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Abstract

Liquid-crystal active lenses are classical imaging systems in which a liquid-crystal spatial light modulator is placed in a
pupil plane. The modulator controls the phase of the optical wave in the pupil and achieves an arbitrary wavefront shape,
that is limited only by the available modulation depth and resolution. The possibility of using a twisted-nematic
liquid-crystal television in the pupil plane is investigated both experimentally and theoretically. The precise evaluation of the
modulation characteristics is first discussed. Experimental results obtained both with monochromatic and polychromatic light
illustrate the different sampling, quantization and chromatism effects discussed theoretically. Useful models for the
computation of the point spread function and the modulation transfer function of a generic pixelated liquid-crystal active
imaging system are presented for both in-focus and out-of-focus systems, and their numerical implementation is discussed.
q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

It is well known that the imaging characteristics of an optical system can be adequately described by the optical transfer
Ž . Ž .function OTF in a pupil plane, or equivalently by the point spread function PSF which is simply related to the Fourier

w xtransform of the OTF 1 . In a classical optical imaging system using fixed elements like lenses, prisms and mirrors, the OTF
and the PSF are fixed functions. For some applications it would be interesting to be able to modify at will the OTF, at least

Ž .in the vicinity of an operating point. One interesting solution is to add a phase spatial light modulator SLM in the pupil
Ž . w xplane of the optical imaging system Fig. 1 . Takaki et al. 2–4 have proposed and demonstrated experimentally such an

Ž .active lens system. They used a phase-only liquid-crystal SLM LC-SLM attached to a thin lens, and demonstrated several
different programmable functions, including image shifting and focus control. This concept is also closely related to

w xprogrammable diffractive functions written onto SLMs 5–9,2–4 . If a constant phase pattern is written onto the SLM, the
image forming characteristics will not be altered. However if the phase pattern represents a prism, the image will be shifted

w xtransversally which is equivalent to beam steering 10,11 , whereas if it represents a thin lens the image will be translated
w xlongitudinally, or defocused 12–16 . Other image forming modifications controlled by certain phase patterns can be

imagined as well. It can be noted that active imaging systems are also closely connected to applications such as aberration
w xcompensation and adaptive optics using liquid-crystals 17–20 .

There exist several possibilities for the phase SLM, among which the liquid-crystal technology is the most widespread at
the moment. Pure-phase modulation can be obtained in the optical birefringence mode using nematic liquid-crystals, which

w xassume that the molecular directors are parallel throughout the liquid-crystal cell depth 21 . However, commercial
Ž .liquid-crystal televisions LCTVs that are designed for display applications usually employ twisted-nematic liquid-crystals,

but when employed as LC-SLM can hopefully provide for an approximate pure-phase modulation under certain experimental
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Fig. 1. Principle of the liquid-crystal active lens.

w xarrangements 22,8,9 . It is the purpose of this paper to study both experimentally and theoretically the use of a
twisted-nematic LC-SLM in an active lens.

Section 2 presents a simplified but generic model of a liquid-crystal active lens, including the important issues of
sampling and quantization. The material in this section is a collection of different results from the field of diffractive optics,
but is presented here in the context of active lenses. Section 3 describes our procedure for precisely determining the
amplitude and phase modulation of a twisted-nematic LCTV. The approach combines two previously proposed methods and
couples them with a robust estimation algorithm. The problem of the determination of the amplitude and phase modulation
of LC-SLMs has been the subject of a quite large number of papers in the last years, a situation that outlines the practical
importance of these devices for optical information processing and also the importance of the correct determination of their
modulation capabilities. Section 4 reports on experiments demonstrating image shifting and focus control for monochromatic
illumination, and compares these results with the theoretical predictions regarding sampling and quantization. Chromatism is
considered in Section 5, where white-light illumination is used, and the influence of the spectral bandwidth is discussed and

Ž .illustrated experimentally. In Section 6, useful formulas are provided for computing the point spread function PSF and the
Ž .modulation transfer function MTF for both in-focus and out-of-focus systems. Numerical simulations are compared with

the experimental results.

2. Background

2.1. Sampling considerations

A generic liquid-crystal active imaging system is sketched in Fig. 1. The imaging system is represented by an equivalent
thin lens, and the liquid-crystal spatial light modulator is assumed to be placed in the plane of the thin lens, defining the
pupil plane. Obviously, a practical imaging system includes several lenses, that are moreover not necessarily thin, and the
SLM cannot be physically present in exactly the same plane as a lens. However, if it can be assumed that the imaging
system is perfectly corrected from aberrations for both the image and the intermediate pupil plane in which the SLM is

w xactually placed, then within the Fresnel-Kirchoff approximation of diffraction 23 used here, the general case is essentially
equivalent to the single thin lens case discussed here.

w xIn the case of an out of focus optical system, the following convention is used following Goodman 1 : the image focus
X Ž . Xdistance is measured in units of z by 1ye z , e.g. es0.3 for 30% defocus, or esy0.3 for y30% defocus. The

w xcoherent point spread function takes the form of a Fresnel transform 1

ip s2e sxX

XP x s exp exp y2 ip f s d s . 1Ž . Ž . Ž .H X Xž /ž /l z 1ye l z 1yeŽ . Ž .
Ž .For a perfectly focused imaging system es0 the coherent point spread function simplifies to a Fourier transform of the

pupil function, as is well known. Throughout the paper one-dimension notations will be used, since generalization to
two-dimensions is straightforward.

