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Abstract. We derive the homogenized model of a periodic electrical network that includes
resistive devices, voltage to current amplifiers, sources of tension, and sources of current. First, a
mixed variational formulation is associated with the classical equations of such electrical networks. In
an abstract framework, inf-sup conditions are given for the existence and uniqueness of its solution.
Second, optimal conditions, based on the network topology, are stated so that the inf-sup conditions
are satisfied. Third, the homogenized model of such a periodic network is derived using the two-
scale convergence developed for circuits by Lenczner [C. R. Acad. Sci. Paris Sér. II B, 324 (1997),
pp. 537–542]. Finally, numerical comparisons of the solutions of the homogenized model and of
the complete one are detailed. It underlines clearly, if necessary, the strong interest of using the
homogenized model when the number of periodic cells is large enough.
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1. Introduction. This paper has been written in view of applications in fields of
engineering where simplified models of large periodic electronic networks are required.
A famous example can be found in the cellular neural network technology initiated
by Chua and Yang [7, 8] for applications to image processing. The electronic circuits
of many mechatronic systems also fall in this category. This concerns sensors and/or
actuators arrays used in most fields of physics, e.g., acoustics, fluid mechanics, me-
chanics of vibrations, and electromagnetism, for a very large variety of applications,
e.g., detection of moving acoustic sources, control of acoustic noise, vibration damp-
ing, control in fluid mechanics, measure of brain activity, radars, convoying systems,
and field effect microscopy. Technologies can be conventional or based on microelec-
tromechanical systems (MEMS). See the illustrative papers of Tsao et al. [19] and
Mahamane, Lenczner, and Mrcarica [14] for two examples in the field of distributed
control.

The simplified modelling of periodic circuits is a very old problem that was first
studied for infinitely large R-L-C networks. More recently, Vogelius [20] has derived a
model for a class of resistive two-dimensional periodic networks. All these works were
limited to very particular network configurations. The limitations were due to the
mathematical technique that was employed at this time. In our works [15] and [16], a
new technique of two-scale convergence has been introduced which allows the deriva-
tion of homogenized models for a very wide class of problems. In particular, it covers
the problems posed on periodic (n− p)-dimensional manifolds in domains of R

n. So
electronic circuits that are one-dimensional manifolds can now be homogenized. This
technique also covers the problems that were already treated with previous ones and in
particular can recover the homogenized models that were already known in mechanics.
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This is why we hope reasonably that it will allow us to derive homogenized models
of general periodic mechatronic systems. Moreover, this technique is so simple and
natural that it has been rediscovered independently by Casado-Diaz, Luna-Laynez,
and Martin [6] and Cioranescu, Damlamian, and Griso [9]; we have all rediscovered
independently the underlying idea of two-scale transform that has been introduced
by Argobast, Douglas, and Hornung [2]. We have already applied this technique to
the derivation of homogenized models of general periodic resistive circuits including
passive sources [15] and voltage to voltage amplifiers [16].

Another specificity of the analysis of electronic circuits is the formulation of con-
ditions related to their architecture that ensure the existence and uniqueness of the
solution. Numerous works have been realized on this topic; see, for example, the syn-
thesis book of Recski focused on linear problems [17], as well as the testing techniques
that have been implemented in the usual circuit simulators. This question is posed
again for the simulation of mechatronic systems and in particular for simulation of
complex systems already mentioned. It is in this perspective that we have developed
a variational approach which may constitute a common framework for continuous
media and electronic circuit equations. With such an approach, the conditions for
the existence and uniqueness of the solutions are stated using some classical tools
of functional analysis that are generally used for the analysis of partial differential
equations. The resulting inf-sup conditions are very abstract and not adapted to an
automatic checking. Thus, a first attempt to reformulate them in terms of a graph
was presented in [16].

Let us review the contributions of this paper. They complete the techniques
developed in [16] in many aspects, in addition to the fact that another class of ampli-
fiers is considered, which constitutes an intermediary step before taking into account
general ones.

The abstract variational framework that is considered here is the most general
one, which is required for linear circuit modelling in statics. We consider variational
formulation of the form

a(u, v) + b1(v, p) = 〈f, p〉,
b2(u, q) − c(p, q) = 〈g, q〉,

where b1 and b2 are different. Such equations have been studied in the literature in
the context of magnetohydrodynamics and also in the theory of elliptic systems (see,
for instance, [10], where spectral properties of such block operators are discussed).
They have also been studied in Bernardi, Canuto, and Maday [3], where c = 0, and
for which the authors gave necessary and sufficient conditions for the existence of a
unique solution; meanwhile, the case b1 = b2 was treated in Brezzi and Fortin [5].
In [16], the bilinear form c was vanishing. Here, we have extended the study of
existence and uniqueness to the general case (i.e., the case c �= 0 and b1 �= b2), and
we have found that proving its well posedness is equivalent to checking four inf-sup
conditions.

To know whether or not they are satisfied, for a given network, is not an easy task.
Conditions formulated directly on the network graph would be preferable. In [16], con-
ditions related to the graph were introduced to guarantee the well posedness of the
problem. Unfortunately, this was only necessary conditions. Here, a deeper under-
standing leads to graph conditions that are equivalent to the four inf-sup conditions so
that they constitute necessary and sufficient conditions for the existence and unique-
ness of the solution. Moreover, we think that the optimal technique that is introduced
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here could be extended for circuits with general amplifiers.
Let us move to the homogenized model. In [16], only the two-scale model was

formulated. In the present paper, it is fully detailed in the most general case. So it
has the form of the most general second order system of partial differential equations.
By another way, the cell problem is transformed into a modified cell circuit so that
the existence and uniqueness conditions already obtained are applicable to it.

