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The complex band structure of a phononic crystal is composed of both propagating and evanescent Bloch
waves. Evanescent Bloch waves are involved in the diffraction of acoustic phonons at the interfaces of finite
phononic crystal structures. They are shown to arise both because of band gaps, where they directly measure
the exponential decrease upon transmission, and because of the frustrated nature of higher-order diffracted
waves at low frequencies. These diffracted evanescent Bloch waves become propagative as the frequency
increases thus populating higher frequency bands. These results should apply as well to any periodic medium
supporting the propagation of waves.

DOI: 10.1103/PhysRevB.80.092301 PACS number�s�: 43.20.�g, 43.35.�d, 77.65.Dq

Evanescent waves are particular solutions of the wave
equation that decay or increase exponentially with distance.
They are involved in many physical phenomena including
coupling in and out waveguides and resonators,1 near-field
optics,2 tunneling,3,4 subwavelength focusing,5–7 or surface
waves.8,9 A well known and simple example is provided by
the one-dimensional diffraction grating depicted in Fig. 1�a�.
An incident plane wave with angular frequency � and wave
vector k has an amplitude proportional to exp�−ı�k1x1
+k2x2��. The field diffracted by the grating is composed of a
superposition of plane waves

u�x1,x2� = �
n

an exp�− ı�k1nx1 + k2nx2�� , �1�

k2n = k2 + n
2�

a
, k1n =��2

v2 − k2n
2 , �2�

where v is the velocity for the particular kind of wave con-
sidered. In Eq. �1�, every Fourier harmonic has amplitude an
and the wave vector component k1n is either a real or a
purely imaginary complex number, depending on the sign of
the expression under the square root in Eq. �2�. At a given
frequency �, evanescent waves are characterized by the fact
that their wave vector, k���, is complex valued. In the
simple grating model above, each diffracted wave with n
�0 becomes evanescent under the cut-off frequency �n
=k2nv but is propagative above it.

Of special interest is wave propagation in periodic media,
including photonic10,11 and phononic crystals.12 In these arti-
ficial crystals, the contrast of material constants is purposely
made very high between different materials that are repeated
periodically along two or three directions of space. Band
structures are used to summarize the dispersion relations of
propagating Bloch waves. One of the most important fea-
tures of photonic and phononic crystals, however, is the pos-
sible existence of complete band gaps, or frequency ranges
inside which any propagating Bloch waves is forbidden,
whatever the direction of incidence and the polarization.
Complete band gaps are for instance required for defect-
based energy trapping, filtering, or wave guiding.13,14 Since
propagation is inhibited within a frequency band gap, only

evanescent waves are left to explain the exponentially de-
creasing transmission of waves, and traditional band struc-
tures are of no help. Engelen et al.9 have recently measured
the decay of the evanescent field of a composite Bloch wave
in the near field of a photonic crystal waveguide and found
this decay to be multiexponential. In this paper, we discuss
the evanescent Bloch wave solutions of phononic crystals
and the associated complex band structures. Though it has
been remarked that nothing in the Bloch theorem prevents
the Bloch wave vector from assuming complex values,15 the
physical status of the latter is uncertain. The layer multiple-
scattering method, for instance, naturally allows one to re-
trieve complex solutions and has been used with success
within frequency band gaps.16 For photonic crystals, Hsue et
al. have proposed an extended plane-wave expansion �PWE�
method and have discussed some of the properties of the
complex solutions,15 especially in relation with the complete-
ness of the basis they provide for scattering problems. Simi-
larly, evanescent Bloch waves are involved in the diffraction
of acoustic phonons at the interfaces of finite phononic crys-
tal structures. The extended phononic PWE method derived
in this paper allows us to obtain full complex band structures
and to relate evanescent Bloch waves to diffracted waves in
the phononic crystal for all frequencies.

