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The demand for high frequency surface acoustic wave devices for modern telecommunication
applications imposes the development of devices able to answer the manufacturer requirements. The
use of high velocity substrates for which a piezoelectric layer is required to excite and detect surface
waves has been widely investigated and requires the implementation of accurate theoretical tools to
identify the best combinations of material. The present paper proposes a mixed formulation
combining finite element analysis with a boundary integral method to accurately simulate the
capability of massive periodic interdigital transducers to excite and detect guided acoustic waves in
layered media. The proposed model is exploited for different typical configurations200&
American Institute of Physics[DOI: 10.1063/1.175831]7

I. INTRODUCTION development of versatile and very accurate models as pro-
posed by Ventura, Hode, and SotdEndoh, Hashimoto, and
Since the beginning of the 1990s, the growth of the mod+yamagushf, or Koskela, Plessky, and Salonfagenerally
ern telecommunication market and more specially the develdeyoted to the theoretical characterization of infinite periodic
opment of general public cellular phones has generated gratings, providing useful data for design tools based on
high demand in research and development for passive radi@._matris® or coupling-of-mod@ approaches.
frequency(RF) components such as surface acoustic wave At the same time, the need for increasing the frequency
(SAW) filters widely used in these systems. Spectacular adgperation of such devices has generated studies not only on
vances have been performed concerning the size reduction g gh velocity surface modes such as leaky SAW on LiJaO
the SAW devices for narrow band intermediate frequency, LINbO, but also on compound substrates, for instance,
filtering (30—300 MH3 as well as wide band RF applications consisting of a piezoelectric layéhIN, ZnO, etc) deposited
(0.8—2.4 GHz. This was achieved not only because of teCh'atop a high acoustic wave veI(;city ’material such as

nology improvements but also because of a very strong Effor(Eiamond—C, silicon carbide, sapphire, silicon, and so on. The

in the modeling and design of SAW devices, taking prOperI.ymultiplication of papers on this topic prevents the citation of

into account their actual structure to benefit from the opt|m|-aII of them but Refs. 10—12 can be considered as represen-

zation of.second—qrdgr eﬁgc@r instance, the shape of the tative work in that field. Although models exist for predicting
metal strips used in interdigital transducers affects the trap-

ping and diffraction effects of wave propagating under suchthe d'SperS'ong?fha"'oT of acoustic wave in almost any lay-
gratings. Pioneer works were proposed by Bi&jaer, Inge- ere_d structur_é,'_ very Ilttl_e work was devot_ed to the theo-
brigsten, and Sketefor modeling infinite periodic grating retical descr|'pt|0n' of eXC|t§1t|0n and d.etectlpr! of waves on
capabilities to launch and detect surface waves on any semstacked media using massive surface interdigital transducers.
infinite piezoelectric substrate but neglecting the mass load- ' the present paper, we report on a model based on the
ing of the electrodes. Milsom, Reilly, and Redwdatien ~ theoretical approach proposed by Venteizl. for infinite
proposed a model of finite length devices composed of anp(_enodm ele(_:trodg gratings atop semi-infinite substrates
pattern of electrodetill neglecting the electrode mass load- Widely described in Refs. 15 and 16 and extended to the
ing). Afterwards, the interest in the accurate prediction of theSimulation of such transducers atop any layered meata
influence of the electrode mass loading has pushed sonféiming flat interfaces between each layéfhe electrode
researchers to de\/e|0p orto adapt mode"ng Concepts mixin@()ntributiOn is described using a finite element analysis ben-
integral formulations based on the knowledge of the Green'€fiting from all the advances performed in that fiéldrhe
function of the substratéhe displacement response of a sub-compound substrate is simulated via its Green’s function in-
strate submitted to a local stress solicitation or vice Jersaserted in the above-mentioned boundary integral method
and numerical computation tools such as finite difference ofBIM), here again taking advantage of recent developments
finite element analyses. Baghai-Waeljial. have proposed in devoted to the numerical stabilization of the corresponding
the early 1990s such developments for infinite periodiccalculation®® This point is essential when computing the re-
gratings as well as finite electrode structureddany im-  sponse of a device consisting in piezoelectric, dielectric, or
provements have been performed since then, allowing for theetallic layers® with various thicknesses in the range from a
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vacuum 2 tablished Green’s function formalism, the relation between
/ / 2 the generalized surface stregg-ny (including the normal
electrical displacement as defined in Refs. 15 ancah@ the
generalized displacements (including the electrical poten-
tial) is given by

X3
X1

X2

+pl2
Layered Structure Ui(Xl):f Gl (X=X, ) Tj(x" )N dx’, (1)
—pl2

where the periodic Green’s functio®fj, is defined as fol-
| faor+o lows, according to the Floquet theorem combined with the
Bloch function:

FIG. 1. Scheme of the typical geometry of the addressed problem: an infi- 1 +o0 2

nite grating of periodb alongx; atop a compound substrate composed of p _ = ~ :_77 +
layers stacked along,. a/p is the metallization ratio anid/2p the electrode G”k(xl 0 P Zw G'Jk S1 p (v D.f
relative height.

