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Abstract: We demonstrate theoretically that photons and acoustic phonons
can be simultaneously guided and slowed down in specially designed nanos-
tructures. Phoxonic crystal waveguides presenting simultaneous phononic
and photonic band gaps were designed in perforated silicon membranes
that can be conveniently obtained using silicon-on-insulator technology.
Geometrical parameters for simultaneous photonic and phononic band gaps
were first chosen for optical wavelengths around 1550 nm, based on the
finite element analysis of a perfect phoxonic crystal of circular holes. A
plain core waveguide was then defined, and simultaneous slow light and
elastic guided modes were identified for some waveguide width. Joint
guidance of light and elastic waves is predicted with group velocities as low
as c/25 and 180 m/s, respectively.
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1. Introduction

The propagation of photons and acoustic phonons can be controlled separately by nanostruc-
turation of the supporting materials. In particular, the introduction of periodicity leads to the
photonic [1] and phononic [2] crystal concepts, respectively. Strong spatial confinement of the
wave energy and reduction of group velocities by several orders of magnitude are made pos-
sible. In addition, periodic structures also allow one for tailoring the spatial dispersion of both
photons and phonons, leading to non trivial effects such as negative refraction. It has to be noted
that though the velocity of acoustic waves are five orders of magnitude lower than the veloc-
ity of light in a vacuum, it is the wavelength that governs the frequency ranges where waves
strongly feel periodicity. Photonic crystals operating in the visible and near-IR spectrum, and
phononic crystals operating in the GHz range have in common that the relevant wavelengths
are in the sub-micron range.

Several combinations of materials and nanostructures have been suggested recently in order
to obtain simultaneous photonic and phononic band gaps [3–9]. We term such artificial mate-
rials phoxonic crystals, but they are also termed opto-mechanical crystals by other authors [8].
2D phoxonic crystal structures have been identified for silicon with air holes and silicon pillars
in air [3,4], and for lithium niobate with air holes [6]. 3D phoxonic crystals composed of metal
spheres in a dielectric background have been proposed [7], but the dominant material platform
is arguably the silicon slab perforated with periodic arrays of sub-micrometer holes [8–10] or
supporting a periodic array of pillars [11]. Such nanostructures can be precisely manufactured
using silicon-on-insulator (SOI) technologies. In the previous papers, the focus has mainly
been on the identification of suitable parameters for the existence of simultaneous photonic
and phononic band gaps. On the experimental side, efficient modulation of light pulses through
Brillouin scattering by acoustic phonons has been observed for optical frequencies close to a
photonic band edge [5].

In this paper, we aim at the theoretical demonstration that photons and acoustic phonons can
be simultaneously guided and slowed down in specially designed nanostructures, via a phox-
onic band gap effect. The silicon phoxonic crystal slab geometry has been selected for its sim-
plicity and potential ease of fabrication. Starting from known optimal geometrical parameters
to obtain a complete phoxonic band gap [9], we investigate the dispersion of phoxonic crystal
waveguides created by managing a line of defects in the periodic structure. The very strong
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Fig. 1. Examples of unit-cells used in the analysis of phoxonic crystal slab structures. Two-
dimensional periodic boundary conditions are applied at the lateral sides of the unit-cells.
(a) For elastic waves, only the solid part (silicon) needs to be meshed. Traction-free bound-
ary conditions are applied at the top and the bottom surfaces. (b) For photonic modes, the
vacuum or air inside the holes and surrounding the slab needs to be taken into account. Free
boundary conditions are applied at the top and the bottom surfaces of the air region, result-
ing in an artificial truncation of the computation domain. (c) First irreducible Brillouin zone
showing the highest symmetry points.

spatial confinement created by the phoxonic band gap is found to be favorable for obtaining
low group velocities for both sound and light waves.

2. Phoxonic crystal slab modes

A phoxonic crystal slab can be made by perforating periodically a thin membrane of a solid
material (silicon in this work). Figure 1(a) depicts the unit-cell for computation of the dispersion
relation and the modes of a phoxonic crystal slab. The basic geometrical parameters of such a
structure are the thickness of the slab, h, the pitch of the array, a, and the diameter of the
air holes, d. Figure 1(c) shows the first irreducible Brillouin zone associated with the square
lattice. The highest symmetry points Γ, X and M have wavevector coordinates (0,0), (π/a,0)
and (π/a,π/a), respectively.

