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We describe an incoherent correlator, based on the shadow-casting principle, that is able to implement
any real-valued linear correlation filter. The correlation filter and the input image are displayed on
commercial liquid-crystal television ~LCTV! panels. Although it cannot handle high-resolution images,
the incoherent correlator is lensless, compact, low cost, and uses a white-light source. A bipolar tech-
nique is devised to represent any linear filter, computed from a single reference image or composite, in
the correlator. We demonstrate experimentally the efficiency of the design in the case of optimal
trade-off ~OT! filters and optimal trade-off synthetic discriminant function ~OT–SDF! filters. © 1996
Optical Society of America
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1. Introduction

The shadow-casting correlator,1,2 as well as the other
incoherent correlators, has not benefited as much as
coherent correlators from the renewal of interest for
optical pattern recognition. Indeed, much work has
been devoted to the design and improvement of co-
herent correlation architectures and to the optical
implementation of filtering algorithms for these ar-
chitectures. In the case of the shadow-casting cor-
relator, it has been known for some time that the
resolution is limited by Fresnel diffraction, and pes-
simistic figures for the number of resolution points
that can be used for the filter and the input image
were given in Refs. 3 and 4. However, we show in
Section 2 that under given conditions it is possible to
determine a significant resolution for processing with
a shadow-casting system, provided the target size is
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small compared with the input image size, in which
case the resolution can be traded off between the
correlation filter and the input image.
The advantages of incoherent optical information

processing with respect to coherent processing are
well known. The overall cost is lower, and the sys-
tem can be made compact, especially if no Fourier
lenses are used, as is the case for shadow casting.
The sensitivity to mechanical perturbations and op-
tical distortions, such as dust or poor-quality optical
components, is much lower. Another practical ad-
vantage is that liquid-crystal televisions ~LCTV’s!,
often used as spatial light modulators ~SLM’s! in im-
plementations of optical processing, are optimized for
amplitude modulation because they are designed for
vision applications rather than for phase modulation,
as is often required for efficient coherent processing.
When represented in object space ~as opposed to

the Fourier space! ~i.e., as an impulse response! most
linear filters used in optical pattern recognition to
date are real-valued filters.5 This is true, for exam-
ple, for the matched, inverse, phase-only, optimal
trade-off ~OT!, synthetic discriminant function ~SDF!,
minimum average correlation energy ~MACE!, mini-
mum variance synthetic discriminant function ~MV–
SDF!, optimal trade-off synthetic discriminant
function ~OT–SDF!, minimum noise and correlation
energy ~MINACE! filters ~see, e.g., Ref. 5 for a de-
scription of these correlation filters!. Thus it is de-
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sirable to be able to represent any given real-valued
filter in an optical correlator.
As a result of incoherent illumination, filters that

can be represented in a shadow-casting correlator are
necessarily positive real-valued images in the object
space. To get rid of the same limitation in the re-
lated field of pupil synthesis, it was proposed6 to use
a bipolar scheme for the representation of the filter.
That is, any real-valued filter h can be written as the
difference of a positive part h1 and a negative part
h2, both being positive. This enables one to repre-
sent any real-valued filter. In practice it is neces-
sary to measure both correlations of the object with
the positive and the negative parts of the filter and
then to subtract them.
In Section 2 we present a brief analysis of shadow

casting in the context of incoherent correlation. In
Section 3 we recall some basic properties of linear OT
filters. Section 4 describes our bipolar technique for
implementing any real-valued linear filter, and Sec-
tion 5 gives some experimental results for OT filters
and OT–SDF filters.