@)

2
Xexp —j—(y+1)x
few micrometers to a few tenth of nanometers deposited on a P

semi-infinite or a thick substrate. Both calculations are mixed, ., ¢ being the frequencys, the slowness along, as de-
along the method described in Refs. 15 and 16, allowing foki\c ' apove. andy the harrlnonic excitation paralmeférl.e

the derivation of the harmonic admittance of the considere(;i-he tiide denotes the spectral Green’s function hil the

struct'ur.e. One can then extract from th|§ result typical CharE:urrent number of the spatial harmonic of the Bloch-Floquet
acteristics of the waves that can be excited and detected

. kH’evelo ment. In the following, the normaj is considered
the IDTs, such as phase velocitgr slownesy electrome- P ¢ k

hanical i tion | 4 diffracti ¢ th normal tox; without any loss of generality. There is no ob-
chanica ;(])upllng£ p(;opa%:}[rl]on (;stshes, and I : ra(i |ont(_) i Sious general analytical solution for Eql). As a conse-
wave on the electrodes. ough the mode! can treat in rInEquence, one has to transform the corresponding continuous

sic material losses as imaginary parts of the physical COM5roblem into a discrete form that can be solved using linear

stants, these leakage sources have been neglected in t 'Iaebra techniques. In that matter, we use a Chebyshev de-

work. The only Ieaka_lg(_a ph_enomena that can occur are the\/nelopment of the generalized displacement and surface stress
related to wave radiation into the bullsemi-infinite sub-

. . . ) fields, inserting in the latter the function/{1—x?) account-
strate assumptionlin the first section of this paper, we recall ing for the well-known charge electrode edge effécfsi516
the principles of the proposed calculation. Some specific aSrhis yields the following expressions ; andu; under the
pects concerning the treatment of the Green’s functam ! !

more specifically its asymptotic behavi@re also shown. A electrode:
second part is devoted to the exploitation of the model for

partlcular Iayergd structqre; in order to vglldate our simula- Toi(X) = = ,
tion tool and to illustrate its interest for typical layered struc- V1-x]
tures. The propagation modes on typical combinations of
layer and substrate are first identified, and a full character- _
ization is provided for optimal working pointfrequency- Ui(X1)=n;w BinCn(xa),
thickness productft). Further exploitations and develop-

ments of our model are discussed as a conclusion. with

ErT:fooa’ann(Yl)

+ oo

Il. THEORETICAL APPROACH —  2Xq

A. Harmonic admittance a

()

As mentioned in the Introduction, only the general prin- a
ciples are recalled here since they were already presented in |x1|<§.
detail in Refs. 15 and 16. We first introduce the basic geom-

etry of the pro_blem, i.e., an infinite periodic grating lying |, Eg. (3), C, are the Chebyshev polynomials, ang, and
alongx, deposited atop a compound substrate composed g% ' are the development coefficients which become the ac-

piezoelectric or metallic layers stacked alongas shown in o1 unknowns of the problem. Inserting EG) into Eq. (1)

Fig. 1 (the first layer must be at least dielectric but is gener-,n4 then projecting that obtained from over the Chebyshev

ally piezoelectrig. Practical interdigital transducers used for 50 provides the relation between the stress and displace-
the excitation of surface waves generally exhibit apertures,ant coefficients &, and B;,) as follows:
in in .

large enough to neglect the dependence of the fields along
X3. We assume a spatial harmonic excitation driving the Bim=Aimin@in (4)
electrode grating, allowing for considering only one period

in the formal description of the problem. Using the well es-where

Downloaded 03 Dec 2004 to 195.83.19.253. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 96, No. 12, 15 December 2004 Ballandras et al. 7733

w2 to monic admittance is computed considering an acoustic aper-
Amjn=vi——j™ " E Gijjo(y+I.1) ture equal to twice the grating’s period, in order to normalize
P === the frequency by the above-mentioned peribd)( The har-
7a ma monic admittanceY H is then directly expressed in siemens
XJIm ?(Vﬂ) Jn(?(vﬂ) : (5  (S). For a unit potential excitation, it reads

In Eq. (5), J, are the Bessel's functions of nth order and of ~ YH(y,fp)=2pY(y,fp)

first kind (also called cylindrical by some authp@nd v, is = 2pw0

a coefficient accounting for the orthogonality properties of total

the Chebyshev polynomiats:*® _ wa
Equation (5) then provides &M relations between ZJZWpr‘“O- (10