Various numerical methods can be employed to compute the photonic and the phononic
properties of periodic structures. We have in this work opted for the finite element method
(FEM). In the phononic crystal slab case, FEM was recently shown to be highly efficient for
obtaining band structures [12]. The FEM variational formulation for solid-air phononic crystals
uses the three displacements as the dependent variables and 3D Lagrange finite elements. The
practical advantage of FEM in the case of solids resides in the small size of the domain that has
to be meshed. Indeed, only the solid part of the perforated silicon slab supports elastic waves
and the free boundary conditions on the top and bottom faces yield perfect reflection of all
elastic waves. There are at least two ways to obtain Bloch waves with FEM. One possibility
is to introduce the Bloch-Floquet wavevector directly in the equations of propagation and thus
in the variational formulation of the problem, together with symmetry boundary conditions for
the lateral sides [13]. A second possibility is to use periodic boundary conditions for the lateral
sides [12]. Both methods give exactly the same band structures but for numerical errors.

In the photonic case, there is an additional difficulty. Vacuum or air (with unit refractive
index) surrounds the silicon slab (with refractive index 3.6 at a wavelength in a vacuum of
1550 nm) and extends in principle to infinity. However, the computation domain has to be
restricted to a finite region of space in practice. Since we are looking for eigenmodes of the
system, the use of artificial boundary conditions such as perfectly matched layers (PML) is not
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adequate. We instead consider simple free boundary conditions a certain distance away from
the slab surfaces. Consequently, waves radiated away from the slab can be reflected at the limits
of the computation domain, and care has to be taken in the analysis of the obtained dispersion
diagrams, in connection with the concept of the light line [14]. The light line is defined by
the dispersion relation for light waves in a vacuum, ck/ω = 1, with k the wavevector, ω the
angular frequency, and c the speed of light in a vacuum. The light cone or radiative region is
defined by ck/ω < 1. Outside the light cone, any plane wave is necessarily evanescent and
thus cannot radiate energy outside of the system. The air thickness is in practice adjusted so
that evanescent waves have attenuated enough, so that the band structure for guided waves
(lying outside the light cone) has converged. Inside the light cone, the artificial truncation of
the air domain induces spurious bands, the number of which increases with the thickness of
the air layer. No attempt was made at eliminating such spurious solutions from the photonic
band structures reported in this paper, but this can be accomplished by examination of the
energy distribution of each eigenmode, as illustrated later. Because of the symmetry of the slab
structure with respect to the middle plane, it is further possible to separate photonic modes
between even and odd. Even (respectively, odd) modes are also termed quasi-TE (resp., quasi-
TM) modes. TE and TM here refer to the electric field vector being mostly transverse electric
or magnetic, respectively. As a result of this symmetry property, only one half of the structure
needs to be meshed, as shown in Fig. 1(b). The variational formulation for dielectric photonic
crystals uses the magnetic field vector H as the dependent variable and 3D vector finite elements
with vanishing divergence [15].

An exhaustive search for phoxonic crystal slab structures was conducted recently [9]. From
these results, we have extracted the following configuration. First, the ratio of the slab thickness
to the lattice constant, h/a, was found to be a key parameter for the existence of phoxonic band
gaps. The value h/a ≈ 0.6 was found to be an optimal one for the square lattice case. Second,
phononic band gaps generally require large holes and the value d/a = 0.86 was selected. As we
consider optical wavelengths around 1550 nm, the geometrical parameters used in this paper
are precisely a = 651 nm, h = 390 nm, and d = 560 nm.

The phononic band structure is displayed in Fig. 2(a) and shows a complete elastic band gap
appearing around 5 GHz, between the 6-th and the 7-th bands (8% relative band gap width). The
first six Bloch modes at the M point of the first Brillouin zone are also shown for illustration
in Figs. 2(b)–2(g). It can be observed that none of these Bloch waves has a pure polarization,
instead, their polarization has components along all three directions in space.