2. Shadow-Casting Correlator

Shadow-casting optical systems have been known for
quite a long time, at least since 1943.1 They allow
one to obtain easily the correlation or convolution of
two images presented in object space.4 As correla-
tors, they were first used in crystallography for the
analysis of x-ray diffraction patterns.1,2 Apart from
correlation, shadow-casting has been applied, for ex-
ample, to optical implementation of logical opera-
tions,7 mathematical morphology,8 and symbolic
substitution.9
The simplest shadow-casting setup is depicted in

Fig. 1. It involves three planes. In the first plane
31 is a diffuse source that could be, for example, a
CRT,10 a LED or laser diode array,11 or even a trans-
parency or a SLM followed by a diffuser. For the last

Fig. 1. Shadow-casting principle. In the first plane, 31, is a
diffuse source. In the second,32, is a transparency. In the third,
33, is a screen or a camera.
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an additional incoherent source is needed, for in-
stance, a white-light source. Figure 2 depicts these
three possibilities.
In the second plane 32 at a distance d is another

SLM or a transparency, and in the third plane 33 at
a distance p is a screen or a camera. The distance d
is always positive, but the distance p can be positive
or negative. In the latter case plane 33 must be
observed with an additional optical system. As the
first plane is a diffuse source, i.e., spatial incoherence
is assumed, the system behaves more or less accord-
ing to geometrical optics laws, depending on the ratio
of characteristic lengths in the setup to the wave-
length.
To understand the shadow-casting principle, let us

start from the geometrical optics point of view. With
the notation of Fig. 1, a ray emitted from point r1,
with coordinates ~x1, y1!, of the plane of the diffuse
source and arriving at point r3 of the detection plane,
crosses the second plane at point r2, given by

r2
d9

5
r1
d

1
r3
p
, (1)

where the distance d9 is defined by

1
d9

5
1
d

1
1
p
. (2)

Let us consider the elementary surfaces dr1 and dr3
centered at points r1 and r3, respectively. The
source and the optical system can be characterized by
the elementary flux j~r1, r3! dr1 dr3 that is emitted in
dr1 and received in dr3. Two transparenciesM1 and
M2 lie, respectively, in planes 31 and 32. The illu-
mination at point r3 is then given by the contribution
of all source elements dr1:

E~r3! 5 *
31

dr1j~r1, r3!M1~r1!M2Fd9Sr1d 1
r3
pDG . (3)

This expression shows that the operation achieved by
shadow casting is, in general and within the limits of
the geometrical approximation, a bilinear trans-
formation with a positive kernel j of two positive
functions M1 and M2. The kernel j includes every-
thing about the photometry properties of the system.
To yield a correlation, kernel j should be constant.
For instance, in the case of the SLM–diffuser option,
this means that the diffuser should be Lambertian.

Fig. 2. Several possibilities for the diffuse source in plane31. ~a!
CRT, ~b! LED or laser diode array, ~c! SLM followed by a diffuser.



Let us define the scaling factor G by

G 5
d

ud9u
5 Ud 1 p

p U . (4)

If we assume that transparencyM2 is identical toM1
but scaled by a factor G, it is easily seen with expres-
sion ~3! that the autocorrelation of M1 is obtained.
Green3 studied the maximum resolution achiev-

able with a shadow-casting system. His analysis is
based on the number of resolvable points in the pres-
ence of diffraction.12
Green starts by considering circular resolution

cells in both planes 31 and 32, with respective radii
r1 and r2. Using the Rayleigh criterion, he then
shows that

r1r2 5 ald, (5)

where l is the illumination wavelength and a is a
particular constant, usually chosen equal to 0.61, cor-
responding to the Airy diffraction pattern half-
width.13 Let us now consider SLM’s with
rectangular pixels in planes 31 and 32, with their
dimensions being fixed through the Rayleigh crite-
rion. The pixels surfaces are S1 and S2, respec-
tively. We assume that we can write

S1S2 5 4a2l2d2, (6)

although pixels are not circular but rectangular; i.e.
the value of a is slightly different from 0.61. From
expression ~6! it is now possible to evaluate the prod-
uct of the numbers of resolution cells in planes31 and
32. These numbers are, respectively,

N1 5 !1yS1, N2 5 !2yS2, (7)

where!1 and!2 are the total surfaces used in planes
31 and 32. We then obtain

N1N2 5
!1!2

4a2l2d2
. (8)

Assume that in planes 31 and 32 the SLM aperture
is 2 cm 3 2 cm, that distance d is 5 cm, and that the
wavelength is 0.5 mm. If we assume, in addition,
that N1 5 N2, then

N1 5 N2 < 115 3 115.