8XM unknowns, requiring then additional equations to

solve the problem. They are provided by the boundary conFrom this harmonic admittance, one can extract general data

ditions imposed at the propagation surface. We consider firstbout the excitation and guiding of any mode of the structure

the mechanical boundary conditions allowing for the descrip-as performed for single-crystal substrate&i.e., the veloc-

tion of massive electrode contribution to the problem. Theity, the electromechanical coupling, the propagation leakage,

mechanical stress and displacements are assumed continuausl the wave diffraction due to massive electrodes. Thanks

at the electrode/substrate boundary and the normal stresststhe use of FEA, no restriction has to be considered about

vanish elsewhere, the electrode shape and height.

a
ui:Lij(TZj) for |X1|<§,
6) B. Green’s function for layered substrates

Ty=0 for §<|X1|<E_ In the ca_lculation presented above, o_nly the spectral
2 2 Green’s function has to be computed to simulate any sub-

According to Ref. 16, the mechanical behavior of the elecStrate(semi-infinite or of given thicknegshanks to the infi-
trode is simulated using a finite element analyEEA) con- nite periodicity of the problem. This considerably simplifies
sisting in the calculation of the displacement at the interfacdhe calculation process since the Green's function of a given
electrode/substrate for each term of the Chebyshev develo§®Mpound substrate can be easily derived only in the spectral
ment and for each surface stress component. Assuming tfomain. Moreover, the dispersion behavior of such a sub-
restriction of the FEA solution at the above-mentioned inter-Straté would impose the computation of the spatial Green's
face written ag K;; _Q,ZMij];l, one can establish the rela- function (if req_uwed for each frequency by inverse Fourier
tion betweenw;, and 8;, generated by the electrode as fol- transform, which would take too long. However, particular

lows: care must be devoted to the way the Green’s function is
computed to avoid numerical instabilities, particularly for the

Bim=Dimjnajn  with i,j=1,2,3 () case of a substrate of finite thickness, for thick layers atop
and semi-infinite substrates, and for stacked layers exhibiting

large thickness variations. In these cases, a so-called
diffusion-matrix method was proposed in Ref. 18 enabling
stable computation of the Green'’s function of any substrate.

. . The principle of this method is recalled here.
wherew is the angular frequency and the matfixPrCq) Af)ccorcﬁng to Fahmy-Adler approac¢fi?®we consider a

symbolically holds for the integration of the product of FEA i L .

. . . L state vectoth=(u;,T,;)" associating the generalized stress
interpolation and Chebyshev polynomials when mixing theand displacement f'eljds 10 describe the acoustic behavior of
FEA and the boundary integral formulation of Ef). Equa- 'SP ' ! ustl Vi

ton (7) then provides M more equations 1o thexem  SE50 TRRHE B SR B S e e orThe
ones previously established in E@). Finally, an electric P P P

boundary condition is imposed, considering the flat eIectrodéQ'F"’mked structure conforms to the definition of Fig. 2. For a

sssumpton confomatly 0 Refs 27 15, and 1. L conss' SO0P° © S0ESSLE). Ve s v o o
in setting the electrode to a 1 V excitation potential, fixing Y P P

) .~ a matrixF composed of the eight corresponding eigenvectors
::?::t;r;es ;:(;)Ilr(r)e\i\/s;ondlnyl Chebyshev development coeffi with a diagonal matrixA(x,) of rank 8x8 describing the

dependence along, via the eigenvalues, (Ref. 18 and a
Biwp=1 and B4,=0 for m#0. (9)  vectora of the partial mode amplitudes,

: ®)

Dimjn:[f Pmcq}[Kij_szij]I‘l f PnCxk

As in Refs. 15 and_ 16, the Iin_ear system cpnstructed with h(x,) = FA(X,)aexy 2j f (t—SyX; — SsX3) |- (12)
Egs.(4), (7), and(9) is solved using standard linear algebraic

equation tools. One can then have access to the harmonior each layer m, an intermediate variag{@ is introduced.
admittance of the structure by computing the total electricallhis vector of same nature and rank asallows for the
chargeQyoia) Under the electrode, taking advantage of theseparation of reflected and incident partial waves at the layer
orthogonal properties of Chebyshev polynomials. The harinterfaces(see Fig. 3,
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X3/ Vacuum g(m)(xm) =A(—tp) g(m)(xmf 1), (14
wheret,, is the thickness of the layen conformably to Fig.
K 2. Using Eq.(13), one can expresg™(X,,) only as a func-
o Layer N tion of reflected partial waves, yielding the following expres-
O Lay‘f’ R sion:
X II |
Layer 2 (m) = 4
X g™ (Xm) A(m*)(_tm)R(m)A(mﬂ(tm)
Substrate or first layer XA(”‘”(—tm)g(m*)(Xm_l). (15)
Xo In Eq. (15), 1,4 is the identity matrix of rank %4. The con-
v Vagyum tinuity of the generalized normal stresses and displacements

2 at the interface between layersand (m+ 1), i.e., the equal-

FIG. 2. Geometrical definition of a stacked structure for the computation ofity Of State VeCt0r31(m+l)(Xm) and h(m)(xm), provides the
the corresponding surface Green’s function. relation betweery™ ") andg™ which reads

g™ P (Xp) =[F™ 17 F ™G ™ (Xpn). (16)

