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The development of new surface acoustic wave devices exhibiting complicated electrode patterns or
layered excitation transducers has been favored by an intense innovative activity in this area. For
instance, devices exhibiting interdigital transducers covered by piezoelectric or dielectric layers
have been fabricated and tested, but the design of such structures requires simulation tools capable
to accurately take into account the actual shape of the wave guide elements. A modeling approach
able to address complicated surface acoustic wave periodic structures (defined in the saggital plane)
exhibiting any geometry then has been developed and implemented. It is based on the combination
of a finite element analysis and a boundary element method. A first validation of the computation is
reported by comparison with standard surface wave devices. Surface transverse wave resonators
covered by amorphous silica have been built and consequently used for theory/experiment
assessment. Also the case of recessed electrodes has been considered. The proposed model offers
large opportunities for modeling any two-dimensional periodic elastic wave guide. © 2009

American Institute of Physics. [DOI: 10.1063/1.3021307]

I. INTRODUCTION

The simulation of periodic interdigital transducers
(IDTs) devoted to surface acoustic wave (SAW) applications
has received a very high interest for more than ten years.
From the very pioneer works by Engan1 to the advanced
modeling tools by Ventura et al.} strong efforts have been
developed to improve the understanding of the excitation and
guiding wave phenomena in SAW devices, thus favoring the
arising of a SAW device industry providing high quality fil-
ters, resonators, and sensors used worldwide. Along the cor-
responding years of scientific and technical developments,
one has to acknowledge the contributions by Blotekjaer er
al.)? introducing for the first time the notion of strip admit-
tance, later generalized by Zhang et al.* as the harmonic
admittance, and then the first combinations of finite element
analyses (FEA) together with boundary integral methods
(BIMs) achieved by Baghai-Wadji and co-workers™® allow-
ing to take into account the actual shape of electrodes used to
excite and detect the surface waves. Many research groups
have followed and improved these first attempts, yielding for
instance the generalization of periodic Green’s-function no-
tions by Plessky and Thorvaldsson’ and then providing an
intensive analysis of all kinds of waves that can be excited
and guided by surfaces loaded with any kind of electrodes
(Endoh et al.,8 Koskela et al.,9 and Biryukov and
Weinhardt'®). This so-called FEA-BIM approach has also
been extended to elastic waves excited on stratified media."'
As mentioned previously, these very accurate models have
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been widely and intensively used to compute SAW excitation
and propagation parameters,12 efficiently used in COM or
mixed matrix procedures devoted to SAW filter design.

However, the use of advanced transducer structures has
revealed many advantages for more robust devices exhibiting
optimized properties (for instance, IDTs protected by an in-
sulating layer IDTs combining grooves and strlps or
temperature and leakage compensation on lithium tantalate
cuts using an appropriate silica layerls). Most of the above-
mentioned simulation tools are implemented assuming a
single electrode (or maximum of three electrodeslé) per pe-
riod deposited on flat surfaces with vacuum as the adjacent
medium. This assumption considerably simplifies the model
(the electrode is assumed perfectly flat electrically) but is not
suited to simulate devices based on more complicated elec-
trode arrangements including dielectric or piezoelectric lay-
ers deposited on the electrode array.

Some works have been already developed to enhance the
kinds of problem addressed by such models, for instance,
based on finite difference and normal mode approaches.17 In
the present work, we propose a general and polyvalent
method to simulate any kind of SAW transducer provided its
geometry can be defined in the saggital plane. The present
paper describes an approach mixing FEA techniques and a
boundary element method (BEM) to simulate any periodic
two-dimensional (2D) elastic wave guide. The basic idea
consists in meshing the nonhomogeneous part of the trans-
ducer (typically the domain close to the electrodes) and a
very small part of the substrate and the top adjacent medium
when required (typically much less than one wavelength).
Periodic boundary conditions are considered at the edges of
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the meshed period and a radiation condition then is applied
at the meshed boundaries normal to the axis along which lies
the periodicity. The corresponding formulation relies on
boundary elements built using Green’s functions of the sub-
strate and of the adjacent medium. These two domains can
be composed of a single material or layered structures
(including viscous fluids and metals'®) assuming flat
boundaries.