FIG. 1. �a� One-dimensional diffraction grating with pitch a. In
the case depicted, the only propagative diffraction orders are those
with wave vectors k0 and k−1; all other diffraction orders are eva-
nescent. �b� One period of a two-dimensional square-lattice
phononic crystal composed of steel rods in an epoxy matrix. �c�
Representation of the reciprocal wave-vector space with the first
Brillouin zone shown in gray. An arbitrary direction given by point
k0 and unit vector � is shown.
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The traditional way of obtaining band structures is to con-
sider any Bloch wave vector within the first Brillouin zone
and to solve for the frequency of allowed modes as ��k�.
To obtain complex band structures, in contrast, one must
consider a fixed frequency and solve for the wave vector
as k���. We have specifically chosen to extend the PWE
method so that it includes complex wave vectors in the di-
rection of propagation. Notations for the PWE method are
based on Ref. 17. We are looking for waves that propagate
in the phononic crystal in a given arbitrary direction. From
the Bloch-Floquet theorem, all fields are expressed as
products of a periodic function times an exponential term
exp�−ık .r�, where k is the Bloch wave vector. For instance
for the three displacements �i=1,2 ,3�

ui�r� = �
n

uin exp�− ıGnr�exp�− ık . r� , �3�

where the Gn are the reciprocal-lattice vectors. Note that this
is a generalization of Eq. �1� to multiple periodicities. The
PWE method is based on a literal application of the above
formula with the summation limited to a finite number of
harmonics. It can be understood as a Galerkin method with
exponential functions used as the approximating functions.
The basic linear PWE relations are obtained by inserting Eq.
�3� in the equations of motion and read17,18

�ıTi� = Aij� jU , �4�

�2RU = �i�ıTi� , �5�

where summation over repeated indices is implicit �i , j
=1,2 ,3�. The vectors U and Ti gather the Fourier amplitudes
of the generalized displacements and stresses, respectively.
The square matrices Aij and R involve only material con-
stants. The Bloch wave vector explicitly enters the diagonal
matrices �i defined by

��i�mn = �ki + Gi
m��mn. �6�

We write k=k0+k�, where k0 is a constant and � is a unit
vector. Some simple algebra leads from Eqs. �4� and �5� to a
generalized eigenvalue problem for k

� − C2 Id

�2R − B 0
�� U

ıT�
� = k�D 0

C1 Id
�� U

ıT�
� �7�

with the stresses in the propagation direction T�=�iTi, B
=GiAijGj, C1=GiAij� j, C2=�iAijGj, D=�iAij� j, and �Gi�mn
= �k0i+Gi

m��mn. The previous equation yields a direct solution
to the k��� problem, with the eigenvalue k possibly complex.

At this point, we can discuss briefly some properties of
complex Bloch waves. In contrast to the traditional ��k�
problem which assumes that k is real,12 k��� is not restricted
from the start to the first Brillouin zone. Moreover, periodic-
ity has not been especially enforced in the equations; it is
only operating through the Bloch-Floquet decomposition of
Eq. �3�. We observe that only the real part of the wave vector
is restricted to the first Brillouin zone while the imaginary
part is unbounded. Complex Bloch waves then come as
families identified by the value of their imaginary part; an
arbitrary index shift in the Fourier series leads to the same

solution with the real part of the wave vector shifted by an
elementary lattice wave vector.

As an illustration of the properties of complex Bloch
waves, we consider in this paper a two-dimensional square-
lattice phononic crystal made of steel rods in epoxy, as de-
picted in Fig. 1�b�. Despite its simplicity, this structure dis-
plays basic properties common to all phononic crystals and
the analysis in this paper applies equally to materials with
arbitrary anisotropy and to three-dimensional phononic crys-
tals. The rod diameter, d, equals 0.6 a, where a is the pitch
of the hole array. Independent material constants used for
isotropic steel and epoxy are given in Table I. Since the rod
axis is aligned with the x3 axis, there is a complete decou-
pling of waves polarized in plane �with displacements u1 and
u2 only� from pure shear waves �with displacement u3 only�.
This property is exploited in the representation of complex
band structures shown in Fig. 2 for propagation in the �X
direction. These complex band structures are divided in two
adjacent panels. The right panel shows the real part of the
wave vector k��� while the left panel shows its imaginary
part. Real parts are restricted to the first Brillouin zone but
the imaginary parts are arbitrarily displayed up to
	k	a / �2��=3 only �larger values exist�.