Equation(15) can be now inserted into E¢L6), yielding the

(m+))
definition of a matrix of rank &4 in which two submatrices

g
g™ (xy) = ( gm)

=A(m)(x2)a<m) K andL can be emphasized, relative to reflected and incident
partial waves of layerri+1), respectively,
A(m+)(X2) 0 am+)
:( 0 A(mi)(X )) a(mf) ) (12) [Fm+1]_1|:(m) |4 ):(K)
2 AMI) (=t )RMAMH) (¢ ) L)
where A(M*)(x,) anda™*) correspond to the terms of the 17

matrix A and of the vector relative to reflected+) and
incident(—) partial waves. By a matter of fact, one can de-
fine a reflection matrixR™ of rank 4x4 at the interface
between layerifi—1) and layem linking together incident
and reflected partial waves as follows:

Conformably to Eq(13) one can finally deduce the reflec-
tion matrix of layer m+1) asR(M Y=LK ~*. This itera-
tive scheme is repeated until the top layer of the stack is
reachedi.e.,x,= Xy as defined in Fig. 2 The state vectan
relative to the top surface then reads

g™ (Xm-1)=R™Mg™ (X1 (13 NN
, . S . . h(Xn)=FMg™(Xy)
In case the first layer is semi-infinite, the reflection matrix
R® is null, otherwise the bottom surface is assumed free. In _EN L4
this latter situation, the surface stress and charge density are AN (=t ) RMAN) (1)

assumed nul{only the generalized surface displacements in (N+)
vectorh are nonzery providing the expression ef). Thus, Xg T (Xy)
one can compute the reflection matf® considering the N
definition of Eq.(13).1® Note that the permittivity of the ad- Z( = gN I (Xy)- (18

jacent medium can be taken into account along the process

described in Refs. 13, 15, 16, 18, and 19. Once the reflectiomtroducingN and P as submatrices relative to the general-
matrix is known at the first interface, the reflection matricesized surface displacements and stresses, respectively, one can
at the other interfaces of the stack are computed iterativelgefine the spectral Green's function relatingto T,; asG

using a recurrence process. It consists first in linking the= NP~ ! [whereG is a matrix of rank &4 corresponding to
interfaces between layensand (m+ 1) via the variablgas  the Gj;, tensor of Eq(5)], conformably to the usual process
follows: for semi-infinite substrate’s.” 1516

X1
X1

Layer #(m+1) AN Wl
b RmD 7

Xm
/ \ FIG. 3. Recurrence principle—definition of the re-

Layer #m Reflected modes m+  Incidents modes m- flected and incident modes.

N e
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C. Numerical aspects 12 Y ]

An important point to note concerns the fact that in the __ ,:, e Y \ “‘w..w
above-described recurrence process, all the inverted matric E 9 "t__q Y ”‘k“
are nonsingular in the most general case. Particularly, fo 3 s %&‘X& X "‘-..H \‘-.
large values of the frequency-slowness-thickness prodw%’ 7 x’\ o “-\
(ws,t,,) in matrix A, the associated submatrices relative to 5 J %Wm ' —_—
reflected and incident partial waves tend to zero and do nc:f" 5 1 MM.
degrade the algorithm stability. This is obviously a strong 4 a) o
advantage of the partial waves’ separation. g

In Eq. (5), one assumes infinite summation of the spatial 0 05 1 1§ 2 25 3 35 4 45 5
harmonics that cannot be practically performed. Conse Frequency-thickness product (km/s)
quently, a description of the asymptotic behavior of the vm(mode#1) —— vm gmode#s ——a—  Vm (mode #5) ——

Vf (mode #1) —w—  Vf(mode #3) ———  Vf (mode #5) ——-

Green’s function is used conformably to the one proposed b vm (mode #2) —=—  Vm (mode #1) ——
Ventura(see Ref. 15 for a comprehensive description of the ~ Vfimode#2) == Vf(mode #4) —=—
calculation. Actually the first layer of the stacked substrate 6
may appear as a semi-infinite material for large enough val 5 ;’Mk‘
ues of slowness. In that case, one can substitute the corrg /’ '\\

sponding Green’s function to the one of the actual compounig 4

substrate for the computation of the asymptotic Green’g ‘j,f

function coefficients. The infinite summation of spatial har- By

monics can be then truncated to a given valug—L—1 I .E*{ A K

<I<L, forinstancel =10 provides accurate and stable re- © ]h’f 1 \

sulty. However, due to the possible large differences be™ LI
— :

tween the substrate layers’ thickness, one has to impleme )? | 1'*':

s_table algor_lthms for accurately computing the Gr_een’s func 0 0 o8 1 15 2 28 e As s

tion, especially for large values of slowness which exacer Frequency-thickness product (km/s)

bates the above-mentioned differentes.

