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Abstract: We present a simplified model of mechanical bebtrawaf large cantilever arrays with
discoupled rows in the dynamic operating regimenc&ithe supporting bases are assumed to be
elastic, cross-talk effect between cantileversaken into account. The mathematical derivation
combines a thin plate asymptotic theory and the-deale approximation theory, devoted to strongly
heterogeneous periodic systems. The model is aotlatd, so we present some of its features. We
explain how each eigenmode is decomposed intodupt@f a base mode with a cantilever mode. We
explain the method used for its discretization, egqbrt results of its numerical validation witHlfu
three-dimensional Finite Element simulatioR#nally, we provide a short description of paramete
updating and identification techniques developedie model.

Keywords. Cantilever Arrays, Multiscale Modeling, Homogerniaa, Strongly Heterogeneous
Homogenization

1. Introduction

Cantilever arrays are used in a variety of application including Atomic Force Microscope arrays,
for instance the Millipede from IBM dedicated to data storage, see in [1]. Modeling of large
cantilever arrays is little developed. However, their direct numerical simulation, based on classical
methods like Finite Element Methods, is prohibitive for today’s computers, at least in a time
compatible with designer time scale. The B. Bamieh’s group has published a cantilever array
model, see [2] among other papers. It takes into account electrostatic coupling, and its derivation
is phenomenological. One of the authors has published a model for an elastic AFM Array in the
static regime [3] and preliminary results for the dynamic regime [4].
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2. Geometry of the problem

We consider a two-dimensional array of cantilevers, see Figure 1(a) for a two-dimensional view. It
is comprised of rectangle parallelepiped bases crossing the array in which rectangle parallelepiped
cantilevers are clamped. Bases are supposed to be connected in the x;-direction only, so that the
system behaves as a set of discoupled rows. Each of them is clamped at its ends. Concerning the
unclamped end of cantilevers, we report two cases, one for free ends and one for ends equipped
with rigid tips, as in Atomic Force Microscopes. The whole array is a periodic repetition of a same
cell, in the two directions x; and x5. We suppose that the number of columns and of rows of the
array are sufficiently large, namely larger or equal to 10. Then, we introduce the small parameter
£* equals to the inverse 1/N of the number of cantilevers in a row. We underline the fact that
the technique presented in the rest of the paper can be extended to other geometries of cantilever
arrays and even to other classes of microsystem arrays.

EUULLLLLE

X3 (a) i (b)
Fig. 1. Two-dimensional view of (a) the full cantileverayr(b) a unit cell

3. Two-scale approximation

Each point of the three-dimensional space, with coordinates © = (x1, %2, z3), is decomposed as
r = x°+ ey, where x¢ represents the coordinates of the center of the cell to which x belongs,

e 0 0
€ = 0 & 0 |,and y = ¢ '(z — 2°) is the expanded relative position of z with respect to
0 0 1

x¢. Points with coordinates y vary in the so-called reference cell, see the two-dimensional view on
Fig. 1(b), that is obtained through a translation and the dilation ¢! of any current cell in the
array.

We consider the distributed field u(z), of elastic deflections in the array, and we introduce its
two-scale transform,
us(7,y) = u(z® + ey),

for any © = ¢ + ey and T = (x1,z2). By construction, the two-scale transform is constant, with
respect to its first variable Z, over each cell. Since it depends on the ratio *, then it may be
approximated by the asymptotic field, denoted by u", obtained for large number of cells (in both
x1 and zo-directions) or equivalently when * approaches (mathematically) 0:

@ =’ + O(e")

where O(¢*) tends to zero when €* vanishes. The approximation u" is called the two-scale approz-
imation of u. We mention that, as a consequence of the asymptotic process, the partial function
7 — u°(Z,.) may be continuous instead of being piecewise constant.

0

Now, we consider that the field of elastic deflections u is a solution of the Love-Kirchhoff thin elastic
plate equation in the whole mechanical structure, including bases and cantilevers. Furthermore,
we assume that the ratio of cantilever thickness h¢e to base thickness hp is very small, namely
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h_C x4/3 (1)

et
hp
This assumption is formulated so that the ratio of cantilever stiffness to base stiffness be very
small, namely of the order of £**. The asymptotic analysis when £* vanishes shows that u° does
not depend on the cell variable 3 in bases and so depends only on the spatial variable z.