A common feature of most commercial liquid-crystal SLMs is that they are pixelated devices that usually follow the
addressing specifications of television or computer displays. According to the VGA format for instance, images of 640 =

480 pixels can be displayed at a 60 Hz frame rate from a computer memory, and the technology is evolving rapidly towards
larger pixel counts, say more than 1000 = 1000 pixels. The pixelation has two important consequences. The first is that the



( )V. LauderOptics Communications 153 1998 134–152136

w xavailable resolution is ultimately given by the pixel count 3 . The second is that diffraction effects occur because of the
physical pixels, i.e. the point spread function depends on the actual size and shape of the pixels.

Fig. 2 shows the basic structure of a pixelated LC-SLM, e.g. an electrically addressed LCTV. Pixels are represented by
Ž .an aperture function p s identical for all pixels but for a translation. For instance the pixels are often rectangular, in which

case

p s s rect sra , 2Ž . Ž . Ž .
where a is the width of the pixel. The pixels are centered at points mb, where b is the pixel pitch, and pixel number m has

Ž .complex amplitude transmission t m . If there are N pixels, the width of the SLM is Nb. The SLM pupil function can be
written as

f s s t m p symb , 3Ž . Ž . Ž . Ž .Ý
m

where the summation is over all SLM pixels. In fact in the previous equation only one term of the summation at most is
Ž .non-null for a given point s of the pupil, i.e. the pixels are non-overlapping. Eq. 3 is fundamental for the problem

Ž .considered, since it accounts for the transition from the discrete representation t m of the SLM image, as stored for instance
Ž .in a computer memory, to its continuous representation f s , taking into account explicitly sampling effects.

Upon defining the Fourier transform by

f̃ u s exp y2 ip su f s d s , 4Ž . Ž . Ž . Ž .H
and the inverse Fourier transform by

˜f s s exp 2 ip su f u du , 5Ž . Ž . Ž . Ž .H
the incoherent PSF in the case of perfect focus can be written as

X 2x
X 2 ˜< <P x s f , 6Ž . Ž .Xž /l z

Ž . X Xwhere using Eq. 3 and the notation usx rl z ,

f̃ u s t m exp y2 ip mbu p u . 7Ž . Ž . Ž . Ž . Ž .˜Ý
m

The latter expression allows to separate the influences of the geometrical shape of the pixels from the SLM transmission

Ž .Fig. 2. Notations for the spatial light modulator SLM .



( )V. LauderOptics Communications 153 1998 134–152 137

Ž . Ž .t m . Obviously, since the pixels are generally very small, the extension of the function p u is very broad. In the particular˜
case of rectangular pixels

p u sa sinc au . 8Ž . Ž . Ž .˜
Ž . Ž .The first term in Eq. 7 is a continuous version of the discrete Fourier transform of the discrete image t m

t̃ u s t m exp y2 ip mbu . 9Ž . Ž . Ž . Ž .Ý
m

Ž .Indeed, for the sampling points n defined by busnrN and for these points only, the discrete Fourier transform of t m is
obtained:

mn
t̂ n s t m exp y2 ip . 10Ž . Ž . Ž .Ý ž /Nm

Ž .˜The function t u is periodic, with a period 1rb. Since only on-axis diffractive control of the PSF is required, this means
that energy is lost in higher diffraction orders. The 0 order extends over y1r2 to q1r2 in the variable bu, and has exactly

Ž .N resolution cells, i.e. there are as many resolution cells in the PSF as SLM pixels in the pupil plane. The function p u˜
merely acts as an envelop limiting the energy lost in higher diffraction orders. In the particular case of a uniform image

Ž Ž . .written onto the SLM t m s1 ,

sin p NbuŽ .
t̃ u s , 11Ž . Ž .

sin p buŽ .
Ž .˜The width at half maximum of the function t u is then approximately Dus1rNb, and is consistent with the fact that there

are N resolution cells in the PSF.

2.2. Image shifting and focus control

The problem of image shifting, or beam steering, is to shift the point spread function from the optical axis to an arbitrary
location xX in the image plane. This can be done without energy loss if the following pure-phase image can be written onto0

the SLM

t m sexp 2 ip mbÕ , 12Ž . Ž . Ž .
X X Ž .where Õsx rl z , for using Eq. 90

sin p Nb uyÕŽ .Ž .
t̃ u s , 13Ž . Ž .

sin p b uyÕŽ .Ž .
Ž . Xi.e. the unperturbed point spread function of Eq. 11 is obtained, but shifted to the desired location x . The maximal0

X Ž .resolution available with the SLM, i.e. l z rNb is conserved in the shift. The solution of Eq. 12 is the optimal solution for
Ž .˜image shifting, before a particular actual SLM coding domain is considered. It is worthwhile noting that the function t u is

periodic in Õ, with a period 1rb, i.e. the image shifting is identical in every diffraction order and the maximum possible shift
is limited by the central diffraction order extension. There is no limitation on the shift Õ inside the central diffraction order,
and moreover the shift is continuous and not restricted to discrete values, even though the SLM pixel pixel number is finite.

Consider a numerical example with the imaging system parameters given in Table 1. The numerical figures given there
are those of the experiments reported below. The distance between adjacent diffraction orders created by the pixelated
structure of the SLM is l zXrbs4.75 mm in both X and Y directions. These dimensions define the useful portion of the
image formed on a 2D CCD array for instance. The resolution inside the central diffraction order is exactly 640=480
points, or 7.4 mm and 9.9 mm in the X and Y directions respectively. Fig. 3 shows two examples of phase images for shifts

Table 1
Dimensions for the pixelated twisted-nematic liquid-crystal active lens

l 632.8 nm
Xz 300 mm

N =N 640=480x y

b sb 40 mmx y

dimensions 2.56 cm = 1.92 cm
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Ž .Fig. 3. Examples of simulated 640=480 SLM images continuous pure-phase modulation for image shifting. Left: 20 mm shift; right: 100
mm shift.

of 20 mm and 100 mm respectively. Fig. 4 shows the numerical simulation of the PSF and of the MTF in the case of 100
mm shift. Note that since the pupil aperture is rectangular, the MTF is trapezoidal. The PSF and MTF were computed using
the formulas given in Section 6.