For instance, it is possible to use images of approxi-
mately 115 3 115 pixels in both planes 31 and 32.
For these numbers the diameter of each pixel is ;175
mm.
It is useful to note that the number of resolution

cells given by Eq. ~8! does not depend on the distance
from the second plane to the detector, or, equiva-
lently, on the scaling factor G. The latter can be
used to share in a different way the total available
resolution between planes 31 and 32. For example,
for G 5 4, it is possible to use 57 3 57 pixels for the
first image and 227 3 227 pixels for the second. It is
important to be aware that the resolution of shadow-
casting systems given by expression ~8! is only ap-
proximate and is particularized for circular pixels.

3. Optimal Trade-Off Filters

The generic problem of pattern recognition that we
now consider is the determination of the location of a
target in an input image. We consider square im-
ages with a total of N pixels and use lexicographic
scanning. We use the following notation:

x is a ~complex! scalar.
x* is the complex conjugate of scalar x.
uxu is the modulus of scalar x.
x is a vector, with the first coordinate x0 and the

last coordinate xN21.
x† is a complex-conjugate transposed vector x.
X is an N 3 N matrix.

Notation with a carat ~ˆ! indicates that expressions
are taken in the Fourier domain. The correlation
operation of images h and x is written @h Vp x# and is
classically defined by

@h Vp x#k 5 ck D
5

1
N (

m51

N

hm*xm1k. (9)

By application of the convolution theorem, we also
have

ĉn 5 ĥn*x̂n. (10)

The presence of noise in the input image leads to
fluctuations in the correlation image. When the
noise is assumed to be stationary, the variance of
these fluctuations is a constant, denotedmean square
error14,15 ~MSE!:

MSE~h! D
5 ĥ†Ŝĥ (11)

where Ŝ is the assumed spectral density of the noise,
a diagonal matrix of size N 3 N. The criterion usu-
ally used to characterize the noise robustness of a
correlation filter is the signal-to-noise ratio14,15
~SNR!:

SNR~h! D
5

uĥ†r̂u2

ĥ†Ŝĥ
, (12)

where r is the reference image. The filter that op-
timizes this criterion is the classical matched filter14:

ĥn 5
r̂n

Ŝnn

. (13)

Despite its excellent noise robustness, the matched
filter performs poorly in terms of discrimination. In
the presence of background, it was shown that the
sharpness of the correlation peak, measured by the
peak-to-correlation energy ~PCE!, can be a useful cri-
terion for evaluating the discrimination capabilities
10 September 1996 y Vol. 35, No. 26 y APPLIED OPTICS 5269



of a filter:

PCE~h! D
5

uĥ†r̂u2

ĥ†D̂ĥ
, (14)

where D̂ is the power spectral density of the reference
image, a diagonal matrix with elements D̂nn 5 ur̂nu2.
The inverse filter optimizes this last criterion14:

ĥn 5
r̂n

ur̂nu2
.

The inverse filter is highly unstable16 in the presence
of noise. Instead of the PCE criterion, we could have
used other discrimination criteria as given, for exam-
ple, in Refs. 17 and 18.
We briefly recall here the principle of OT filters.19,20

Let us first jointly consider the SNR and the PCE
criteria. Instead of simply optimizing these criteria
separately, let us impose the value PCE~h!. Then
among all filters that lead to that particular value of
criterion PCE, the most interesting filter is definitely
the filter that optimizes the criterion SNR. This sit-
uation is shown in Fig. 3. In the SNR–PCE plane,
for a given value of PCE~h!, all corresponding filters
are represented by one point in a horizontal line.
Among those filters, the most interesting is the one
with the largest value SNR~h!. Repeating this pro-
cedure for all possible values of PCE~h!, we obtain a
concave curve that represents the OT between crite-
ria SNR and PCE.19 This curve is called the optimal
characteristics curve ~OCC!.
The expression of OT filters for the SNR and PCE

criteria can be shown to be19

ĥn
OT 5

r̂n

~1 2 m!Ŝnn 1 mD̂nn

. (15)

These filters are denoted in the following hOT for OT
filters. When parameter m varies between 0 and 1,
the OCC depicted in Fig. 3 is generated. For m 5 0,
the matched filter is obtained, and for m 5 1 the
inverse filter is obtained. OT filters are real-valued
filters in object space, i.e., after the inverse Fourier
transform of expression ~15! is taken. It is interest-
ing to note that if one starts with a positive reference
image then only the matched filter remains positive,

Fig. 3. Principle of OT filters.
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whereas for values of m different from 0 the OT filter
has positive or negative pixel values.

