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Influence of nonoverlapping noise on regularized linear
filters for pattern recognition
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We analyze the behavior of regularized linear filters designed for overlapping noise in the presence of images
distorted by nonoverlapping noise. In particular we show that there necessarily exist non-null values of the
target’s illumination that result in the failure of regularized linear filters. The characteristics of those values
are analyzed and discussed relative to the correlation length of the background noise.  1995 Optical Society
of America
The study of the detection and restoration of a signal
distorted by nonadditive noise has recently become a
topic of growing interest in the optical signal process-
ing community. Most of the filters that are used have
been designed to be optimal for additive noise, but, al-
though white Gaussian additive noise is an acceptable
model for noise corrupting radar signals, it is often
inaccurate for describing noise in optical images. In
particular, in many images the input scene noise may
be spatially disjoint from the target that is to be de-
tected: noise is then said to be nonoverlapping.1 A
typical example of such a situation is the observation
of an airplane f lying above a soil background. Even
if the plane itself is not distorted by noise, the correla-
tion with background may produce spurious peaks, and
thus the background can be considered noise.

Javidi et al. designed a filter that is optimal in
the hypothesis-testing sense in the case of Gaussian
nonoverlapping background noise2; this filter per-
formed better than the matched filter on images
distorted by nonoverlapping noise. Another filter
based on Wiener theory was designed3 and yielded
good results. A generalization of the matched filter
that leads to a linear filter’s optimizing a new metric
has also been proposed.4 Both filters require one
to know the average of the background noise, which
is in general unknown. To illustrate the difference
in behavior of linear filters designed for overlapping
noise in the presence of additive and nonoverlapping
noise, we first consider the two input image examples
shown in Fig. 1. In the lower part of Fig. 1 we show
the square modulus of the correlation function of these
images with a linear optimal trade-off (OT) filter.5 It
is clear that the linear filtering technique is much
more robust for additive noise than for nonoverlapping
noise.
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It is the purpose of this Letter to characterize this
behavior. Let us denote the target ti, the noise bi,
and the impulse response of the considered linear
filter hi. One-dimensional notations are used for more
simplicity. In the Fourier domain, most filters can
be written as ĥv ­ t̂vyB̂v, where ĥv st̂vd is the Fourier

Fig. 1. (a) Scene with the target and additive uniform
noise, (b) scene with the target and nonoverlapping uniform
noise, (c) correlation of image (a) with an OT filter,
(d) correlation of image (b) with the same OT filter. Note
that (c) and (d) are plots of the maximum of each line of the
modulus square of the correlation plane.
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transform of hi stid and v is the spatial frequency. B̂v
depends on the linear filter that is considered. For
example, B̂v ­ Ŝv for the matched filter6 when the
spectral density of the noise model is Ŝv. For the
phase-only filter,7 B̂v ­ jt̂vj and B̂v ­ s1 2 mdŜv 1
mjt̂vj

2 for the OT filter between noise robustness and
peak sharpness. Except for the matched filter in
the presence of white noise (which is known to have
a very poor discrimination capability), B̂v generally
corresponds to a low-pass filter. Thus ĥv is the result
of the filtering of t̂v with a high-pass filter. The
impulse response of such a filter is shown in Fig. 2.
We can see that it is possible to divide this impulse
response hi into two parts, h1

i and 2h2
i , so that hi ­

wih
1
i 2 s1 2 widh2

i , where wi denotes a unit-magnitude
window that defines the support of the target (i.e.,
wi ­ 1 within the target and is zero elsewhere). The
elements h1

i lie in the support of the target and the
elements h2

i outside. Furthermore, the mean value of
the filter is generally made equal to zero, which can
also be obtained implicitly with OT filters. Although
it is not necessary, we will make this assumption in
the following since it simplif ies the analysis. We thus
have

P
i hi ­ 0, and then

P
i h1

i ­
P

i h2
i , with

P
i h1

i
and

P
i h2

i both positive. However, we notice that not
all elements h1

i and h2
i are positive (see Fig. 2).

The model of an image distorted by nonoverlapping
noise can be written as3

si ­ ati 1 bis1 2 wid , (1)

where si is the input image and a is a possible
amplitude parameter. For a classical additive noise
model, the input image would be si ­ ati 1 bi. The
central value of the correlation between the input
image and the filter can thus be written as Cs,h ­P

i hiti. Let us denote anon saaddd the value of a that
leads to a zero correlation value in the nonoverlapping
(additive) noise case. Thus one has

anon ­

P
i h2

i biP
i h1

i ti

, aadd ­ 2

P
i hibiP
i h1

i ti

. (2)

Because bi and ti are positive variables, anon is ex-
pected to be a positive random variable, whereas aadd
is a random variable with a zero mean whatever the
mean value kbl of the additive noise, because

P
i hi ­ 0.

Thus for nonoverlapping noise there always exists a
positive non-null value of the illumination that leads
to a null value of the correlation function at the tar-
get location. This situation can occur even if the
signal-to-noise ratio of the input image hwhich equals
a2f

P
i stid2gyf

P
i sbid2gj is high.