All computations have been performed with a total of
11�11 harmonics and the size of the matrices appearing in
Eq. �6� is thus 726�726, owing to the six degrees of free-
dom �three displacements and three stresses�. Complex
bands have been obtained by solving the eigenvalue equation
for a discrete number of frequencies and then sorted by con-
tinuity of k and polarization to obtain the displayed continu-
ous lines. In addition, the ��k� problem with real k, for in-
stance described in Refs. 17 and 19, has been solved for
comparison. The traditional ��k� and the new k��� calcula-
tion give exactly the same result for real k �for the same
number of Fourier harmonics�.

The most striking feature of complex bands is that there
are many bands that are simply not revealed by the tradi-
tional ��k� method. Significantly, the occurrence of a band
gap is not indicated by an absence of bands but by the eva-
nescent character of Bloch waves. A complete band gap is
traditionally defined by the condition that no propagating
�real k� solutions exist. Alternatively, we propose a definition
whereby all Bloch waves must be evanescent within a com-
plete band gap. In practice, this is a more direct and a com-
putationally more efficient definition since it can be checked
at an arbitrary frequency without plotting the full band struc-
ture.

We further observe that there is always a connection be-
tween the maximum of a real band and the minimum of
another real band that is provided by a pair of complex

TABLE I. Independent material constants for steel and
epoxy.

Material
c11

�GPa�
c44

�GPa�
�

�kg /m3�

Steel 287 82 7630

Epoxy 6.875 1.331 1100
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bands. This obviously happens at the symmetry points, � or
X, where folding of bands is expected due to periodicity, but
also inside the first Brillouin zone. Through this mechanism,
the overall number of bands at any frequency is globally
preserved. For instance, let us consider the evolution of the
polarization of evanescent Bloch waves inside a band gap.
Figure 3 displays the displacements for the points labeled A,
B, and C in the complex band structure of Fig. 2�a� for the
out-of-plane polarization. The three points belong to the
same complex band. The modal shapes for points A �band-
gap entrance� and C �band-gap exit� are concentrated inside
the steel rods and inside the epoxy matrix, respectively. In-
side the band gap, at point B, the situation is midway be-
tween these two extremes. Following the modal shape as the
frequency varies from the entrance to the exit of the band
gap, it can be observed that the energy distribution in the unit

cell varies continuously. We conclude that the modal shapes
for evanescent Bloch waves inside a band gap are not sig-
nificantly different from those for propagating Bloch waves.
The modal distribution at point B further shows a moderate
decay on propagation inside the phononic crystal, in accor-
dance with the moderate value of the imaginary part of the
Bloch wave vector at this point �Im�k�
−0.3�2� /a�.

It can be noted that even at very low frequencies �homog-
enization limit�, there exist evanescent waves in addition to
the expected longitudinal and shear bands.20 Following the
evolution of such bands with increasing frequency, it can be
noticed that above some cut-off frequency these initially eva-
nescent waves become propagative. The physical origin of
such evanescent Bloch waves can be understood in analogy
with frustrated diffracted waves in diffraction gratings, as
described by the simple model of Eqs. �1� and �2�. Suppose
propagation along axis x1 in Fig. 1�b�, i.e., normal incidence.
The wave vector k2 can be any reciprocal-lattice component
G2

n=2�n /a, with n as the diffraction order. In the subdiffrac-
tion regime, i.e., for low frequencies, only the n=0 order is
propagative, since otherwise k2 /� is very large and k1 is
constrained by the dispersion relation for the particular band
to be complex. Now, for any value of n, k2, and the real part
of the obtained k1 can be folded to the first Brillouin zone
while the imaginary part of k1 remains unchanged. Folding
of the real parts is simply accompanied by a shift in the
index of uin in Eq. �3�. This argument can be extended to any
direction of propagation and leads us to infer that in a two-
dimensional phononic crystal any complex band can be as-
sociated with some diffraction order identified by a pair of
indices �n1 ,n2�. In a three-dimensional phononic crystal,
three indices would be necessary.