Ž .In order to change the longitudinal position of the image plane by a given amount, it is practical to start from Eq. 1
Ž .giving the point spread function for a defocus in the Fresnel-Kirchoff approximation of diffraction. If f s s1, this

Ž . X Xexpression is that of the amplitude observed at distance 1ye z instead of z . Of course if the object is still at distance z, a
Ž . Xblurred image will be observed. To put the image back into focus at the distance 1ye z , the SLM image should be

ipe
2f s sexp y s . 14Ž . Ž .Xž /1ye l zŽ .

This is the optimal solution for focus control, but it requires a continuous control of the phase in the pupil plane, i.e. a
w xcontinuous Fresnel lens. The next classical step is to sample the Fresnel lens at the SLM pixel rate to obtain 16

ipe 2t m sexp y mb . 15Ž . Ž . Ž .Xž /1ye l zŽ .
Ž . Ž .It should be noted however that the function f s given by Eq. 14 never complies with the Nyquist criterion for any
Ž .sampling rate, so that the rough sampling of Eq. 15 always introduces aliasing. Figs. 5 and 6 show numerical simulations

of PSFs and MTFs for the parameters of the optical system given in Table 1, together with the corresponding SLM images.
< <If e becomes very large, then instead of the desired central lens many ‘‘secondary lenses’’ appear at predictable locations

w xand with predictable focal lengths and energies 15 . A rough estimation of the range of defocus that is achievable with
w xlimited aliasing can be obtained simply 3 . Combining image transverse and longitudinal shift can be achieved easily using

the following SLM image:

2 ip ipe 2Xt m sexp mbx exp y mb 16Ž . Ž . Ž .X X0ž / ž /1ye l z 1ye l zŽ . Ž .

2.3. Quantization ghosts

As presented in Section 2.2, continuous pure-phase images are necessary in order to implement exactly the image shifting
and focus control functions. However, only a discrete number of grey levels are usually available with a given display

Ž . Ž .Fig. 4. Numerical simulation of the point spread function PSF and modulation transfer function MTF for a 100 mm shift.
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Ž .Fig. 5. Examples of simulated 640=480 SLM images continuous pure-phase modulation for focus control, and corresponding PSFs. First
column: 5% defocus; second column: y5% defocus.

Fig. 6. Measured amplitude and phase modulation for the twisted-nematic LC-SLM used in the experiments for a 632.8 nm wavelength.
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device. These grey levels yield discrete phase and amplitude points in the modulation characteristics of the device, and these
points have to be used to encode the desired continuous phase image. For instance, these modulation points are shown in

w xFig. 6 for the particular LC-SLM used in this work, and their experimental determination is reported in Section 3. Dallas 24
has given an elegant answer to the quantization problem, and this section summarizes his results in the active lens context.

w xClosely related works have reported on the effects of phase quantization of Fresnel lenses encoded in pixelated SLMs 25
w xand on the effects of non-linearities in the SLM characteristics on the performance of kinoforms 26 .

Ž .Let w m be the sampled phase image that has to be written onto the SLM for every pixel m. The ideal transmission of
the device or pupil function should then be

t m sexp iw m . 17Ž . Ž . Ž .Ž .

Only p quantization levels are available. Now every phase value has to be replaced by one of these p quantized complex
w xvalues. The usual way to do this is to use Euclidean projection P w , i.e. choose the quantization point that is closest in

distance. This Euclidean projection operator is a 2p periodic function of w, for which a Fourier series expansion can be
considered

`

w xP exp iw s G exp ikw , 18Ž . Ž . Ž .Ý k
ksy`

where the coefficients G are defined ask

1 2p w xG s dw P exp iw exp yikw . 19Ž . Ž . Ž .Hk 2p 0

The coefficients G once they have been computed allow for the quantization effects onto the PSF to be evaluated. Indeedk

` `

kw xP t m s G exp ikw m s G t m . 20Ž . Ž . Ž . Ž .Ž .Ý Ýk k
ksy` ksy`

Ž .In case of perfect focus the PSF is proportional to the squared modulus of the Fourier transform FT of the pupil function.
Ž .From the linearity of the FT and of Eq. 18 it comes

`

kw xFT P t s G FT t . 21Ž . Ž .Ž . Ý k
ksy`

Making use of the convolution theorem, it holds moreover that

FT t u ) PPP ) FT t u if k)0,Ž .Ž . Ž .Ž .°
k timesk ~FT t u s 22Ž .Ž . Ž .