Next, we remark that u°(Z,y) is a two-scale field, and therefore cannot be directly used as an
approximation of the field u(z) in the actual array of cantilevers. So, an inverse two-scale transform
is to be applied to u’. However, we remark that & — u°(Z,y) is continuous, and so u® does
not belong to the range of the two-scale transform operator and it has no preimage. Hence we
introduce an approximated inverse of the two-scale transform, v(Z,y) — v(z), in the sense that
for any sufficiently regular one-scale function u(x) and two-scale function v(z,y),

TG=u+O0(c) and T = v+ O(e").

[t turns out that ¥(z) is a mean over the cell including x centered at x¢ with respect to T = (x4, 22)
when z belongs to a cantilever T(z) = (v(.,e ! (z — 2°))), , and with respect to x> when z belongs
to a base T(x) = (v(.,e'(z —2°))),, . In total, we retain @’ as an approximation of u in the
actual physical system. Note that for the model in dynamics, the deflection u(¢, x) is a time-space
function. In our analysis we do not introduce a two-scale transform in time, so the time variable
t acts as a simple parameter.

4. Model description

Now, we describe the model satisfied by the two-scale approximation u°(¢, 7, y) of u(t,z). Remark
that as the deflection u in the Kirchhoff-Love model is independent of x5, thus «° is independent of
y3. For further simplicity, we neglect cantilever torsion effect i.e. the variations of y; — u°(¢, 7, 7).
Thus, cantilever motion is governed by a classical Euler-Bernoulli beam equation, in the micro-
scopic variable s,

Ca .0, ,.Col 0_ (C
m-oyu’ +r 8y2my2 =f

with r¢ = e ECI¢, where m® is a linear mass, E¢ the cantilever elastic modulus, I the second
moment of cantilever section, and f¢ a load per unit length in the cantilever. This model represents
the motion of an infinite number of cantilevers parameterized by all 7 = (xy, z).

Bases are also governed by an Euler-Bernoulli equation, in the macroscopic variable x;, where
part of loads comes from the continuous distributions of cantilever shear forces,

Ba 0 Bad 0_  iBa3
m°Oouu’ +r 33;1‘..:51@0 = —d 8y2my2

u’ + P

with r% = EBIP where m?, EB, I?, d® and fP are a linear mass, the base elastic modulus, the
second moment of section of the base, a cantilever-base coupling coefficient and the load per unit
length in the base.

In the model, cantilevers appear as clamped in bases. So at base-cantilever junctions,
0 _.0 0 _
u|cantilever - u|base and (ay2u )|cantilever - 07 (2)

because 9y, u’ = 0 in bases. Equations of free ends are

02w =02  u’=0, (3)

Y2y2 Y2Y2y2
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and those of ends equipped with a rigid part (usually a tip in Atomic Force Microscopes) are

0 3 0
R u c _ay2y2y2u
700 ( g )+ (o
_ i
- ( Ft + Fy

at junctions between elastic parts and rigid parts. Here, J¥ is a matrix of moments of the rigid
part about the junction-plane, & is a load in the y3 direction, F}¥ is a first moment of loads about
the junction-plane, and Ff the first moment of loads in the y, direction about the beam neutral
plane. Finally, the base clamping conditions are

u’ = 0,,u’ = 0. (4)

The loads f¢, fB and f% in the model are asymptotic loads which are generally not defined from
the physical problem. In practical computations, they are replaced by the two-scale transforms
fC, ]/”73 and (]?R To be complete, we mention that rows of cantilevers are discoupled, this is why
2o plays only the role of a parameter.

5. Structure of eigenmodes

There is an infinite number of eigenvalues A4 and eigenvectors goA(:L‘l, y2) associated to the model.
For convenience, we parameterize them by two independent indices ¢ and j, both varying in the
infinite countable set N. The first index 7 refers to the infinite set of eigenvalues )\ZB and eigenvec-
tors ¢P(z;) of the Euler-Bernoulli beam equation associated to a base. The eigenvalues (A2);en
constitutes a sequence of positive number increasing towards infinity. At each such eigenvalue
corresponds another eigenvalue problem associated to cantilevers, which has also a countable in-
finity of solutions denoted by )\g and ¢f(y2). The index i of A5 being fixed, the sequence ()\ZC]) jeN
is a positive sequence increasing towards infinity. In the other side, for fixed j and large )\iB ,
i.e. large 7, the sequence (/\Z-Cj7 goicj)ieN converges to an eigenelement of the clamped-free cantilever
model. Finally, we have proved that the eigenvalues )\3 of the model are proportional to )\icj, and
that each eigenvector <pf}-(m1,y2) is the product of a mode in a base by a mode in a cantilever