This FEA-BEM approach is well suited to address dif-
ferent kinds of problems which are generally reduced to ideal
cases, thus generating discrepancies between the model and
the actual devices. The proposed model provides, for in-
stance, a comprehensive representation of the contribution of
the adjacent medium to the static capacitance of standard
SAW devices; it is also capable to take into account mass
loading and guiding effects due to the deposition of dielectric
films above the IDTs or to simulate the elastic contribution of
the electrodes in the case of interface waves.'’

In this section, theoretical developments are detailed to-
gether with numerical implementation considerations. Con-
vergence tests have been performed to define the optimal
conditions of the computation in terms of accuracy and com-
putation duration. Validation tests then are reported, per-
formed for standard SAW devices on quartz (true SAW and
transverse SAW) and lithium tantalate [leaky or pseudo-
SAW (PSAW)]. The validation procedure consists in the
comparison of numerical results provided by the proposed
approach with those delivered by the approach of Ventura et
al.* More complicated structures then are considered to illus-
trate the capabilities of our model and compared to experi-
ments to validate the efficiency of the proposed approach. A
Love wave device consisting of a surface transverse wave
(STW) device covered with an amorphous silica layer has
been fabricated and its electrical response is compared to the
harmonic admittance, demonstrating the capability of the
model to accurately predict the resonance frequencies of the
experimental device. Finally, the case of recessed electrodes
for STW has been addressed, and the predicted band gap
amplitude is compared to experimental values,” providing
again a supplementary validation of the proposed approach.
Extensions of the model to more comprehensive analyses
finally are discussed as a conclusion of the present paper.

Il. FUNDAMENTALS

Figure 1 shows a general scheme of the considered pe-
riodic device geometry. Propagation is assumed taking place
along x;. The wave guide is assumed inhomogeneous at the
excitation surface (along x; and x,) and the problem indepen-
dent of x3. As shown in this figure, the meshed region can be
composed of various materials with arbitrary shapes assum-
ing they can be well represented using an -elastic-
displacement-based FEA formulation. Material losses can
also be considered by assuming complex elastic, piezoelec-
tric, and dielectric coefficients.

The basic equations governing periodic FEA computa-
tions are now briefly recalled. We consider the case of infi-
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FIG. 1. Typical geometry of elastic wave guides considered in the proposed
work.

nite periodic structures driven by a harmonic electric
excitation®'!"? yielding the following form of the potential ¢
applied to the electrode:

b= oe . (1)

This signifies that the nth active electrode is excited by a
potential of magnitude ¢, modulated by a phase proportional
to its distance from the zeroth (reference) electrode. The ex-
citation parameter vy denotes the way the structure is excited.
For instance, an integer value of y corresponds to a synchro-
nous excitation whereas y=1/2 holds for an alternate +V/
—V excitation of the array. We then only consider the zeroth
electrode for the analysis of the grating spectral properties.

As already reported in many references (see, for in-
stance, Refs. 21 and 22), FEA can be performed for periodic
devices with rather simple modifications of the basic alge-
braic formula associating the displacement and electrical
fields to the boundary solicitations. Considering the har-
monic excitation illustrated by Eq. (1), we relate all the de-
grees of freedom (DOFs) on boundary I' to those on bound-
ary I'p, yielding the following expression:

ur ur )
B A —
= e, (2)

¢r, | | ¢r,

in which u represents the mechanical displacements. This
relation then is used to reduce the number of independent
DOF of the FEA model. This is performed without changing
the total number of DOF of the problem and simply by using
a variable change operator C depending on the excitation
parameter y.22 This provides the following form of the FEA
algebraic system to be solved:
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where K and M are the FEA stiffness and mass matrices,
respectively,22 v and ¢ the independent DOFs of the prob-
lem, and F and Q the right hand side boundary forces and
electrical charges. The superscript * denotes a complex con-
jugation. Since K can be complex, the left hand side matrix
in Eq. (3) is complex general (hermitic if K € 9R) but sparse.
These properties are considered when solving the problem.
As explained in Ref. 22, algebraic system (3) is solved, al-
lowing for the computation of the total electrical charge un-
der active electrodes simply by nodal value summation. The
harmonic (frequency and 7y dependent) admittance then is
equal to the electrode current for a unit voltage excitation
(¢o=1 V).