FT t yu )...) FT t yu if k-0,Ž .Ž . Ž .Ž .¢
k times

where ) denotes the convolution of two functions. The final result for the effect of quantization is that the coherent PSF
expresses as a weighted combination of order k auto-convolutions of the coherent PSF in the unquantized case. The physical

Ž .meaning of order k auto-convolutions of the coherent PSF is the following. Order 1 with weight G represents the desired1
Ž . w Ž .x Ž . Ž .PSF. Indeed, in the case of pure-phase coding no quantization , P exp iw sexp iw and from Eq. 19 it is seen that

Ž .G s1 and G s0 for all k/1. Order 0 with weight G represents the undiffracted light, and the associated coherent PSF1 k 0
Ž 0.FT t is the one that would be obtained if the SLM were not present. Orders larger than 2 and smaller than y1 represent

ghosts similar to the ghosts that arise classically in ruled gratings when periodic errors occur.
In order to be more specific, the ghosts that appear with image shifting and focus control are considered now. The

Ž .sampled phase function that is necessary to shift the PSF by a given amount is given by Eq. 12 , where Õ is the spatial
frequency yielding the shift l zX

Õ in the detection plane. The k th power of this phase image is

t k m sexp 2 ip mbkÕ , 23Ž . Ž . Ž .

and is obviously the phase image yielding a shift of kÕ. Thus, the quantization of a ‘‘prism image’’ creates an infinite
< < 2number of ghosts, each with intensity G , repeating the PSF along the line defined by the desired shift Õ. The effect on thek

Žobserved image will that of a replication of the original image see Sections 4 and 5 for experimental examples of this
. < < 2effect . Of course, these ghosts will be appreciable and disturbing only if their intensities G cannot be neglected. In anyk

< < 2case, it is preferable to have G as close to unity as possible.1
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Table 2
< < 2G coefficients for the twisted-nematic LC-SLM usedk

k

y3 y2 y1 0 1 2 3 4
2< <G 0.0085 0.0105 0.0091 0.0004 0.6228 0.0067 0.0007 0.0015k

In a similar way, the sampled phase image that is necessary to change the plane of focus from the distance zX to the
Ž . X Ž .distance 1ye z is given by Eq. 15 . The k th power of this phase image is

ip ke m2b2
kt m sexp y , 24Ž . Ž .Xž /1ye l zŽ .

and is the sampled phase image yielding focus change to the distance

y1ke
Xz 1q . 25Ž .ž /1ye

Unlike the image shift case, ghosts appear at different focus planes and are consequently less disturbing since they are
non-overlapping. Furthermore the ghost focus planes are not equidistant.

Table 2 gives the intensities of the ghosts for the particular twisted-nematic LC-SLM we used. It should be noted that the
< < 2G value determines the maximum diffraction efficiency available with a given set of quantization points for implement-1

ing a pure-phase SLM image that originally had 100% diffraction efficiency, as is the case for instance for image shifting
and focus control. In the case of the twisted-nematic LC-SLM used, the diffraction efficiency is limited to 62%, but there is
almost no energy lost in the undesired ghosts, i.e. the residual amplitude modulation is mostly responsible for the decrease in
diffraction efficiency.

3. Twisted-nematic LC-SLM modulation measurement

The principle of amplitude and phase modulation with a twisted-nematic LC-SLM has been discussed in many papers
w xrecently 8,9,22,27–30 and will not be repeated here. This section rather reports on the measurement method used with the

LC-SLM used. The amplitude and phase modulation with nematic LC-SLMs depends mostly on the voltages applied to the
pixels, or equivalently on the grey level of the image written onto the SLM. Additional parameters are the angular positions
of the two polarizers in the case of twisted-nematic LC-SLMs. Practically, these angular positions can be set either ad hoc in
order to obtain the desired amplitude andror phase modulation, although this is arbitrary and cumbersome, or they can be
determined from the Jones matrix of the SLM. The latter solution ensures that the best possible configuration can be found,
and this is the one that was chosen for the particular commercial twisted-nematic LC-SLM used. Note that the configuration
with the least remaining amplitude modulation, or phase-mostly modulation was looked for.

Even though the Jones matrix for a twisted-nematic LC cell cannot be obtained analytically in general, it can be rather
w xeasily obtained experimentally, as was shown by Yamauchi et al. 31 , using combinations of amplitude and phase

modulation measurements for several angular configurations of the polarizers. The Jones matrix assumes the following form,

fy ig yhy ij
JsA exp yib , 26Ž . Ž .ž /hy ij fq ig

where A is the amplitude attenuation of the cell, b is a phase retardation, and the real parameters f , g,h and j are related by
the normalization relation

f 2qg 2qh2 q j2 s1 . 27Ž .
w xThe expressions for the different parameters are given in Ref. 31 when no voltage is applied to the cell. When a voltage is

applied, the expression of the Jones matrix is deeply modified, but as is shown in Appendix A based only on geometrical
Ž .arguments, the Jones matrix retains the form of Eq. 26 where the real coefficients f , g,h and j are arbitrary but for the

Ž .normalization relation of Eq. 27 . Note that the Jones matrix depends on the grey level.
The measurement of the amplitude modulation is rather easy and precise, and can be obtained for instance by writing a

w xuniform grey level image onto the SLM and measuring the transmitted intensity 28,29 . The phase determination is in
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essence interferometric, and many different methods have been proposed in the literature. One simple and reliable but very
w xslow method involves a Mach-Zehnder interferometer 27 , used to record the displacement of equal inclination fringes

w x w x w xbetween two grey levels. More recent methods employ a Ronchi grating 30 , a wedge shear plate 8 or Young pinholes 9 .
w xIn one variant 32 , a Ronchi grating is directly written onto the SLM which allows for a very simple and fast

implementation. This is the solution that was chosen and that is described in the following.
w xThe method proposed by Zhang et al. 32 in order to estimate the phase associated to each grey level is to write a