It is important to note that in some cases an approxi-
mate localization of the target may be possible even
if the value of the correlation function at the target
location is zero. This may occur when the filter is not
regularized,8 that is, when its correlation function with
the target is very narrow. In this case, for a ­ anon,
the value of the correlation function at the target
location is zero by definition, but there may still be
a peak just a few pixels away from the exact target
location, so that the target is localized approximately.
However, such nonregularized filters have been shown
to be oversensitive to small variations of scale and
orientation of the target.8 On the contrary, regular-
ized filters are more robust to such variations. Their
correlation functions with the target have broader
peaks and smoother variations. Thus, in this case,
if the value of the correlation function at the target
location is zero, there will be no peak near the target
location. Because regularized filters are much more
useful in practice, we consider only this type of filter in
the following.

We now concentrate on the case of nonoverlapping
noise. The average of the random variable anon is
kanonl ­ kbls

P
i h2

i dys
P

i h1
i tid, and its variance is

kda 2
non l ­

P
i jĥ2

v j2Sv

j
P

i h1
i tij2

, (3)

where ĥ2
v is the Fourier transform of h2

v and Sv is
the spectral density of the noise, which is supposed
to be stationary. If h2

v is a low-pass filter (which
is generally the case), its frequency spectrum is a
peak with a maximum for the frequency zero. Thus
when the noise becomes correlated, that is, when
the Sv function becomes narrower and concentrated
on low frequencies, the value of kda 2

non l increases.
This means that the f luctuations of the value of the
illumination leading to a null correlation increase with
the correlation length of the noise.

In fact, detection or localization is possible as long as
the square modulus of the correlation of the filter with
the image at the target location sjC0

s,hj2d is larger than
the maximum value of the square modulus of the cor-
relation with the background: jC0

s,hj2 . maxijC
i
b,hj2,

Fig. 2. Top: impulse response of the OT filter used
in our simulations; the image is 256 3 256 pixels.
Bottom: cross section of the 128th line of the upper image.
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Fig. 3. Square root of kda 2
non l computed from Eq. (3)

and the standard deviation of anon measured from
500 noise realizations. These two values are plotted ver-
sus the correlation length of the noise expressed in pixels.
Inset: the upper curve plots 10skjdCb,hj2lyj

P
i h1

i tij
2d1/2

computed from Eq. (4); the lower curve plots the average
length of the forbidden interval measured from 100 noise
realizations. These two values are plotted versus the
correlation length of the noise expressed in pixels. Note
the parallel variations of the curve.

with Ci
b,h ­

P
j hj bj2i. The values of a that do not

satisfy this inequality will lead to a false or no detec-
tion and localization. Let am be the minimum of these
values and aM their maximum. We call the interval
fam; aM g the forbidden interval. The width of this
interval depends on maxijC

i
b,hj2. One can easily com-

pute the mean kCb,hl ­ 0 and the variance kdC 2
b,h l of

Ci
b,h:

kjdCb,hj2l ­
X
v

jĥvj
2Sv ­

X
v

jt̂vj
2Sv

B 2
v

. (4)

The equation shows that the width of the forbidden
interval depends on the correlation length if the modu-
lus of the filter is not inpedendent of the spatial fre-
quencies (which would have been the case with the
phase-only filter). For example, with bandpass filters
such as OT filters, when the noise becomes correlated
(i.e., Sv concentrates on low frequencies) the value of
kdC 2

b,h l decreases, so that one expects that the length
of the forbidden interval will also decrease.

To illustrate these results and conjectures, we now
show some numerical simulations of the OT linear
filter with input images distorted by nonoverlapping
noise. We first consider a 256 3 256 pixel image of
the airplane shown in Fig. 1, whose average bright-
ness is 0.77. We choose as a background noise model a
Gaussian noise of 1.0 average and 0.33 standard devia-
tion. The autocorrelation function of the noise is a
Gaussian with a width varying from 0 (white noise)
to 20 pixels. We first noticed that the mean value
of kanonl is nearly constant whatever the correlation
length of the background noise and is equal to the
theoretical value computed from the first of Eqs. (2).
Two curves representing the standard deviation of anon
computed from Eq. (3) and experimentally measured
on 500 noise realizations for each correlation length are
plotted in Fig. 3. One can notice the agreement be-
tween the numerical data and theoretical values. The
inset of Fig. 3 shows the average width of the forbid-
den interval measured on 100 noise realizations and
kjdCb,hj2lyj

P
i h1

i tij
2 computed from Eq. (4) plotted ver-

sus the correlation length of the noise. As we conjec-
tured above, the two curves have parallel variations
and decrease for high correlation lengths.

In conclusion, in the presence of nonoverlapping
background noise there is always an interval of target-
illumination values for which regularized linear filters
designed for overlapping noise fail to detect the target,
even if the classic signal-to-noise ratio of the scene is
high and the target is not distorted. We have shown
how the characteristics of this interval vary with the
correlation length of the noise. The purpose of our
future research will be to use this information to design
detection strategies that are robust to nonoverlapping
background noise.
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