Let us now consider the case of acoustic radiation on one
border of the meshed domain. In that purpose, the general
variational equation is considered, limited to the purely elas-
tic problem without any loss of generality,

(914[
f Jf(pwu&u -—C W,—)dV
Q IXy
= fr f SulT,n;ds, 4)

in which éu; is the variational unknown and »n; the normal to
the boundary I" (bordering the domain )) on which the ra-
diation boundary condition may partially occur. The mass
density is represented by p and C;j, holds for the elastic
constants. Equation (4) is written in three dimensions but of
course its restriction to 2D problems does not induce any
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fundamental difficulty. The right hand side of Eq. (3) then is
considered separately. In this matter, one can relate the dy-
namic stress 7;; to the displacement u, in the spectral domain
(denoted by ~) by using Green’s-function-based relation
which generalizes the usual surface stress relation widely
used in SAW modelingz‘g_” as follows:

T Gt}k(shw)uk (5)

Note that in this equation, Green’s function is the inverse
of the one used by Ventura et al.,*'* and it asymptotically
behaves like s; when s, tends to infinity. As demonstrated
further, this does not generate numerical troubles. Equation
(5) allows one for considering any flat boundary for the ap-
plication of the radiation conditions, even if tilted in the
plane (x;,x,). Using the now well-established periodic
Green’s-function formalism,’ the right hand side of Eq. (4) is

expressed as
“+00
fJ&t?(X)E Gy
r I=—0

f f ou; i TyjnidS =
r
n; . ’
+1, w)—ple_f(z’”f’)(””(x_x D (x")dx' dx

(6)

with p as the period of the problem and / as the number of
the current space harmonic. The actual slowness s, is defined
as 27(y+[)/pw. The classical FEA interpolation procedure
then is applied to Eq. (6), yielding the following expression
of the boundary radiation operator:

E 4+ Nd(e) Nd(s)
f jb‘u T;ndS = > > —lGl]k(y+l ) X > P,l(x)e‘j(z’ﬁ”)(’”)xdx5u?<("’€) > P (x)el @alp) oy’ g k’" -©)
T e,e=1 [=—» p Te n=1 I'e m=1

where E is the total number of “radiating” elements, P,,(x)
are the FEA interpolation polynomials (first or second de-
gree), and u(" ° is the discrete value of the displacement
associated to the nth polynomial and nth DOF of the element
e. Equation (7) can be finally written as

E Nd(e) Nd(g) +=

fr f SuTyndS= > > > > G,,k(y

eslnlmll——t>c

+1, w)u,(:" 8)&1 mely ;(f,e)l(;ﬁf) (8)

with I(m o= [P, (x)e/@™P) )5y and with T, as the actual
rad1at10n area of the element e. The integration of the inter-
polation polynomials times the exponential term 1 " gener—
ates terms in p/2m(y+[), which are homogeneous to 1/ ws

()

(i.e., to the actual wavelength). As a consequence, the ex-
pression of Eq. (8) behaves like 1/s; when s, tends to infin-
ity in the worst cases (i.e., the most important terms would
be given by the integration of the constants of the interpola-
tion polynomials). Hence, the computation of the radiation
contribution via the development of Eq. (8) converges even
for large number of space harmonics. Practically, we have
pointed out an optimum between the number of radiating
elements and the space harmonics allowing for a systematic
convergence, which is discussed further.

The contribution of the total radiating boundary to the
global algebraic system to be solved then consists in a fre-
quency and excitation parameter dependent matrix X(w,y)
related to both DOF and variational unknowns and conse-
quently computed in the left hand side of Eq. (3) as reported
in the following equation describing a general piezoelectric
problem:22
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Even for materials without any losses, this algebraic system
is general complex without any specific mathematical char-
acteristics. Also the sparse nature of the algebraic system is
degraded due to the connection of all the DOF one to the
other via the radiation coupling.