P (1)@ (y2)-
6. Mode€l validation

We report observations made on eigenmode computations. We consider a one-dimensional silicon
array of N cantilevers (N = 10, 15 or 20), with base dimensions 500um X 16.7um x 10um, and
cantilever dimensions 41.7um x 12.5um x 1.25um, see Figure 2 for the two possible geometries,
with or without tips. We have carried out our numerical study on both cases, but we limit

Fig. 2. Cantilever Array with tips (a) and without tipg (b

the following comparisons to cantilevers without tips, because configuration including tips yields
comparable results.
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We restrict our attention to a finite number n? of eigenvalues )\ZB in the base. Computing the
cigenvalues A\, we observe that they are grouped in bunches of size n® accumulated around
a clamped-free cantilever eigenvalues. A number of other eigenvalues are isolated far from the
bunches. It is remarkable that the eigenelements in a same bunch share a same cantilever mode
shape, (close to a clamped-free cantilever mode) even if they correspond to different indices j. This
is why, these modes will be called “cantilever modes”. Isolated eigenelements share also a common
cantilever shape, which looks like a first clamped-free cantilever mode shape excepted that the
clamped side is shifted far from zero. The induced global mode ¢* is then dominated by base
deformations and therefore will be called ”base modes”. Densities of square root of eigenvalues
are reported in the sub-figures 2, 4 and 6! of Fig. 3 for ng = 10, 15 and 20 respectively. These
figures show three bunches with size ng and isolated modes that remain unchanged.
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Fig. 3. Eigenmode Density Distributions for Finite Elem&fidel and for the Two-Scale Model

We discuss the comparison with the modal structure of the three-dimensional linear elasticity
system for the cantilever array discretized by a standard Finite Element Method. The eigenvalues
of the three-dimensional elasticity equations constitute also an increasing positive sequence that
accumulate at infinity. As for the two-scale model, its density distribution exhibits a number
of concentration points and also some isolated values. Here bunch sizes equal the number N of
cantilevers, see sub-figures 1, 3 and 5 in Fig. 3 representing eigenmode distributions for N = 10,
15 and 20. Extrapolating this observation shows that when the number of cantilevers increases to
infinity bunch size increases proportionally. Since the two-scale model is an approximation in the
sense of an infinitely large number of cantilevers, this explains why the two-scale model spectrum
exhibit mode concentration with infinite number of elements. This remark provides guidelines for
operating mode selection in the two-scale model. In order to determine an approximation of the
spectrum for an N-cantilevers array, we suggest to operate a truncation in the mode list so that
to retain a simple infinity of eigenvalues (Af})i:L,,, N and jen. We stress the fact that N —eigenvalue

1Sub-figures are counted from top to down.
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bunches are generally not corresponding to a single column of the truncated matrix )\2-. This
comes from the base mode distribution in this list. When considered in increasing order, base
modes are located in consecutive lines of the matrix A* but not necessary in a same column.
We remark that a number of eigenvalues in the Finite Element model spectrum have not their
counterpart in the two-scale model spectrum. The missing elements correspond to physical effects
not taken into account in the Euler-Bernoulli models for bases and cantilevers.

The next step in the discussion is to compare the eigenmodes and especially those belonging to
bunches of eigenvalues. To compare an eigenvector from the two-scale model with an eigenvector
of the elasticity system, we use the Modal Assurance Criterion, see [5] which is equal to one when
the shapes are identical and to zero when they are orthogonal, see Fig. 4 and Fig. 5.

MAC Matrix
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Fig. 4. MAC matrix between two-scale model modes and FEMies

(d) N13

Fig. 5. Two-scale model eigenmode shapes and FEM eigenstages

This test has been applied on transverse displacement only and a further selection has been
developed so that to eliminate modes corresponding to physical effects not modeled by the Euler-
Bernoulli models. Following this procedure, mode pairing is achieved successfully. In Figure
6(a) paired eigenvalues have been represented and the corresponding relative errors are plotted
on Figure 6(b). Note that errors are far from being uniform among eigenvalues. In fact, the
main error source resides in a poor precision of the Euler-Bernoulli model for representing base
deformations in few particular cases. Indeed, a careful observation of Finite Element modes shows
that base torsion is predominant for some modes. This is especially true for the first mode of the
first cantilever mode bunch.
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Fig. 6. (a) Superimposed Eigenmode Distributions of thg$e Two-Scale Model with the full three-
dimensional Finite Element Model (b) Errors in Iatfanic scale

7. Modd identification

In this section, we report some results related to model identification obtained from a module
which is incorporated in the AFM Array simulation tool. The calculations are carried out for an
array with ten cantilevers.