. mode #| ——— mode #3 —— mode #5 -——=-——
Also the number of terms in the Chebyshev develop-  mode #2 —— mode #4 —+—

me.nt.s has to be set to a given vahde Practlcall)_/, th? re- FIG. 4. Dispersion curve for the ZnO/C-diamond configuration for the five

striction of the developments to ten terms consists in @ Sakyst modes(a) Phase velocities\(,, metallized surfacey; free surfacg (b)

isfying trade-off between computation duration and electromechanical coupling factors.

accuracy, as in the case of single-crystal semi-infinite

substrate$®!® A smaller value yields inaccurate results,

whereas over-dimensioned value bf (for instance,M  and simply indicated when not identically equal to zero.

greater than 30generates numerical instabilities. Note that the coupling strength is comparable with the cou-

pling coefficient, but more general since it can apply to the

above definition for leaky modes. The coupling strength also

accounts for the dynamic capacitance changes whereas the

Once the model is implemented numerically, one carcoupling factork? is a static parameter.

exploit it to identify optimal working configurations on any .

compound substrate. To illustrate that procedure, typicaf" ZnO/C-diamond

combinations of material are considered along the following  Zinc oxide is one of the most often used piezoelectric

procedure. We first compute the dispersion curve of the comlayers to excite guided waves on nonpiezoelectric

pound considered using the Green’s function. This providesubstrated®!? It is obtained by reactive RF sputtering of

the evolution of the mode velocities and coupling coeffi-zinc using an oxygen plasma to promote the oxidation phe-

cients versus the normalized frequency-thicknds$ prod-  nomenon. To the best of our knowledge, it can be easily

uct. The coupling coefficienlt(§ then is given by the ratio deposited on a large number of substrates. ZnO belongs to

2(Vfree— Vimed ! Viree With V0. andV o the wave velocity, the 6 mm class of hexagonal materials and grows along its C

respectively, assuming a free and a metallized surface. Botiaxis using most of the standard sputtering deposition pro-

values are deduced from the effective permittivity that iscesses. The use of diamondlike carbon for surface acoustic

inversely proportional to th&,4, term of the Green’s func- wave engineering has been imagined as soon as such sub-

tion. We then focus on the most favoralfleworking points  strate and thin piezoelectric layers became available. As for

for computing a full set of relevant excitation and propaga-ZnO, the diamond layer is assumed C oriened., the C

tion parameters of selected modes, i.e., phase velocity, coaxis is normal to the surfagand is identified as a¥(X[)/90°

pling strength(here defined as the ratio between the ampli-in the IEEE Std-176 standarl949. With bulk acoustic

tude of the pole of the mode and the static capacitancewave velocities ranging from 12 000 to 20 000 ntsit ap-

reflection coefficient on a single strip, and propagation leakpears as a very attractive material for RF applications. Figure

age. Concerning the latter parameter, we principally look fod shows the dispersion curve for the first modes of the wave-

nonleaky modes. Consequently, it is generally not plottedyuide. One can note from this graph that férsmaller than

Coupling coeff

IIl. EXPLOITATION OF THE MODEL
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FIG. 5. Harmonic admittance of a 3:4n thick ZnO layer atop C-diamond.
Grating period 2.35um, excitation parametey=0.5, h/2p=1%, al/p
=50%.

1 kms ! (or 1 GHzum), no wave can be efficiently excited.
The most interesting working should be found in the range
2.5-3.5um because the second mode is then found well
coupled ((§ in the range 3%-5%and the phase velocity
appears almost stable with variations. The main drawback
of such a configuration is the occurrence of a non-negligible
contribution of the first mode, the third one almost vanishing
(K2 smaller than 0.1%at ft=3.3km s *. Note that the fifth
mode can reach an electromechanical coupling larger thar |R|
4% atft=3.5kms ! (phase velocity equals 12300 m's,
but the dependence of the velocity verdtisvas judged too 25
large for any actual implementation as well as the spectral 2
distribution density. One can actually note that the fourth and!-5
fitth modes behave similarly to the first and second ones Tr
when their velocities become very close. All the regardedo'5 i g _
modes are free of any propagation leakage. - B e ez

The analysis of an infinite periodic aluminum grating’s =
acoustic-electric properties is then performed fét
=3.4kms ! for which the coupling of the second mode 3/,',
reaches 5.5% and the mode separation sufficient to enable
efficient computation&® Also it may be acceptable to de- FIG. 6. Characterization of the second mode of the ZnO/C-diamond com-
posit, for instance, a &m thick ZnO layer for devices op- pound vs electrode shageelative heighth/2p and metallization rati@/p).
erating at 1.6—1.8 GHz. Above that valuefof the coupling 21O thickness 3.4um, grating period 2.3%m. (&) Phase velocity(b)