Ballandras et al.

lll. NUMERICAL IMPLEMENTATION
A. General discussion

In this section, a particular interest is dedicated to the
properties of the different terms involved in the computation
of Eq. (9) and a strategy is proposed to reduce computation
duration. In Eq. (8), it appears that the two boundary inte-
grals are complex conjugated, potentially yielding hermitic
properties of the matrix. However, the parity properties of
Green’s function” prevent any simplification of the calcula-
tion. It is then necessary to compute all the terms of Eq. (8).
However, it is relevant to compute the integral I(y':if) for all
the possible values of y+/ and for all the radiating elements
and also to compute Green’s tensor for all y+/ and @ before
assembling the radiation matrix X(w,?y) which can be per-
formed just before solving the system. Note that this assem-
bly cannot be performed in the usual FEA approach in which
elementary matrices are summed to build K and M. In the
present case, the nonsymmetric sparse matrix is directly built
computing all the cross-coupled terms induced by the con-
volution between the unknown fields and Green’s function
for each frequency.

In Egs. (6)—(8), an infinite sum over the space harmonics
is performed to compute Green’s function. Practically, the
sum is reduced to a finite number of terms (from a few tenths
to 100 typically) to ensure the convergence of the calcula-
tion. Empirically, we found out that the number of harmonics
should be at least equal to half the number of elements of the
radiation boundary. A specific treatment of the asymptotic
behavior of Green’s function is currently investigated, which
should allow us to reduce this number. On the other hand, it
is not obvious to establish whether the computation duration
gain offered by such a treatment will be as high as in the case
of the mixed FEA-BIM approach2 for which the specific
treatment of Green’s-function asymptotic behavior reduces
the computation duration by more than a scale order (typi-
cally ten space harmonics” instead of more than 100 without
asymptotic treatment’). Finally, the radiation medium can be
composed of any combination of dielectrics, fluids, and even
metallic domains (assuming flat interfaces),'’ taking advan-
tage of the stabilization of Green’s function described in Ref.
24.

The last aspect of the model discussed here concerns the
number of DOF in the FEA development. Generally, purely
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elastic 2D-FEA simulations are performed using finite ele-
ment exhibiting two DOFs, as it sounds natural to consider
displacements along the leading axes of the considered
plane. In our case, we assume that the metal strips are infinite
along the normal to the saggital plane, then corresponding to
the so-called plane-deformation configuration. We also as-
sume the possible existence of shear displacements along the
normal to that plane (but described in the saggital plane) and
the associated electric potential. We then have developed dif-
ferent finite elements allowing for considering any particular
situation, allowing for optimized matrix size of Eq. (9) and
hence reduced computation delays. In the case of generally
polarized waves, the whole displacement field and its asso-
ciated electrical potential then can be considered on the FEA
part and the BEM as well, yielding high accuracy prediction
and large computation delays. For quasisaggital waves such
as Rayleigh waves on singly rotated quartz cuts (propagation
along X axis), we may consider a displacement field reduced
to saggital terms #; and if, in the FEA (plus of course the

dynamical potential ¢). However, a weak but existing cou-
pling arises along the normal to the saggital plane, which
must be accounted for to reach the standard Rayleigh wave
prediction accuracy.2 If we assume that only the saggital
terms play a role at the electrode/crystal interface (the shear
displacement of the wave i3 is more than ten times smaller
than its elliptic components), we then consider the continuity
of the surface stress and displacements at this interface,
yielding the following boundary conditions considering the
saggital plane (x,,x,) and the propagation direction along x;:

T =T,

relec _ eryst reryst cryst
T5,°=T%" T15"=0, D=0,

~elec __ ~cryst ~elec _
u 1 - s -

~cryst
uy ) >

s ¢cryst: ¢0 (]0)
and no condition is applied on @;5. Using Eq. (5), it is pos-
sible to express i3 as a combination of Green’s matrix ele-
ments and displacements u; and u, using the condition

T33*'=0. This reads

~ Gy Gip_
Uy =-— uy——_" U

- -— ¢ (11)
Gy Gaz G

Considering now Eq. (11), we can write Green’s function to
insert in the BEM as follows:

=g G121G323 - G123G321 ~ G122G323 - G123G322 ~
T,,= — 251 + — Uy

12
G323 G323

= GGz — GGy _
Ty= u

GGz — G223G322ﬁ
— P
G3o3

G3o3

1
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)
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FIG. 2. (Color online) Meshes used for the validation computations. The
period p is fixed to 5 wm, the metallization ratio a/p=0.5, and relative
electrode height 0 </ <5% (here h=500 nm). (a) Global view of the mesh;
(b) close view of the strip edge.