Ž .‘‘Ronchi grating’’ image onto the SLM. This image is made of two alternating lines or columns with different grey levels.
As the spatial frequency of such a grating is exactly 1r2 with respect to the pixel pitch, or equivalently the periodicity is two
pixels, an incident plane wave is diffracted only in integer diffraction orders and half-integer diffraction orders. A
combination of the intensities in the 0 and 1r2 diffraction orders yields the phase difference between the two grey levels.
When compared to the classical interference fringe analysis method, the Zhang method is much faster, since the treatment of
a complete interferogram for a single phase measurement is avoided. However, two major concerns have to be taken into
account. First the phase estimation precision depends directly on the energy balance between the 1r2 and 0 diffraction
orders; if one of these is too small compared to the other the phase can be indeterminate depending on the noise level. To

2 Ž .overcome this problem, a x Chi square estimation method was used as described in the following. Second, the LC-SLM
must be able to display exactly a high spatial frequency image. With the VGA type LC-SLM used, it was found that the
phase measurement was only valid when the grating lines were along the scan lines of the device.

Using the amplitude and phase measurement principles just described, the Jones matrix of the LC-SLM, as given by the
Ž .six real parameters A, b , f , g, h and j of Eq. 26 , was determined along the following lines. Amplitude and phase

measurements were performed for several polarizer angular configurations. To correct for the relative spread of the
measurements and obtain a robust estimation scheme, a Chi-square type estimation algorithm was chosen. Specifically the
following criterion was minimized over the parameters for each grey level using a gradient algorithm:

2
Õ ymŽ .i i2x A ,b , f , g ,h , j s , 28Ž . Ž .Ý

Õii

where Õ and m denote respectively the ith measurement and the theoretical value for this ith measurement given thei i

parameters. The output of such an optimization algorithm is an estimate for the Jones matrix that is accepted only if the final
value of the Chi-square criterion is sufficiently low. The same approach but with a least-squares criterion led to unstable
results.

From the result of the estimation of the Jones matrix, the best polarizer combination was selected, and the amplitude and
phase measurements were conducted again for this particular configuration. The results are shown in Fig. 6. As can be seen,
the phase modulation depth does not reach 2p , and spurious amplitude variations are still observable. It will be seen
however in Sections 4 and 5 that this imperfect phase-mostly modulation allows for good performance of an active lens
system.

Fig. 7. Schematic of the experimental set-up of the active lens. The curves are for the spectral transmission of the color filters used with the
white-light source. CF: color filters; RD: rotating diffuser; P: polarizer; A: analyzer; AD1, AD2: achromatic doublets.
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4. Experiments in monochromatic light

The experimental set-up used is depicted in Fig. 7. The schematic is divided into two blocks, one for the illumination of
Ž .the object and the other for the active lens itself. The illumination can be either a He-Ne laser ls632.8 nm or a halogen

white-light source. The white-light source can be spectrally filtered with color filters to study chromatism as described in the
next section. The transmission spectra of the color filters are shown in Fig. 7. The object in the experiments reported is a
resolution target. It is illuminated indirectly by a rotating diffuser which is a circular piece of ground glass driven by a
rotating engine. The rotating diffuser is used to wash out the speckle when laser illumination is used. The imaging system is
made of two achromatic doublets corrected for spherical aberration with respectively focal lengths of 200 mm and 300 mm.
The object is in the object focal plane of the first doublet and the CCD camera is in the image focal plane of the second
doublet. The pixel pitch of the CCD sensor is 14=14 mm2. The SLM is placed somewhere in between the two doublets and
defines the pupil plane of the imaging system. The exact position of the SLM is irrelevant in first approximation. The images

Fig. 8. Horizontal image shifting. The left column shows the phase images written onto the SLM, and the right column shows the
experimental images obtained. From top to bottom, 20 mm shift, 100 mm shift, 400 mm shift and 1000 mm shift.
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Žshown in Figs. 8–11 and 13 were acquired using a frame grabber with 640=480 pixels and 8 bits of resolution VGA
.format .

Figs. 8 and 9 show examples of horizontal and vertical image shifting respectively. The phase images written onto the
SLM are shown in the left column and the shifted images obtained experimentally are shown in the right column. The higher
order diffraction orders that are due to the pixelated nature of the SLM are clearly visible and appear with an energy less
than the useful central diffraction order, as expected. In addition to the higher order diffraction orders, there appear ghosts
arising from a complicated combination of aliasing and quantization. Such a ghost can be clearly seen in Fig. 9, last line,
with the resolution target replicated just above its shifted image. Furthermore, it is seen that the quality of the shifted images
degrades as the amount of shift requested increases, or equivalently as the spatial frequency of the ‘‘prisms’’ written onto the
SLM increases. Significantly, the quality of image shifting is much higher vertically than horizontally, even though the

Ž . Ž .number of pixels is higher in the horizontal direction 680 pixels than in the vertical direction 480 pixels . This is a direct
consequence of the addressing scheme, i.e. VGA signals, used for displaying the phase image onto the SLM. Similar

Fig. 9. Vertical image shifting. The left column shows the phase images written onto the SLM, and the right column shows the experimental
images obtained. From top to bottom, 20 mm shift, 100 mm shift, 400 mm shift and 1000 mm shift.
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Fig. 10. Positive focus control. The left column shows the phase images written onto the SLM, and the right column shows the experimental
images obtained. From top to bottom, 2%, 5%, 10% and 20% defocus.

experiments with a SLM controlled by video CCIR signals showed even worse results. This limitation is purely
technological, and would be relieved if a real pixel by pixel addressing scheme were used. Anyway, it is encouraging to see
that a phase-mostly modulation limited to 3pr2 approximately is enough to obtain good quality results. With a pure-phase
SLM, e.g. using parallel aligned nematic liquid-crystals and the same number of pixels, the results would probably be even
better. Interestingly, it can be seen that small shifts can be achieved with very few resolution losses and with almost all the
energy diffracted correctly at the shifted location, i.e. the energy of the ghosts is small as predicted.