The above property is illustrated by the modal shapes de-
picted in Fig. 4. At the same frequency as point B, there are
four evanescent Bloch bands in the complex band structure
for out-of-plane waves shown in Fig. 2�a�, labeled D, E, F,
and G. The modal distributions at points D and E reveal that

FIG. 2. �Color online� Complex band structure for a square-
lattice two-dimensional phononic crystal of steel rods in epoxy in
the �X direction. Band structures are �a� for pure shear Bloch waves
�polarized along x3� and �b� for in-plane polarized Bloch waves
�polarized in the �x1 ,x2� plane�. k��� solutions are plotted as solid
lines while purely real branches obtained by the traditional ��k�
method are represented by dots for comparison. The color scale for
waves polarized in plane represents the power balance between u1

and u2 in the eigenmode �from dark for pure longitudinal to light for
pure in-plane shear�.

FIG. 3. �Color online� Evolution of the polarization across the
lowest band gap for pure shear waves. The corresponding complex
band structure is depicted in Fig. 2�a�. The modulus of the displace-
ment u3 is displayed. Points A, B, and C are for the entrance, the
center, and the exit of the band gap, respectively.
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there is exactly one oscillation in the transverse direction so
that both evanescent Bloch waves are actually frustrated
�0,1� diffraction orders. We can also observe that above some
frequency, band D gets hybridized with the complex continu-
ation of the band to which point C belongs, that is with the
�0,0� diffraction order. This hybridization phenomenon be-
tween bands with different diffraction orders is actually
present in all the shown complex band structures. The differ-
ence between points D and E lies in their symmetry with
respect to the center of the unit cell; D �respectively, E�
shows a cosine-like �respectively, sine-like� variation. The
modal distributions at points F and G similarly lead us to
associate them with frustrated �0,2� diffraction orders.

The concept of the complex band structure of a phononic
crystal, consisting of propagating and evanescent Bloch

waves, has been introduced. Evanescent Bloch waves have
been shown to arise from two closely related situations. First,
within band gaps, they directly measure the exponential de-
crease upon transmission and they connect propagation
bands, thus conserving the overall number of modes. Second,
they represent higher-order diffracted waves within the crys-
tal that are frustrated at low frequencies. This view has been
supported by displaying the modal distribution of evanescent
Bloch waves and observing their symmetries. Evanescent
diffracted Bloch waves become propagative Bloch waves as
the frequency increases thus populating the higher frequency
bands. In order to obtain these results, we have extended the
classical PWE method for phononic crystals so that it in-
cludes complex wave vectors in the direction of propagation.
The proposed extended PWE method could well become a
basic building block for solving scattering problems21 in
phononic crystals. Indeed, the conversion of waves at the
interfaces of a finite periodic structure implies the production
of evanescent waves in both the incident medium and the
phononic crystal. In addition, it can model frequency-
dependent material losses, through viscoelasticity �e.g., the
use of complex elastic constants�.22 It can further directly
give the equifrequency contours that are required to under-
stand refraction �positive or negative� in phononic crystals
but also the direction-dependent transmission in the band
gaps.23 We finally observe that the properties of evanescent
Bloch waves discussed in this paper should have analogs in
photonic crystals as well and more generally in any periodic
medium supporting the propagation of waves.
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FIG. 4. �Color online� Modal distribution of evanescent Bloch
waves with out-of-plane shear polarization showing oscillatory be-
havior along the x2 axis. The modulus of the displacement u3 is
displayed for points D, E, F, and G of the complex band structure of
Fig. 2�a�.
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