~ =~ GGz —GupsGay
Toy=D,= — i
Gio3

GGz = GinsGryy . GunyGpy — GupaGany
+ — M2 + — ¢
G3o3 Go3
(12)

We show further the efficiency of this correction. If we now
consider the case of quasi-shear-surface wave as propagating
atop lithium tantalate (YX1)/42°, the same kind of correction
must be applied to only consider ii; and ¢ as the only DOFs

of the FEA part of the problem. In that case, TY*=T5y"
=0, yielding a system of equation allowing to write it; and i,
as a function of ii; and ¢ (see Appendix). We then obtain
Green’s matrix of rank 2 with corrected parameters in a simi-
lar way to the one presented above for Rayleigh waves.

B. Numerical tests

The proposed theoretical development has been imple-
mented and a first set of computation tests has been per-
formed considering the excitation of Rayleigh and STWs on
AT quartz cut and leaky surface waves on (YX[)/42° LiTaO4
cut. The polarization of the waves propagating atop these
substrates is either mainly elliptical or mainly transverse, but
an accurate description of their properties may impose to
account for a comprehensive displacement field (and its as-
sociated potential of course). The computation results are
compared to those provided by the well-known mixed finite
element/boundary integral approach proposed by Ventura
et al.” Different electrode configurations have been consid-
ered as shown further. The simplest mesh used to compute
the standard single electrode problem is plotted in Fig. 2. The
period p of the grating was arbitrarily fixed to 5 wm, the
metal ratio a/p=0.5, and the relative aluminum thickness
was varied from 0 to 5% for quartz (electrode height % rang-
ing from 0 to 500 nm). The number of elements has been
adapted depending on the electrode height (about two layers
of elements for each 50 nm height), but the number of radi-
ating element along the period was kept identical for all
computations. As shown in Fig. 2, only a small part of the
semi-infinite medium has to be meshed, yielding rather short
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FIG. 3. (Color online) Comparison between the harmonic admittance com-
puted with the FEA-BIM approach by Ventura er al. (Ref. 2) and the pro-
posed method at y=0.5, a/p=0.5, h/\ varying from O to 5% by step of
0.5% (p=5 pm), dependence vs w, and imaginary part of the harmonic
admittance of a Rayleigh wave on (YX/)/36° quartz (dashed blue: FEA-
BIM; points: this work).

computation delays (but longer than those of FEA-BIM
approachesz). Note that the position of the electrode center
has no influence on the computation results. Material con-
stants used for the computations are these of Slobodnik et
al.” for quartz and these of Kovacs et al.*® for lithium tan-
talate, respectively. Data for aluminum electrodes can be
found, for instance, in Ref. 27. In the case of quartz, we
account for the dielectric contribution of vacuum directly in
Green’s function (as in Refs. 2, 4, 11, and 12), whereas this
contribution is negligible for materials with larger dielectric
properties such as LiTaOs.

Figure 3 shows a comparison between the well-
established FEA-BIM model” and the present work’s results
for a Rayleigh wave propagating atop AT cut quartz (propa-
gation along X axis) and an excitation condition 7y equal to
1/2. In that case, the convergence was found using 40 nodes
at the interface electrode/substrate together with 80 spatial
harmonics (76 elements along the period). It occurs as soon
as the number of spatial harmonics overcomes the number of
boundary elements (empirically). Elements with four DOFs
(1, uy, us, and ¢p) have been used for these computations,

-10 T

-100

~110 . . . . . . .
3115 312 3125 313 3135 314 3145 315 3155

Frequency (MHz)

Modulus of the harmonic admittance (dB)
|
D
o

FIG. 4. (Color online) Influence of the space harmonic number on the ac-
curacy of the harmonic admittance computation, y=0.5, a/p=0.5, and
h/N=1%. Convergence is reached for 41 harmonics (/=—20-+20).
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FIG. 5. (Color online) Superposition of harmonic admittance computed us-
ing our FEA-BEM formulation with noncorrected and corrected Green’s
functions, Rayleigh wave on (YX1)/36° quartz, y=0.5, a/p=0.5, and h/\
=1% (p=5 wm). Comparison with FEA-BIM results, emphasizing the ef-
ficiency of the correction.