Ž w x.Similar experiments on image shifting were reported by Takaki et al. Fig. 11 of Ref. 3 using a pure-phase SLM with
236=105 pixels and white-light illumination. Their results show a more rapid degradation of the image resolution with the
requested image shift. This can be attributed to the wide wavelength range of their illumination, although the chromatism
results of next section demonstrate that this effect is not so important, but more significantly this indicates that the number of
pixels in the SLM is the most important factor determining the quality of the final result, as expected from a theoretical
analysis of sampling effects.
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Fig. 11. Negative focus control. The left column shows the phase images written onto the SLM, and the right column shows the
experimental images obtained. From top to bottom, y2%, y5%, y10% and y20% defocus.

Figs. 10 and 11 show examples of positive and negative focus control respectively. The experimental images were
acquired after translation of the CCD camera to obtain the best focus plane. As in the case of image shifting, higher
diffraction orders are clearly visible, but the effect of increasing spatial frequencies of the ‘‘lenses’’ written onto the SLM or
equivalently increasing defocus is quite different. The resolution of the defocused image seems almost unaltered for large
defocus, but its energy decreases. This can be understood by an energy spreading due to the multiple lenses that appear in a

w xsampled Fresnel lens when a small focal length is requested 15 , as can be seen in Figs. 8 and 9. It can also be seen that the
image size increases with negative defocus and decreases with positive defocus, as it should from geometrical optics. The
amount of defocus that it is possible to generate with negligible aliasing is limited to the y10% to 8% range with the set-up
used. As in the case of image shifting, though they are less visible, there appear additional ghosts arising from a complicated
combination of aliasing and quantization. Such a ghost can be clearly seen in Fig. 10, last line, with the resolution target
replicated just above its shifted image.
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5. Chromatism

Up to now, only monochromatic illumination has been considered. In this section, the practically interesting case of
temporally incoherent illumination, e.g. as obtained from a white-light source, is considered. This situation can be described
mathematically as a continuous wavelength spectrum centered around l , such that all the PSFs created by individual0

wavelengths add incoherently, i.e. in intensity. Three different chromatism effects can be identified, refractive index
chromatism, diffraction chromatism and quantization chromatism. The first is characterized by the wavelength dependence
of the refractive index of the liquid-crystal, and is the usual dispersion. The second is associated to diffraction, namely
because the PSF depends explicitly on the wavelength. The third is created by quantization effects, and more specifically
results from the definition modulo-2p of the phase image written onto the SLM.

The first kind of chromatism, refractive index chromatism, is a very classical subject in optical system design, and will
not be discussed in this paper, so that the ordinary and extraordinary refractive indices n and n are considered at leasto e

approximately constant in the following. The second kind of chromatism, diffraction chromatism, has indeed no effect on the
function achieved by an active lens, since the physical effect used is mostly a modulation of the index of refraction in the
depth of the liquid crystal. This results from the fact that the relevant quantity is the variation of optical path, and not the
phase modulation, which is the previous quantity multiplied by 2prl, although this distinction was not necessary in the
monochromatic case. This is exactly the situation with usual bulk glass prisms or lenses.

Fig. 12a illustrates the problem arising in polychromatic light from the quantization modulo-2p of a pure-phase image.
Indeed, if the image is reset to 0 when 2p is reached for wavelength l , the phase reached before reset will be higher0

Ž .Fig. 12. Quantization chromatism, that is due to the modulo-2p definition of phase: a deformation of the phase encoded as a function of
Ž . < < 2the voltage applied to the LC cell; b intensity G of the k th ghost as a function of wavelength.k
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Fig. 13. Examples of images obtained using white-light illumination showing the effect of chromatism. The white-light source is a halogen
lamp spectrally filtered by color filters whose spectra are shown in Fig. 7. The SLM phase image used is shown in Fig. 9, third row, and
produces a 400 mm vertical shift.

Ž . Ž .lower for a wavelength smaller than larger than l . If V denotes the voltage applied to reach 2p phase modulation at0 max

l and assuming the modulation is mostly that of the index of refraction,0

Dn V eŽ .max
Dw V s2ps2p , 29Ž .Ž .max

l0

and then for any other wavelength l

Dn V e lŽ .max 0
Dw V s2p s2p . 30Ž .Ž .max

l l

Now the description of quantization effects of Section 2.3 can be applied with the Euclidean projection given by

l0w xP exp iw sexp i w . 31Ž . Ž .ž /l

From this expression, the G coefficients are easily calculated to bek

l sin p l rlŽ .0 0
G sexp ip . 32Ž .k ž /l p l rlykŽ .0
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< < 2Fig. 12b shows how the intensity G of the k th ghost evolves as a function of wavelength. When lsl only the firstk 0

ghost is present, i.e. the desired phase function is perfectly encoded. In the vicinity of l , the intensities of the other ghosts0

increase gradually, and imply a corresponding decrease in the first ghost intensity, but only the ks0 ghost is truly
significant if the relative bandwidth does not exceed a reasonable value, say 20%.