4. Bipolar Implementation of Linear Filters

In a recent article21 we extended the principle of OT
filters and added the criterion of optical efficiency to
the SNR and the PCE to coherent correlators, whose
filter is displayed in a Fourier plane on a SLM. In
that paper we gave an algorithm for obtaining the OT
filters for any SLM, characterized by its coding do-
main. Although the same theoretical approach can
be used for shadow-casting correlation filters, this is
not necessary if optical efficiency is not taken into
account and the following bipolar procedure is used.
Optical efficiency is a less important criterion for in-
coherent than for coherent correlation because low-
cost, powerful incoherent sources are widespread.
Because of the incoherence of the source, only im-

ages with pixel values in @0, 1# can be displayed.
Twisted nematic liquid-crystal SLMs are good candi-
dates because they offer video-rate operation and a
sufficient contrast.22 The bipolar filtering technique
described below allows one to overcome the limitation
of positiveness for the filter and proves efficient be-
cause it can optically implement any real-valued lin-
ear filter.
As the correlation image measured with a shadow-

casting correlation system is linear with the input
image and the filter, it is possible to represent a filter
with positive and negative pixel values with a bipolar
scheme4:

h 5 h1 2 h2, with h1, h2 [ @0, 1#N. (16)

The resulting bipolar filter h is thus an element of
@21, 1#N, corresponding to the virtual coding domain
@21, 1#. The principle of bipolar filtering is to record
both correlations c1 5 h1 Vp x and c2 5 h2 Vp x, then
to take their squared difference, leading to

ucu2 5 uc1 2 c2u2

5 uh1 Vp x 2 h2 Vp xu2

5 uh Vp xu2. (17)

The square operation is required from optimal loca-
tion estimation theory.23 The drawback of the bipo-
lar method is that it is necessary to measure two
correlation images rather than one. But the filter-
ing capabilities of the filter are dramatically im-
proved.
Note that there exists an infinite number of possi-

ble bipolar decompositions for a given filter. Indeed,
it is always possible to add an image f such that

h 5 @h1 1 f# 2 @h2 1 f#,

with @h1 1 f#, @h2 1 f# [ @0, 1#N. (18)

Any real-valued linear filter can be represented
with a bipolar decomposition simply by adjustment of
its dynamics to the range @21, 1#. In the case of an
OT filter as given by Eq. ~15!, the bipolar filter is



simply

h 5 DFT21~gĥOT!. (19)

In this expression DFT21 denotes the discrete inverse
Fourier transform, ĥOT is given by Eq. ~15!, and the
scaling parameter g is adjusted such that values of h
are in @21, 1#.
Let us define the filters h1 and h2 by

hm
1 5 max~0, hm!,

hm
2 5 max~0, 2hm!. (20)

These definitions are the classical definitions of the
positive and negative parts of a function.4 It is the
decomposition that yields the smallest possible val-
ues ofh1 andh2 for every pixelm. It is still possible
to add a positive image f to h1 and h2. However, it
is clear that this will not add any useful information
in the correlation plane and will only result in a
misuse of the camera dynamics range.
Figure 4 shows an example of the bipolar decom-

position of a filter. The OT filter of Fig. 4~b! is de-
signed from the reference image of Fig. 4~a!,
assuming a white-noise model @i.e., the spectral den-
sity Ŝ is constant in Eq. ~15!#.