The photonic band structure is presented in Fig. 3(a). The dark gray region above the light
line is the light cone for air; all waves having their dispersion represented by a point below the
light line are guided by the phoxonic crystal slab. Two photonic band gaps for guided waves
are found (appearing in white in Fig. 3(a)), around the reduced frequencies 0.35 and 0.42.
The lower band gap is valid for even modes only, while the upper one is valid for both even
and odd modes (i.e., is a complete band gap for guided waves). The first six even photonic
modes are shown in Figs. 3(b)–3(g) for the reduced wavevector value kxa/2π = kya/2π = 0.3,
somewhat midway along the ΓM direction. Only the first two even modes, Figs. 3(b) and 3(c),
are outside the light cone and are thus certainly guided by the slab. However, even though it
is apparent that the third, fourth and sixth modes are leaking in the surrounding air, the fifth
mode is well guided inside the slab (Fig. 3(f)). From this observation, we can infer that a Bloch
wave exhibing a dispersion lying within the light cone is only likely to be leaky; radiation to
the surrounding air does not necessarily happens, as discussed by Xu et al. [16].
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Fig. 2. (a) Phononic band structure for a periodic array of circular holes in a silicon slab
with parameters a = 651 nm, h = 390 nm, and r = 280 nm. A complete band gap appears
around 5 GHz. (b)–(g) Modal distribution of the displacements for the first six modes at the
M point of the first Brillouin zone. The color bar is for the modulus of the total displacement
while the deformation of the mesh is proportional to the algebraic displacements.

3. Guided slow phoxonic crystal slab modes

A phoxonic crystal waveguide was next defined by adding a solid core within the perfect crystal
taken along the ΓX direction. Phononic and photonic Bloch modes are computed according to
the super-cell technique, with the central solid core surrounded by three rows of phoxonic
crystal along the Y direction, as depicted in Fig. 4(a). As periodic boundary conditions are still
applied along the Y direction, the simulated structure is actually an infinite array of straight
cores separated by six rows of holes. However, all waves are evanescent in the hole array within
a frequency band gap [17] and the separation of the cores is assumed to be sufficient to uncouple
them. The waveguide width, w, was chosen equal to either a or 0.9a. These values were chosen
in order to center the phononic and photonic defect modes close to the center of the respective
phononic and (lower) photonic band gaps.

Figures 4(a) and 4(b) show the phononic band structure of the defect-based phoxonic crystal
waveguide around 5 GHz. A total of up to four additional branches appear in the band gap
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Fig. 3. (a) Photonic band structure for a periodic array of circular holes in a silicon slab
with parameters a = 651 nm, h = 390 nm, and r = 280 nm. The left vertical axis is in units
of the reduced frequency, ωa/2πc = a/λ . The two photonic band gaps for guided waves
appear in white. (b)–(g) Modal distribution of the modulus of the magnetic field vector H
(a.u.) for the reduced wavevector value kxa/2π = kya/2π = 0.3, somewhat midway along
the ΓM direction, for the first six even modes.

region (indicated in white). Each of them supports a mode that is confined within the solid
core by the phononic band gap effect. The most interesting of the four modes is the one with
the flattest dispersion, appearing around 5 GHz for all axial wavevectors and shown as the
continuous line in Fig. 4(b). The modal distributions of Bloch waves labelled (c), (d) and (e)
are shown in Figs. 4(d)–4(f), respectively, for the reduced wavevector value kxa/2π = 0.3. Such
plots allow us to check the effective guidance of the defect modes within the solid core. It must
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Fig. 4. Phononic band structure of a solid core phoxonic crystal waveguide defined along
the ΓX direction in a square-lattice phoxonic crystal slab. In the supercell computation,
three rows of holes surround a central solid core of width (a) w = a and (b) w = 0.9a.
The complete phononic band gap appears in white. The band supporting guided waves
with the lowest group velocity is shown as a solid line. (c)–(e) Modal distributions of the
displacements for three particular eigenmodes with kxa/2π = 0.3. The color bar is for the
modulus of the total displacement while the deformation of the mesh is proportional to the
algebraic displacements.

be noted that the polarization of these modes is again not pure, as it contains a mixture of shear
horizontal, shear vertical, and longitudinal components. Bloch mode (c) is laterally guided by
the phononic band gap effect for all wavevectors. Bloch mode (d) lies outside the phononic
band gap but is also a defect mode; it is mostly guided by the core with some leakage to the
side. It is however perfectly guided for kxa/2π < 0.25. Bloch mode (e) also lies outside the
phononic band gap but is a mode of the perfectly periodic crystal; it hence shows no lateral
confinement at all.