. . _electromechanical coupling strengtls) magnitude of the reflection coeffi-

of the second mc_)de dramatically drops anq the two firStient on one aluminum strip.
modes tend to mix together. In our calculations, we have
fixed the thickness of the ZnO layer to 3u4n, yielding a
grating’s period of 2.35um corresponding to an expected of leaky propagatiotharmonic conductance G is negligible
wave velocity close to 4700 m'$ (working frequency in the until the velocity threshold of bulk radiation in C-oriented
vicinity of 1 GHz). The aluminum is assumed isotropic and diamond(i.e., 12807 ms?).
the shape of the electrode is assumed rectangular. Its relative The wave velocity as well as the coupling strength and
height h/2p and metallization ratica/p are varied in the the reflection coefficient on one aluminum strip are then ex-
respective ranges 1%—5% and 30%—80%. Figure 5 shows dracted according to Ref. 15, and the results are reported in
example of the harmonic admittance computed §6t0.5  Figs. Ga)—6(c). As in the case of single-crystal substrates,
(alternated+ VV/—V excitation figure, h/2p anda/p being, the wave velocity is strongly affected by the mass loading
respectively, fixed to 1% and 50%. Among the tremendou®ffect and then exhibits a quadratic decrease alo@g and
number of guided mode@ndicated by the poles of the har- a/p. However, one can note that surprisingly the coupling
monic susceptance, i.e., the sharp variations of the curve vestrength never reaches the value of 5% found usidgle-
sus frequency a major contribution is actually found at 1 rived from the effective permittivity and remains smaller
GHz and also less coupled contributions of other modes athan 3%, even if no mass loading is considered. This phe-
previously predicted. This figure also confirms the absenc@aomenon does not occur for the first mgdeupling strength
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5.63 s 0.25 metallization ratio, contrary to the case for most of the
5.62 et single-crystal substrat@s>®?1Sych a feature is very im-
5.61 4 MWMM " o2 portant for the fabrication of actual devices and cannot be
% 56 ﬁ’z‘"‘**‘“““ g accessed without an advanced simulation tool as the one de-
£ 650 ey o5 5 scribed and used here. Finally, the directivity factor remains
z r / g always smaller than 0.1°, indicating that the resonance al-
§ >58 K §, ways occurs at the beginning of the frequency stop Hand
g > 4 ot £ resonance arises at its end
£ 556 . / 3
Fy
555 el 0.05 .
j " Vm (mode #1) —— B. AlN/SapphIre
554 gy Vf (mode #1) ——— . . o
553 L Ks2 (mode#1) -~ | The analysis of the effective permittivity enables one to
0 05 1 15 2 25 3 35 4 45 5 extract the propagation parameters of two coupled modes,
Frequency-thickness product (km/s) but only one is free of propagation leakad#e second one
FIG. 7. Dispersion curve of the first mode for the AIN/sapphire configura-e)(r"b_ItS losses up to 1 dB/Wh'Ch Is not comp_atlblg W_|th
tion (phase velocities and electromechanical coupling factor practical surface wave device implementajiofThis is

mainly due to the fact that waves propagate in the AIN layer

with a phase velocity generally larger than the cutoff velocity
found close to 0.93% when computed using the harmonicorresponding to bulk wave radiation in sapphire. The dis-
admittance¢ and may be explained by a distortion of the persion of this mode is reported in Fig. 7. We then only focus
mode shape due to the actual charge distribution over then the first mode for which a zero dependence of the phase
electrode. On the other hand, one can expect a larger cowelocity versus theft product can be found in the range
pling coefficient when increasing the electrode thickness aB—3.5 kms*. The FEA/BIM computation is then performed
the price of a dramatic reduction of the phase velogitifich ~ for ft=3.25km $* and the grating’s period was fixed to 2.8
is already comparable to the phase velocity onum in order to operate close to 1 GHz.
LiINbO; (Y X1)/64° in that configuration Nevertheless, one Figures 8a)—8(d) show the evolution of the phase ve-
can note that the propagation leakages are homogeneousbcity, the coupling strength, and the reflection coefficient on
equal to zero for all the considered electrode shapes. Anoth@ne aluminum strip. In that case, the coupling strength is in
interesting aspect of this configuration is that the maximungood agreement with the coupling factor obtained from the
of the reflection coefficient magnitud®| is found for small ~ Green’s function, but one can see that it dramatically reduces

Phase Velocity Vp ——— IR|
56 —

Vp (km/s)

Reflection Coefficient |R] ——
3.5 I

= Q= =N

T T T T
—
ko)