the potential being forced to 1 V at the electrode boundaries.
The stability of the computation also has been tested: the
number of harmonics does not affect the result once the con-
vergence is met (as shown in Fig. 4). Also note that only two
element layers (total thickness of 10 nm) were required to
operate the matching between FEA and BEM formulations.
This suggests that the influence of this matching mesh is
quite weak on the computation results and that it eventually
could be suppressed in further developments. We also have
tested the efficiency of Green’s-function correction for the
use of three DOF piezoelectric elements instead of the pre-
viously used four DOF ones. Figure 5 shows the superposi-
tion of the FEA-BIM results with those obtained using our
FEA-BEM formulation with noncorrected (i.e., simply sup-
pressing the radiation terms corresponding to i73) and cor-
rected Green’s functions in the case of Rayleigh waves on
(AT,X) quartz. The efficiency of the correction here is clearly
emphasized.

The sensitivity of the STW resonance to mass loading
also was checked (propagation along rotated Z axis on AT
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FIG. 6. (Color online) Comparison between the harmonic admittance com-
puted with the FEA-BIM approach by Ventura er al. (Ref. 2) and the pro-
posed method at y=0.5, a/p=0.5, h/\ varying from 0 to 5% by step of
0.5% (p=5 wm), dependence vs w, and imaginary part of the harmonic
admittance of a STW on (YXIr)/36°/90° quartz (dashed blue: FEA-BIM,
points: this work).

FIG. 7. (Color online) Validation of the accuracy of the proposed approach
for a PSAW on (YX1)/42° LiTaO; (a) dependence vs w, y=0.5, imaginary
part of the harmonic admittance (solid green: FEA-BIM dots; blue: this
work). (b) Comparison between dispersion curves provided by the two con-
sidered models (solid green: FEA-BIM dots; blue: this work). (c) Fit of the
propagation parameters of the wave in the frequency stop-band region for a
thick electrode array (h/N=8%,a/p=0.5) (lines: FEA-BIM; crosses: this
work).

cut quartz) and compared to FEA-BIM computation results,
as reported in Fig. 6. Note that in this case too, we achieve a
good agreement between our results and those provided by
the FEA-BIM approach using first order interpolation poly-
nomials and two DOF finite elements (13 and ¢), which are
both favorable for fast computations. Contrarily to what ex-
pected, the use of second order interpolation polynomials did
not provide any substantial reduction in the computation de-
lay. This problem needs further inspection which overcomes
the scope of this paper.
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FIG. 8. (Color online) Superposition of harmonic admittance computed us-
ing our FEA-BEM formulation with noncorrected and corrected Green’s
functions, PSAW on (YX1)/42° LiTaO, y=0.5, a/p=0.5, and h/\=8%
(p=5 pm). Comparison with FEA-BIM results, emphasizing the effect of
the correction.

Figure 7 shows the comparison between harmonic ad-
mittances computed in the vicinity of the frequency stop
band for the leaky shear wave on (YXI)/42° LiTa0; with a
metal thickness close to the one allowing for leakage
suppression,9 i.e., h/N=8%. Once again, the agreement be-
tween the proposed model results and those provided by the
FEA-BIM approach is almost perfect, whatever the value of
the excitation parameter y [Fig. 7(b)]. A two point fit con-
form to the one implemented in Ref. 28 has been imple-
mented to accurately characterize the frequency stop band of
the mode. Once again, the results obtained using the present
development nicely fit those provided by the method of Ven-
tura et al.,” as shown in Fig. 7(c), showing that the charac-
terization of the frequency stop band enabling the wave pa-
rameter extraction can be achieved in a very comparable way
for both approaches. We also have checked the possibility to
reduce the number of DOF in the FEA part of the problem
using corrected Green’s-function-based BEM. As shown in
Fig. 8, this approach was found efficient but not as much as
for Rayleigh waves on singly rotated quartz cuts. There is
clearly an improvement in the admittance prediction when

Conductance (S)
Susceptance (S)