Figures 5(a) and 5(b) show the photonic band structure of the defect-based phoxonic crystal
waveguide for even modes. The light cone appears as the dark gray region and the band gaps
for guided Bloch waves appear in white. It can be seen that several defect modes are introduced
and that their dispersion is quite sensitive to the value of the waveguide width, w. We are
especially interested in the low band gap appearing in Fig. 5(b) around the reduced frequency
0.35, for w = 0.9a. In this forbidden frequency range, only one additional branch appears, with
a very flat dispersion. The modal distributions of Bloch waves labelled (c) and (d) are shown
in Figs. 5(c) and 5(d), respectively, for the reduced wavevector value kxa/2π = 0.45. Both
modes are laterally guided by the photonic band gap effect. The branch supporting mode (c) is
especially interesting since the waveguide is monomode for even-polarized waves in this case.
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Fig. 5. Photonic band structure for waves in a solid core phoxonic crystal waveguide defined
along the ΓX direction in a square-lattice phoxonic crystal slab. In the supercell computa-
tion, three rows of holes surround a central solid core of width (a) w = a and (b) w = 0.9a.
Two photonic band gaps for guided waves appear in white. The bands supporting waves
latterally guided by the photonic band gap effect are shown with solid lines. (c),(d) Modal
distribution for two of these eigenmodes. The modulus of the magnetic field vector H is
presented for the reduced wavevector value kxa/2π = 0.45.

Fig. 6. (a) Dependence of the group index and of the reduced frequency with reduced wave
vector, for the guided photonic mode labeled “c” in Fig. 5. (b) Dependence of the group
velocity and of the frequency with reduced wave vector, for the guided phononic mode
labeled “c” in Fig. 4.

The group velocity can be estimated from the band structures for guided waves from the
definition vg =

∂ω
∂k . In the phononic case, it is customary to consider the group index defined by

ng = c/vg. Figure 6(a) displays the dependence of the group index with reduced wave vector
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for the guided photonic mode labeled “c” in Fig. 5. It can be seen that this quantity can be
either positive or negative, depending on the wave vector. However, from an experimental point
of view, the most useful part of the spectrum is arguably found around the reduced frequency
ωa/2πc= 0.343, where the group index remains approximately constant (ng ≈ 25). Figure 6(b)
shows the dependence of the group velocity with reduced wave vector, for the guided phononic
mode labeled “c” in Fig. 4. Around the 5 GHz phonon frequency, the group velocity varies
around a mean value of 180 m/s, more than 30 times less than the speed of any bulk wave in
silicon and less than the speed of sound in air.

4. Conclusion

We have presented the principle of a phoxonic crystal slab waveguide managed by inserting a
linear solid core defect in a nanostructured silicon slab presenting simultaneously a phononic
and a photonic band gap. Such a nanostructure can be conveniently obtained using silicon-on-
insulator technology. Geometrical parameters for simultaneous photonic and phononic band
gaps were first chosen, based on the finite element analysis of a perfect phoxonic crystal of
circular holes. A plain core waveguide was then introduced, and simultaneous guidance of
slow photons and slow acoustic phonons was identified. Optical and acoustic group velocities
as small as c/25 and 180 m/s over a usable frequency range were predicted, respectively. The
structure of the proposed phoxonic crystal slab waveguide is markedly different from the opto-
mechanical waveguide structures proposed by Safavi et al. [10]. The former structures were
designed to optimize the optomechanical interaction, where coupling of photons and phonons
would be provided by the periodic motion of the boundaries. In contrast, the phoxonic crystal
waveguides we have presented guide photons and phonons in a small central solid core, and
are thus better suited to situations where acousto-optical coupling is provided by the elasto-
optical effect. As such, they bear an analogy to photonic crystal fibers which were shown to
support the joint guidance of photons and phonons [18, 19]. A difference is that the periodic
nanostructuration in the plane of the slab makes it possible to tailor slow wave propagation,
which is less easy when the 2D structuration runs along the core of a photonic crystal fiber.
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