ŽFig. 13 shows experimental examples of a 400 mm vertical image shifting for the unfiltered spectrum extending roughly
.from 350 nm to 1 mm, with more energy in the red than in the blue , and the spectrally filtered spectra. It can be observed

that the ghosts appear very faintly, if they can only be detected, except for the blue light illumination where the ks0 ghost
is clearly visible. It should be stressed that the blue filtered spectrum centered somewhere around 400 nm is very far from
the optimization l s632.8 nm wavelength, and this observation confirms that quantization chromatism is not too much0

disturbing over quite extended spectra. With unfiltered white light source, the ks0 ghost is not visible whereas it is using
the blue filter. Indeed it is present with unfiltered white light source, but relatively less important since the lamp spectrum is
mainly red. It can be observed also that the resolution of the image seems quite diminished compared to that of the
corresponding monochromatic image of Fig. 9, third row. This can be explained from the residual chromatism of the
doublets used, the refractive index chromatism of the liquid-crystal that was not taken into account, and the fact that the
Jones matrix for a twisted-nematic LC cell depends in a complicated way on the wavelength, so that diffraction chromatism
may still be present. Specifically, the image obtained with the yellow filter seems more blurred than that obtained with the
red or green filters. This is due to the spectral bandpass of the yellow filter which is wider than that of the other filters. One
additional and interesting effect is that the higher diffraction orders that were present in the experimental examples of Figs. 8
to 11 vanish in the polychromatic case. This occurs because these diffraction orders are created by diffraction by the pixel
matrix of the SLM so that their angular positions are highly chromatic, whereas the position of the central diffraction order is
not. These higher diffraction orders are consequently still present but highly spread spatially so that they are not detected.

6. Numerical evaluation of the PSF and the MTF

6.1. Point spread function

Ž Ž ..The numerical evaluation of the PSF in the perfect focus case Eq. 7 has the following characteristics. The envelop
Ž .term p u is generally easily computed, and has an especially simple form in the case of rectangular pixels. The discrete˜

Ž . Ž .ˆFourier transform t n of the SLM image is best computed using a FFT algorithm, that requires approximately 2 N log N
operations for obtaining simultaneously the N equidistant sampling points in the central order of diffraction. If the PSF is

Ž .needed in between the previous sampling points, no fast exact algorithm exists, and the summation of Eq. 7 requires N
operations per desired point. This computation is necessary to reveal details of the PSF that are finer than the sampling grid.

In the case of defocus, there is no fast algorithm like the FFT for computing the PSF. An approximate method is
Ž .sometimes found in the literature that replaces the continuous Gaussian term in Eq. 11 by its sampled expression. Then the

PSF is simply given by the discrete Fourier transform of the product of the SLM pupil function with the sampled Gaussian
term. This method cannot be recommended since a imaginary Gaussian does not fulfill Shannon’s condition for any
sampling rate, and it gives correct results only for very small defocuses. However the computation time of the Fresnel

Ž . w x Ž . Ž .integral in Eq. 11 can be shortened without need for an approximation 33 . Using Eqs. 15 and 16 we obtain

ip e s2 y2 sxXŽ .
XP x sB t m d s p symb exp , 33Ž . Ž . Ž . Ž .HÝ Xž /l z 1yeŽ .m

Ž X .where B is a normalization constant. By convention, the PSF is normalized on the axis x s0 , for a uniform SLM image
Ž Ž . . Ž . y1 < Ž . <t m s1 , and for perfect focus es0 . Then B sN p 0 sNa, i.e. the inverse of the useful surface of the SLM.˜
Useful formulas are indicated now in the case of rectangular pixels for practical convenience. Calculations are cumbersome,

Ž .but merely consist in variable exchanges. In the case of perfect focus es0

1
XP x s sinc au t m exp y2 ip mbu , 34Ž . Ž . Ž . Ž . Ž .Ý

N m

X X Ž .with usx rl z . In the case of over-focus e)0

1
XP x s t m C a ,b , 35Ž . Ž . Ž . Ž .Ý

N m
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Ž .and in the case of under-focus e-0

1
X

)P x s t m C a ,b , 36Ž . Ž . Ž . Ž .Ý
N m

with

a2 e
as , 37Ž .X

l z 1ye

bsmbrayxXr e a , 38Ž . Ž .
1

C a ,b s c a bq1r2 yc a by1r2 , 39Ž . Ž Ž . Ž . Ž .Ž .Ž .
a

g
2c g s exp ip t d t . 40Ž . Ž . Ž .H

0

Ž . w xc g is the Fresnel integral, a special function for which series and asymptotic expansion are known 34 . It is then
Ž .convenient to tabulate the function C a ,b or alternatively the Fresnel integral to compute the PSF in the defocus case. The

computation complexity is then N operations per desired point. For other pixel shapes, it is possible to obtain similar
Ž .expressions involving the Fresnel transform of the pixel function appearing in Eq. 33 . Approximation methods for the fast

w xevaluation of Fresnel type diffraction integrals can be found in Ref. 35 .