5. Experiments

Figure 5 shows the shadow-casting correlator that we
designed. All optical elements are low in cost and
standard. The white-light source beam is colli-

Fig. 4. Example of bipolar filter design. ~a! Reference image. ~b!
OT filter designed from reference image. Since this filter has
positive and negative values, the zero value is offset to grey level
127. ~c! Positive part of bipolar filter. ~d! Negative part of bipo-
lar filter.
mated with a simple lens that achieves a sufficient
illumination uniformity on the first SLM. The dif-
fuser is a piece of ground glass of which the rough side
is in near contact with the first SLM. The measured
half-width of the diffusion angle is ;10°. The detec-
tor is a CCD array. The SLM’s are Epson Model
VPJ-2000 LCTV’s driven by the video projector orig-
inal electronics. The measured contrast with the
white-light source is ;40. A color frame grabber is
used to write images to the video projector. Two
color channels ~e.g., red and green! are used, respec-
tively, for the input image and the filter.
The geometrical dimensions chosen for the setup

are d 5 5.5 cm and G 5 4, implying that P 5 1.83 cm.
These values allow us to use a filter of 64 3 64 pixels
and an input image of 256 3 256 pixels, following the
resolution analysis of Section 2. The positive and
negative parts of the bipolar filters are thus zoomed
by a factor of 4 before display. The active part of the
setup, from the first SLM to the CCD array plane, is
smaller than 7.5 cm. The total size, including the
source and the CCD camera, is less than 20 cm and
could be easily optimized further.
Figures 6 and 7 illustrate the performance of the

bipolar technique. Both input images shown in
Figs. 6~a! and 7~a! present an important structured
background with a high mean value. The reference
airplane shown in Fig. 4 was extracted from the first
input image. In the second input image, the air-
plane appears smaller and is viewed from a slightly
different angle. The bipolar decomposition of the OT
filter of Fig. 4 is used in the incoherent correlator.
For both examples the correlation with the matched
filter would fail in the recognition task. The use of
an OT filter yields much better discrimination capa-
bilities. The bipolar OT filter, like the classical OT

Fig. 5. Shadow-casting correlator. Filter h and input image x
are displayed on Epson LCTV SLM’s. A, analyzer; P, polarizer; D,
diffuser; RGB, red, green, and blue inputs to the Epson video
projector.
10 September 1996 y Vol. 35, No. 26 y APPLIED OPTICS 5271



Fig. 6. Example of a bipolar filtering result. ~a! Input image, from which the reference image of Fig. 4~a! was extracted; ~b! three-
dimensional view of the measured correlation of the bipolar filter of Fig. 4 and the input image; ~c! three-dimensional view of the simulated
correlation of the bipolar filter of Fig. 4 and the input image.
filter, retains a large part of the good noise robustness
of the matched filter while improving dramatically
over its discrimination capabilities. Here, robust-
ness must be understood as robustness to a modeling
defect ~distortion of the reference image in the second
case!.
Figure 8 presents another application of the bipolar

OT filter in the context of airplane recognition. The
input image shows an airplane viewed in a cloudy
background. Note that, as above, the OT bipolar
filter is designed with a white-noise model, which is
quite different from the actual cloud spectral density.
We now turn to the implementation of SDF filters.

The mathematical background for these filters can be
found, e.g., in Refs. 5, 19, and 24. SDF filters are
usually devised for classification applications. The
filter is computed from a learning base that com-
5272 APPLIED OPTICS y Vol. 35, No. 26 y 10 September 1996
prises a certain number of examples that are thought
to be typical of an expected distortion. Constraints
are imposed on the filter: the center of the correla-
tion function with each member of the learning base
must be equal to a specified value. These con-
straints are generally too small in number for the
SDF filter to be precisely determined. Indeed, ifN is
the number of pixels of example images and p is the
number of constraints, the number of degrees of free-
dom is roughly N 2 p. This is fortunate, because
this freedom can be used for optimizing a criterion
~e.g., MACE and MV–SDF filters! or for trading-off
several criteria ~e.g., OT–SDF and MINACE filters!.
All SDF-type filters mentioned above are real-valued
filters in object space and can thus be implemented
with our bipolar method.
Let us consider the example of Fig. 9. The learn-
Fig. 7. Example of a bipolar filtering result. ~a! Input image, slightly different from that of Fig. 6~a!; ~b! three-dimensional view of the
measured correlation of the bipolar filter of Fig. 4 and the input image.