-0.05 5 5 5 5 -0.2
500 502 504 506 508 510

Frequency (MHz)

FIG. 9. (Color online) Superposition of harmonic admittances computed
using the present approach with the experimentally measured admittance of
one of four-port STW resonator IDTs (grating period p=5 um, relative
electrode height 7/\=1.5%, and metallization ratio a/p=0.5).
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(b)

FIG. 10. (Color online) Meshes of a passivated electrode grating device
with (a) conformal and (b) nonconformal depositions, p=5 um, a/p=0.5,
and h/N=1,5% (STW synchronous transducer covered by a 400 nm amor-
phous silica—blue part of the mesh: SiO,; orange part: Al).

using the corrected form of Green’s function (see Appendix),
particularly concerning the propagation losses but the posi-
tion of the pseudopole is not absolutely coincident with the
one predicted using the complete acoustic field (FEA/BIM
approaches or this work, as shown in Fig. 7). This means that
in this particular case, one cannot neglect the contribution
of the saggital acoustic field in the electrode to the wave
guidance.

The possibility to reduce the number of DOF for pure
shear waves however was checked for pure transverse wave
on quartz (Fig. 6). We found out however that in that case,
the correction of Green’s function is not needed as there is
absolutely no coupling between saggital displacement com-
ponents (u;,u,) and the shear displacement component us
and its associated potential ¢.

IV. APPLICATION TO MORE COMPLEX ELECTRODE
GEOMETRIES

A. Passivated structures

Passivation layers are used to protect the surface of SAW
devices from any dusts or surface pollution that could coun-
teract the IDT operation. Generally, very thin dielectric films
are deposited atop the device to be passivated but even such
a very thin overlay may significantly modify the SAW prop-
erties. To illustrate the capability of our model to correctly
predict the response of complex surface structures, we have
theoretically and experimentally check the influence of an
amorphous silica (SiO,) coating on a two port STW resona-

0.35 ‘ ‘ ‘ 0.15
0.3 1041
0z 005
) @)
= o2 2
g o1 g
E —0.05 §
S o1 8
O 01 ()
0.05 '

0 -0.15
-0.05 : : : : : -0.2
480 485 490 495 500 505 510

Frequency (MHz)

FIG. 11. (Color online) Superposition of harmonic admittances computed
using the present approach and meshes of Fig. 10 with the experimentally
measured admittance of a passivated four-port STW resonator IDT built
using parameters reported in caption of Fig. 10 (Ref. 29).
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FIG. 12. (Color online) Comparison between harmonic admittances of con-
formal and nonconformal SiO, passivated STW gratings.

tor. These devices developed for sensor applications29 consist
in a four-port STW synchronous resonator operating close to
500 MHz (grating period p=5 um, relative electrode height
h/N=1.5%, metallization ratio a/p=0.5) built on AT cut of
quartz (propagation along Z') covered by a 0.4 um thick
amorphous silica layer. The initial resonator exhibits a single
contribution near 506 MHz, as attested by the experimental
admittance of one of the device transducers (see Fig. 9). This
contribution is correctly predicted by our model, as proven
by the superposition of the experimental and harmonic ad-
mittances. The final resonator presents two resonances cor-
responding, respectively, to the beginning and the end of the
frequency stop band. The stop-band width only can be accu-
rately predict if considering a conformal deposition, i.e., the
corrugation due to the metal strip is reproduced at the silica
surface. This is illustrated by Fig. 10(a) showing the mesh
used to perform these computations. A comparison between
the harmonic admittance and the transfer function of the
abovementioned resonator is reported in Fig. 11, showing a
good agreement between theory and experiment. The har-
monic admittance of a flat surface passivated device is also
reported in Fig. 12 [using the mesh of Fig. 10(b)], emphasiz-
ing a stop band much smaller than the one actually mea-
sured. This shows the need to accurately take into account
the actual form of the grating to correctly predict the char-
acteristics of the device and hence the interest of the pro-
posed model.