7.1 Global Sensitivity Analysis (GSA)

With the GSA we study model sensitivities with respect to parameters by analysing eigenvalues.
The model parameters are Young’s modulus, Poisson ratio, volume mass, the thicknesses, lengths
and widths of base, cantilever and tip. The observations are a list ()\f;) of eigenvalues for7 =1, .., 10
and j = 1,2, where the index i and j refers to "base modes” and ”cantilever modes” respectively,
see Fig. 7.

T .
(a) BI-C1 (b) B1-C2 () B2-C1 (d) B2-C2

Fig. 7. Model eigenmodes (B=base mode, C=cantilever mode)

For performing the GSA, we consider a sample of parameter vectors issued from the realization of
a uniform probability distribution drawn in the intervals bounded by 0.8 and 1.2 times the nominal
values. The correlation coefficients matrix between parameters and observations is presented in
Fig. 8(a), where parameters are in the horizontal axis and eigenvalues in the vertical axis. We
see that the parameters hB and Lbeam are influential. The number of influent parameters is also
indicated by the singular values. Fig. 8(c) shows two significant singular values with respect to
the others, which means that only two parameters are influent. Then, the influent parameters are
determined using the maximum absolute values of the singular vectors associated with the two
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maximal singular values. From Fig. 8(b), we deduce that Lbeam and hB are the most influent
parameters. This result confirms the analysis of the correlation matrix. So, from now, we consider
only these two parameters.

Method = corrcoef

E rho hB  Lbase Ibase IhC Lbeam Ibeam  htip Ltip Itip
nput

(a)

Method = svd
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£10.1

L | 0 1 Sv2 Sv3 Vi SV5 Ve SV SVB Sve SVID SV
SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8 SVISVIBV11 Number

(b) ()

Input

Singular value

Fig. 8 (a) Correlation coefficient matrix, (b) SingularMa Decomposition matrix, (c) Singular values
7.2 Updating by Sensitivity

Parameter updating through sensitivity is an iterative procedure based on eigenvalue and eigen-
vector sensitivities with respect to parameters. The algorithm tends to minimize a cost function
related to the difference between experimental data (here replaced by outputs of the FEM sim-
ulation) and model outputs. We take the GSA into account to restrict the parameter set to hB
the base thickness and Lbeam the cantilever length. We initialize hB and Lbeam to 1.3 and 0.8
times the nominal values respectively. After 9 iterations, the convergence was reached and the
exact value of the reference parameters is returned, see Fig. 9.

7.3 Inverseidentification
Generally speaking, an inverse problem consists in identifying the parameters of a physical system

from experimental observations. We adopt the Tarantola’s formulations [6] for the two parameters
hB, Lbeam to be identified, and for the eigenvalues (Af})i:17__710 and j=1,2 as observation data. The
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Tarantola’s formulation combines probability density functions (pdfs) representing the a priori
information on the model parameters, the experimental information and the theoretical uncer-
tainty to produce a posteriori pdfs on the model parameters. Here, we assume uniform a priori
pdfs for the parameters, Gaussian experimental uncertainties and an exact theory. It is generally
difficult to determine directly the a posteriori probability distribution. So, it is estimated thanks
to a Monte Carlo simulation. As proposed in [7], an algorithm of Metropolis-Hastings [8] is uti-
lized. Two convergence criteria are used, the empirical means and the cumulative sums, see [9].
Here, 500 samples are used for estimating the densities, and the convergence is reached after 124
iterations. The final probability distributions are represented in Fig. 10.
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Fig. 10. Identification results for the parametersB)(b) Lbeam

8. Conclusion

A cantilever array model in dynamic regime have been derived based on a theory of strongly
heterogeneous homogenization where the cantilevers play the role of soft parts. We conclude to
a globally good agreement with the three-dimensional elasticity model based on eigenvalue and
eigenvector comparisons. The model was shown to be sufficiently light to apply successfully usual
updating and identification techniques.
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