Fig. 8. Example of a bipolar filtering result. ~a! Positive part of
bipolar filter; ~b! negative part of bipolar filter; ~c! input image from
which the reference image was extracted; ~d! three-dimensional
view of the measured correlation of the bipolar filter and the input
image.

Fig. 9. Example of a OT–SDF filter designed for attitude recog-
nition ~see text! and its bipolar decomposition. ~a! A pattern of
the learning base; ~b! OT–SDF filter designed from learning base;
~c! positive part of bipolar OT–SDF filter; ~d! negative part of
bipolar OT–SDF filter.
ing base comprises five images obtained from the
image shown in Fig. 9~a! by in-plane rotations of 25°,
0°, 5°, 10°, and 15°. These five images are distrib-
uted in two classes: the centers of the correlation
function with images ~0°, 5°, 10°! are constrained to
value 1, while the centers of the correlation function
with images ~25°, 15°! are constrained to value 0. A
OT–SDF filter thus obtained is shown in Fig. 9~b!,
and its positive and negative parts are shown, respec-
tively, in Figs. 9~c! and 9~d!. This filter is intended
for detecting the presence of an airplane in the an-
gular sector @0°, 10°#.25
We show in Fig. 10 the experimental response of

the bipolar OT–SDF filter of Fig. 9 when the airplane
is viewed on a black or a cloudy background. Fig-
ures 10~a! and 10~b! are examples of test images in
these two cases, respectively, for an in-plane rotation
angle of 28°. The response is defined as the maxi-
mum value of the squared correlation function, re-
gardless of the location of the maximum. It is clear

Fig. 10. Experimental response of the bipolar OT–SDF filter of
Fig. 9 when the airplane is viewed on a black or a cloudy back-
ground. ~a! Example of a test image without background and the
airplane rotated at 28°; ~b! example of a test image with a cloudy
background and the airplane rotated at 28°; ~c! normalized re-
sponse of OT–SDF filter.
10 September 1996 y Vol. 35, No. 26 y APPLIED OPTICS 5273



from these results that a correct recognition of the @0°,
10°# angular sector is obtained.
We did various other experiments, varying the

characteristics of the real-valued linear filter to be
implemented with the bipolar technique. We found
that the influence of acquisition noise from the CCD
camera was generally small, although it might have
been expected that substracting the correlations with
the positive and negative parts of the filter would
have amplified it. More significantly, a problem can
arise with the acquisition dynamic range. Indeed,
the positive ~negative! correlation usually has a large
mean value over the input image, over which the
positive ~negative! target peak appears at the loca-
tion of the target. If care is not taken, the height of
the target peak can become as small as a quantiza-
tion level of the camera, in which case the target peak
is too small to be detected. This thresholding effect
can of course be avoided by the use of a larger acqui-
sition dynamic range, provided the acquisition noise
remains small enough.

6. Conclusion

We have designed an incoherent correlator based on
the shadow-casting principle that includes a bipolar
representation of the correlation filters. This corre-
lator is very simple and low in cost. The bipolar
technique allows us to represent any real-valued lin-
ear filter in the correlator. We demonstrated exper-
imentally its efficiency in the case of OT and OT–SDF
filters.
Compared with coherent correlators, our shadow-

casting incoherent correlator is better in terms of
cost, size, and overall robustness, but it suffers from
a necessarily limited resolution. For applications in
which the target is relatively small compared with
the input image and in which it is preferable to em-
phasize filtering robustness rather than high dis-
crimination capabilities, it seems to be a good
candidate. However, when high-resolution or high-
discrimination capabilities are needed, in general co-
herent correlators would be more appropriate.

This research was partially supported by the Di-
rection de la Recherche et de la Technologie under
contract 92y352. The authors thank D. Broussoux,
G. Delaforest, and S. Formont for helpful discussions.
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