B. Prominent electrode structures

We also have chosen to address the problem of STWs
under prominent electrode gratings for which experimental
data were available.” This structure was built by etching the
quartz in between the electrodes of a four-port synchronous
STW resonator, yielding mixed strip-and-groove gratings

o
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=
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FIG. 13. (Color online) Mesh of the considered prominent electrode grating
device (Ref. 20) (red part of the mesh: quartz; blue part: Al; and green
section: interface between FEA and BEM).
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FIG. 14. (Color online) Comparison between theoretical and experimental
resonance frequency and stop bandwidth for prominent electrode grating
based resonators (Ref. 20).

and IDTs. We compare the experimental resonance frequen-
cies f, and stop bandwidth Af measured on synchronous
resonators with harmonic admittances obtained using our
FEA/BEM approach. The typical mesh for prominent elec-
trode gratings is plotted in Fig. 13.

Again in that case, the grating’s period was 5 um with a
metallization ratio of 0.5. The strip height atop the resulting
prominent quartz ridge was 300 nm with a groove depth
ranging from 0 to 350 nm. We measured both resonance
frequency and frequency stop-band width in that case, and a
comparison with theoretical results is reported in Fig. 14,
emphasizing a good prediction of the behavior of the device
(good accordance between the predicted and measured
shapes of the curves).

V. CONCLUSION

A model combining periodic FEA and a BEM has been
developed and implemented to address the problem of elastic
wave guides exhibiting complicated forms and material com-
binations. The convergence conditions have been identified
and reported considering the numerous parameters of the ap-
proach (elements, interpolation, space harmonics, wave po-
larization, etc.). The results provided by the proposed ap-
proach have been compared to well-established models and
were found to provide accurate predictions whatever the na-
ture of the wave (Rayleigh SAW, leaky SAW, and pure trans-
verse wave). It was applied to analyze passivated and re-
cessed electrode grating based devices, showing the interest
of the approach. Many developments now can be investi-
gated, starting from this basis. Applications to interface
waves, immersed sensors, as well as three-dimensional (3D)
transducers are on the way. Multiple electrode gratings (for
instance, distributed acoustic resonant transducers) can be
addressed as well. Also it will be very interesting to try and
investigate the possibility to mix finite structure boundary
conditions with periodic ones to address the problem of 3D
IDT modeling.
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APPENDIX: CORRECTION OF GREEN’S MATRIX FOR
A TWO DOF FEA FORMULATION OF QUASI-
SHEAR-WAVE PROPAGATION

We consider here that only the shear terms play a role at
the electrode/crystal interface, but a weak coupling of #; and
it, exists that must be consider for an accurate estimation of
the wave velocity under the grating. This is the case of quasi-
shear-surface wave as propagating atop lithium tantalate
(YX1)/42°. The following correction must be applied to only
consider ity and ¢ as the only DOF of the FEA part of the
problem. In that case, the following boundary conditions
must be considered:

relec relec relec _ Aeryst cryst
T;°=0, 2 =0, =T D=0,

T — 6321(51226223 — 61236222) + 6322(62215123 — 62235121) + 5323 detu

J. Appl. Phys. 105, 014911 (2009)

~elec __ ~cryst
- ’

iy =ity ¢ = ¢ (A1)

and no condition is applied on i; and i1,. Using Eq. (A1), we
express them as a combination of Green’s matrix elements
and it; and ¢ as shown in Sec. IIT A for elliptical polariza-

tion. Developing T5¥*'=T53*'=0 yields the following system:

Gl2l”7] + G122u~2 == G123’/73 - G124¢’

Goyity + Gty = — Gy = Gy . (A2)

Solving this system provides the relation we are looking for,

i = (61226223 - 61236222)”73 + (61226224 - 61246222)6Z
1= ’
det

i = (62216123 - 62236121)’73 + (62216124 - 61216224)(’5
2= )
det

det= G 5Gap — Gp1 G- (A3)

Considering now Eq. (A3), we can write Green’s function to
insert in the BEM as follows:

32 det

4 6321(61226224 - 61246222) + 6322(62216124 - 61216224) + 6324 det(’;

3

det

T 642](6]226223 _ 61235222) + 6422(62216123 _ 62236]2]) + 6423 detu

b

T.=D,=
24 2 det

+ 6421(61226224 - 61246222) + 6422(62216124 - 61216224) + 6424 det(’*ﬁ'

3

(A4)

det
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