[=N=]

cofe

Coupling Coefficient Ks2
022 ———

FIG. 8. Characterization of the first mode of the AIN/sapphire compound vs electrode(sblagige heighth/2p and metallization rati@/p). AIN thickness
3.25um, grating period 2.&m. (a) Phase velocityb) electromechanical coupling strengtb) magnitude of the reflection coefficient on one aluminum strip,
(d) directivity.
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with the mass loading. Another interesting point concerns thi 6 6
reflection coefficient that changes its sign when the electrod "&,k — -
reaches a given shape/p timesh/2p). Under that thresh- & 55 %] "“-\ o 55
old, the resonance occurs at the beginning of the frequenc%’ 5;% RN
stop band and at the end above it. This is characterized tg 5 N Ty 5
the change in the directivitgthe capability of the transducer § x\ % '
to generate more electroacoustic energy on one side than ti® 451 hY e i ) 2
other; see, for instance, Refs. 15 and 21 for a comprehensi\ N
definition of the phenomenamvhich abruptly varies from 0° © 4 R 4
to 90°. A similar phenomenon was already pointed out for @
the Rayleigh wave onY(X[)/128° lithium niobaté! Note 35 s 1 15 2 25 5 35 4 45 5
that large reflection coefficients are obtained abovep Frequency-thickness product (km/s)
=3% to the price of a severe reduction in the electrome:  ym (mode #1) VF (mode #2) —=—  Vm (mode #4) -~
chanical coupling. Finally, a stability point of the reflection ~Vf{rede#1) - Vmimodo 48 =7 Viimode#d) ==
coefficient(corresponding amplitude from 0.1 to 0)18 ob-
served for smala/p and h/2p. Such a configuration is at- 4 !
tractive only for delay lines which requires almost no reflec- s e - 6
tion by the grating. One can then take advantage of the wesg s Z : e, 5
reflection and operate using standard finger wigti) in- g i Wm\m
stead of split fingers hardly achievable at high frequenciesg 4 - *‘u& 4
Whatever, this solution suffers from a lack of coupling for g 3 i 3
filter application but may be attractive when using heavyg f ®) 2
metallization for resonators. The problem here is the Iineag, 2 o
thermal dependence of the frequency which weaken the sc || ¢ — - . xﬁx 1
lution compared to quartz for instance. iy T —— T

o L — 0

0 0.5 1 1.5 2 25 3 35 4 45 1)

Frequency-thickness product (km/s)

C. LiNbO 5/(100) Silicon

In this case, the lithium niobate layer is assumed to be
deposited using sputtering techniques, yielding a C-orientefli. 9. pispersion curve for the LINb@100) silicon configuration for the
film. This corresponds to a(X1)/90° cut conformably to the five first modes.(a) Phase velocities\(,, metallized surfacey; free sur-
IEEE standard Std-176. Only the propagation along Xhe face, (b) electromechanical coupling factors.
axis is considered for the sake of conciseness. The silicon

corresponds to ay(X) cut. The propagation parameters of such an electrode height, it sounds better to optirffeand

th? .fqurth first mOdeS are extracted .fro”.‘ the effective PETYH take advantage of the inversion point of its dependence
mittivity as previously and reported in Fig. 9. Propagation

. . versus the metallization ratio. As for ZnO/diamo8ec.
loss is always smaller than 16dB/X. The second mode is IITA), there is no directivity effects, and the resonance al-

Sﬁ;gcgg\lye'ggzrij?zgl’_g)l((?rl]bsl,tlln_ gTiri]seilsekareovrcsfkrilr?gIgili:tou ways arises at the beginning of the frequency stop band.
for which the FEA/BIM analysis is performed as for the . . -
previous cases. Note that the coupling of the third modeD' LINBO 5/C-diamond /(100) Silicon
tends to increase with increasitiyy values when this mode Finally a more complicated case is addressed to fully
comes near the second one. However, possible mixing dflustrate the capability of the proposed model. It consists in
modes and also the large valuesfofprevent the practical a thin LiNbG; film deposited atop a thick diamondlike car-
use of such a mode. bon layer above a semi-infinitd 00) silicon substrate. This
The FEA-BIM calculation results are reported in Figs. combination of material has been already tested and provides
10(a)—-10(c). Note that in this case, the coupling strengthan attractive solution for very high frequency large band fil-
extracted from the harmonic admittance is also in goodering applicationg? Here, the carbon layer thickness was
agreement with the electromechanical coupling coefficienarbitrarily fixed to 20um but of course a comprehensive
computed using the effective permittivitin the vicinity of  optimization of this configuration would require to vary this
6%). This coefficient increases along the electrode heighparameter too. For the present illustration, thieproduct
and slightly higher values of coupling strength should beonly holds for the LiINbQ layer. As in the case of ZnO/C-
reached for larger mass loading. The metallization ratjp  diamond(Sec. Il A), many modes are found close to each
corresponding to a maximum coupling factor is small forother (see Fig. 11, but the third one exhibits particularly
thin metal thickness and moves to larger values for largeattractive properties, with a large coupling coefficiémp to
electrode height0.75 ath/2p=5%). A similar evolution is  18%) and a high phase velocitabout 16 ms 1) for an ft
observed for the reflection coefficief®|, but the optimum  product close to 1.3 kmis. This point has been then se-
value is rather found a/p=0.5 for h/2p=5%. Since the lected for the FEA-BIM characterization, even if the phase
variation of the coupling strength versagp is weak for  velocity is found highly dependent on the layer’s thickness.