6.2. Modulation transfer function

Ž . w xThe modulation transfer function MTF is given in the cases of in-focus and out-of-focus by 1

X X X X X
)d s f s f sqs exp 2 ipe sPs rl z 1yeŽ . Ž . Ž .Ž .H

MTF s s , 41Ž . Ž .
< <w xfm f 0Ž .

w xŽ . )Ž X. Ž X. X Ž .where the autocorrelation of the pupil function is defined by fm f s sHf s f sqs d s . Eq. 41 simplifies to the
Ž . <w xŽ . < <w xŽ . <well-known form MTF s s fm f s r fm f 0 if es0. In this case

w x ) w xfm f s s t k t m pmp sq kym b . 42Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý
mk

w x w x w xThe support of pmp is contained in ya,a , itself included in yb,b . Then

yaFsq kym bFa . 43Ž . Ž .
Ž .These conditions imply that at most 2 points k exist for a given point m and 4 points in the 2D case . Then there are at

Ž .most 2 N terms in the summation, but Eq. 42 does not simplify further in the general case. In the case of rectangular pixels,
w x w xthe autocorrelation pmp is a trapezoidal function with unit height and with ya,a as basis. A simpler formula can be

found if the MTF is evaluated only at the SLM pixels centers. After some algebra it can be shown that

21 e kb 2 ipe b mk
)MTF kb s p t m t mqk exp , 44Ž . Ž . Ž . Ž .˜ ÝX Xž / ž /< <N p 0 l z 1ye l z 1yeŽ . Ž . Ž .˜ m

< <where the summation must be understood for pixels m such that mqk FN. Furthermore, in the case of rectangular pixels

21 b
)MTF kb s sinc a bkra t m t mqk exp 2 ipa mk . 45Ž . Ž . Ž . Ž . Ž .Ý 2ž /N am

Ž . Ž .Whatever the pixel shape, expression 44 reduces in the case of perfect focus es0 to

1
)MTF kb s t m t mqk . 46Ž . Ž . Ž . Ž .Ý

N m

Ž .Eq. 44 can only be evaluated by direct summation over the SLM image for every desired sampling point of the MTF.
Ž .However Eq. 46 is a discrete correlation, and thus can be advantageously evaluated using the Fast Fourier Transform

Ž .FFT .
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7. Conclusion

Active or reconfigurable lenses may find useful applications in classical imaging systems, where they can be used to
control the optical transfer function in a limited range or to compensate for internal and external aberrations. Pixelated
pure-phase SLMs, e.g. electrically addressed phase SLMs, are especially interesting in this respect. The purpose of this paper
has been to demonstrate the use of a commercial twisted-nematic liquid-crystal SLM as a phase-mostly modulator in an

Ž .active lens system. The analysis was applied to the practical cases of image shifting or beam steering and of focus control.
Provided a perfect pure-phase modulation is available, any shift to within the central diffraction order can be achieved, while
the range of defocus that can be achieved is limited by aliasing.

In the context of active lenses, the quantization effects that arise from limited modulation capabilities, i.e. departure from
w xcontinuous pure-phase modulation, were investigated using a method due to Dallas 24 . This method was also used to

describe the action of chromatism, related to the modulo-2p definition of phase. A practical and accurate procedure was
described for the experimental estimation of the Jones matrix of a twisted-nematic LC-SLM as a function of grey level. The

w x w xmethod basically combines results of Refs. 31 and 32 with a robust parameter estimation algorithm. An experimental
set-up of an active lens system was then presented, together with experimental examples in monochromatic light of image
shifting and focus control. The experimental images obtained show that the quality and the resolution of the image formed
by the active lens system is almost constant over an extended range of shift andror defocus. For the commercial
twisted-nematic LC-SLM used, the ghosts can be neglected in monochromatic light, but the higher diffraction orders are
more disturbing. Experimental examples and calculations show that chromatism can be neglected over a relative bandwidth
of "10% approximately. Furthermore, a nice feature of polychromatic illumination is that the higher diffraction orders are
washed out, and hence are not as disturbing as with monochromatic illumination. Useful formulas were provided for
computing the point spread function and the modulation transfer function for both in-focus and out-of-focus systems.
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Appendix A. General expression for the Jones matrix of a twisted-nematic LC cell

Ž .In order to obtain the general expression of Eq. 26 for the Jones matrix of a twisted-nematic LC cell, an argument given
w xin Ref. 36 can be generalized. When a voltage is applied to the LC cell, the rotation of the liquid crystal molecules is

assumed to be homogeneous in each elementary slice parallel to the cell entrance and exit slabs, i.e. each slice is considered
a thin plate of a birefringent uniaxial crystal. According to this simplified model, the LC depth can be divided into M slices
with associated retardation G and rotation angle u , k being an index in the range 1, . . . , M. The Jones matrix of the LCk k

w xcell can then be written as 36

M

Js R yu PW PR qu , A.1Ž .Ž . Ž .Ł k k k
ks1

with

exp yiG r2 0Ž .k
W sexp yiG r2 , A.2Ž .Ž .k k ž /0 exp iG r2Ž .k

Ž .and where R u is the rotation matrix for rotation angle u defined byk k

cosu sinuk k
R u s . A.3Ž .Ž .k ž /ysinu cosuk k

It is easily seen that

cos Gr2 y i sin Gr2 cos2u yi sin Gr2 sin2uŽ . Ž . Ž .
R yu PWPR u sexp yiG r2 . A.4Ž . Ž . Ž .Ž .k ž /yi sin Gr2 sin2u cos Gr2 q i sin Gr2 cos2uŽ . Ž . Ž .
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This unitary matrix assumes the following form

fy ig yij
exp yib . A.5Ž . Ž .ž /yij fq ig

Ž .It is easy to check that the product of two matrices of the previous form assumes the form of Eq. 26 , and hence the product
Ž .A.1 . Further elementary algebra shows that the matrices assuming this form are stable for matrix multiplication and
non-singular since of unitary determinant, so that they have a group structure. The most general form for the Jones matrix of

Ž .a twisted-nematic LC cell is then given by Eq. 26 , irrespectively of the particular retardations G and rotation angles uk k

involved. This result is not of great help for numerical evaluation of the Jones matrix, but justifies its experimental
determination as described in Section 3.
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