.

References

[1] H. P. Reichinger and A. R. Baghai-Wadji, “Dynamic 2D analysis
of SAW devices including mass-loading,” in Proc. IEEE Ultra-
son. Symp., 1992, pp. 263–266.

[2] H. P. Reichinger, A. R. Baghai-Wadji, and F. J. Seifert,
“Stress pattern on the electrode/substrate interfaces in SAW-
devices,” in Proc. IEEE Ultrason. Symp., 1993, pp. 153–156.

[3] P. Ventura, J. Desbois, and L. Boyer, “A mixed FEM/analytical
model of the electrode mechanical perturbation for SAW and
PSAW propagation,” in Proc. IEEE Ultrason. Symp., 1993, pp.
205–208.
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