Ks2 (mode #1) —— Ks2 (mode #3) -
Ks2 (mode #2) ——+—— Ks2 {mode #4) ——+—
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FIG. 11. Dispersion curve for the LINBC-diamond(100) silicon configu-
ration for the four first four modegia) Phase velocities\{(,, metallized
surface,V; free surfacg (b) electromechanical coupling factors.

as small as expected considering results extracted from the
effective permittivity. The metallization ratica/p=0.5
which is the most commonly used when developing proto-
type SAW in a blind approach is found the less favorable
case in terms of coupling strengtthis of course is not an
FIG. 10. Characterization of the second mode of the LilytI®O) silicon mtumve resulh. When .also regardlng the reflection Coef.ﬂ-
compound vs electrode shafrelative heighth/2p and metallization ratio Clent|R|’ one can easily deduce that the preferred configu-

a/p). LiNbO; thickness 1.3:m, grating period 2.3:m. (a) Phase velocity, ~ ration on such compound corresponds to small values pf
(b) electromechanical coupling strength) Magnitude of the reflection co-  (typically 0.3—0.3%. A coupling strength of 8.7% can be

efficient on one aluminum strip. reached fom/p=0.3 andh/2p=5% with a velocity close to
9500 ms™. These figures are particularly well suited for
present and future RF wide band filtering applications. For

Actually, considering technology limits, the use of such com-those who have access to diamond and Lihbl@yer

pound substrate allows for the fabrication of 5 GHz devicegechnologie€? it is a possible alternative to the development

with a grating period of Jum, which is out of reach for any of bulk acoustic wave (BAW) AIN-based thin film

single piezoelectric crystal. In the following calculations, theresonator$® which exhibit comparable features considering

period was fixed to um for the sake of comparison with the the phase velocity and coupling factor.

other treated cases.

As in the previous cases, the phase velocity, couplingE Discussion

strength, and reflection coefficieas well as the directivity '

have been computed for G<&/p<0.8 andh/2p varying As we tried to show along with the presented illustra-

from 0% to 5%. Figures 12)—(c) present the mapping of tions, the evolution of wave characteristics under periodic

these characteristics along these parameters. The propagatigratings may significantly differ from the data extracted from

leakages are homogeneously equal to zero for all the considhe effective permittivity or any equivalent approach. In such

ered couples {/2p,a/p). As in the case of ZnO/diamond models, severe assumptions concerning the propagation con-

(Sec. Il A), the coupling strength is found to be about twice ditions of the wave may generate considerable missestimat-
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Phase Velocity Vp ——— distribution computed using the Green’s function approach
' does not reveal any particular difference between the treated
waveguides and the polarization of the wave is either elliptic
(Sec. Il A) or mainly transverséSec. Il D). Whatever the
origin of the phenomenon, the presented examples show that
for such complicated associations of material, one cannot
avoid an accurate and realistic analysis of the waveguide
properties to optimize any SAW device built on those com-
pound substrates.

Vp (km/s)

1

Om PO,
o OUNLOGO

T T T T T

0.3
IV. CONCLUSION

A model combining periodic FEA and a boundary inte-
Ks2 (%) gral method has been developed and implemented to address
the problem of elastic waveguides based on interdigital
transducers deposited atop layered substrates. In the pro-
posed model, the number of layers and their geometrical
characteristics are not restricted because of the effort devel-
oped to ensure the stability of the Green’s function compu-
tations required to describe the acoustic behavior of the com-
pound substrate. The only restriction concerns the interfaces
between the layers which have to be flat by construction of
the model. Many features of the proposed theoretical ap-
proach were not developed here avoiding a too long descrip-
tion, but one can note that a finite thickness substrate can be
considered and also one can force the electrical potential at
the above-mentioned interface, for instance. It has been dem-
Reflection Coefficient |R] —— onstrated throughout the paper that the optimization of an
57’ T acoustic waveguide on compound substrates is not intuitive
5 - and strongly depends on material combinations. In that mat-
? ter, one cannot save the development of such accurate mod-
els. It has been demonstrated these passed years that it is a
key point in SAW industry. It is also necessary to point out
that accurate predictions of SAW characteristics can be
achieved only if reliable material coefficients are available.
As these coefficients can change considering the bulk and the
thin layer configurations, the proposed model also can be
used to update material constants taking into account the
actual structure of the regarded devigarticularly the con-
tribution of the electrodes on the wave signaturéaiture

FIG. 12. Characterization of the third mode of the deve|0pmems..are eXpeCte.d to prowdg predlpt|ons on .t?m_
LiINDO,/C-diamond{100) silicon compound vs electrode shagelative  Perature stability of acoustic wave devices built on stratified
height h/2p and metallization ratioa/p). LiNbO; thickness 1.35um, media.

C-diamond thickness 2@m, grating period 5um. (a) Phase velocity(b)
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