Finally, numerical comparisons of solutions of the complete system and of the
homogenized one are reported. The small differences between the electric potentials
and between the voltages computed with the two models show clearly the strong
interest that can be found in using the homogenized model for periodic circuits with
a large number of cells.

The organization of this paper is as follows.
In section 2, the electrical networks including voltage to current amplifiers are

described, and their corresponding classical equations are established. The variational
formulation of the electrical network is stated in subsection 2.3. The general abstract
result for the mixed variational formulation is stated and proved in section 2.4. In
particular, the four inf-sup conditions, which ensure the existence and uniqueness of
the solution, are stated.

Section 3 is devoted to the statement and proof of the existence and uniqueness
result for electric circuit equations. In subsection 3.1, the conditions based on the
topology of the network, which ensure the existence and uniqueness of the solution,
are stated. Subsection 3.2 is devoted to some illustrations of these conditions. In
subsection 3.3, notations and estimates linked with the previous conditions are stated
and proved. General technical lemmas are formulated in subsection 3.4. They are
the keys of the proof of the existence and uniqueness result stated and proved in
subsection 3.5. Finally, in subsection 3.6, the necessity of the graph like conditions
for the existence and uniqueness of the solution is studied.

Section 4 deals with homogenization of periodic electrical networks. In subsec-
tion 4.1, we state the periodic circuit equations. The homogenized model and the
homogenized coefficients are established and computed, respectively, in subsections
4.2 and 4.3. The assumptions and the model derivation are reported in subsection 4.4.

Finally, section 5 is devoted to various examples and in particular to the discussion
of some numerical results.

2. Variational formulation of electrical networks. In this section, we state
the general variational formulation which is satisfied by the electrical potential and
the current in the electrical network. This variational formulation is a basis for the
derivation of the two-scale model stated in what follows.

The network includes resistors, current sources, voltage sources, and voltage to
current amplifiers. The conditions posed on the network for the existence and unique-
ness of the solution are stated. They are based on inf-sup conditions and are inter-
preted in terms of graph like conditions posed on the electrical network.

2.1. Notations. We use the definitions and the properties relative to electrical
networks presented in [21] and [16] (see also Figure 2.1). An electrical network is
composed of vertices (or nodes) and edges (or branches). Vertices are linked by edges.
The set of edges is denoted by Θ. Mathematically, Θ is a network in R

n, where
n ∈ N

∗. We denote by σ0 the vertices linked to the earth (i.e., where the electrical
potential is equal to zero). The network Θ is divided into five disjointed parts Θ0,
Θ1, Θ2, Θ3, and Θ4. They are occupied, respectively, by the voltage sources, the
current sources, the resistors, and the input and the output of the amplifiers. The
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edges included in these sets are denoted, respectively, by el0, e
l
1, e

l
2, e

l
3, and el4. Here, l

is an index varying from one to the number of edges belonging to the respective sets.

The network Θ is assumed to be parameterized. This parameterization defines a
positive sense for each edge. We name s+

e and s−e the vertices belonging to an edge
e ⊂ Θ such that s+

e → s−e is the positive sense. The set of edges arriving in a positive
(respectively, negative) sense at a vertex s is denoted by Θ+

s (respectively, Θ−
s ). The

length of an edge e is denoted by |e|. The function L is distributed on Θ. It is constant
on each edge, and L(x) = |e| for all x ∈ e. The tangent vector to Θ at point x is
denoted by τ(x).

2.2. Statement of equations. In this subsection, the equations of electrical
networks, in their classical form, are recalled. We also introduce the necessary nota-
tions in order to write their variational formulation.

Let us define the sets P
0(Θ) or (P0(Θk))k=0,...,4) (respectively, P

1(Θ)) of functions
constant on each edge e ⊂ Θ or (e ⊂ Θk)k=0,...,4 (respectively, affine on each edge
e ⊂ Θ and continuous on Θ). The current i and the voltage u are some distributed
fields belonging to P

0(Θ). The electrical potential is also a distributed field, and it
belongs to P

1(Θ). The tangential derivative of a function ψ defined on Θ is denoted

by ∇τψ. ‖ψ‖ = (
∫
Θ
(|∇τψ|2 + |ψ|2)dl(x))

1
2 will represent a norm on the space P

1(Θ),

while |ψ| = (
∫
Θ
(|∇τψ|2)dl(x))

1
2 will be a seminorm.

Fig. 2.1. An example of an electric network.

An example of the network described below is represented above.

The voltage Kirchhoff law is stated on each edge e ⊂ Θ as follows: u|e =
ϕ(s+

e ) − ϕ(s−e ), or, equivalently,

L∇τϕ = u on Θ.(2.1)

The current Kirchhoff law is stated for each vertex s as
∑

e⊂Θ+
s
i|e −

∑
e⊂Θ−

s
i|e = 0.

It can be equivalently written under a weak formulation∫
Θ

i(x)∇τψ(x)dl(x) = 0 ∀ψ ∈ P
1(Θ) such that ψ = 0 on σ0.(2.2)
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The values of voltage, current, and electrical potential are imposed, respectively, on
Θ0, Θ1, and σ0 to be equal to the voltage sources ud ∈ P

0(Θ0), id ∈ P
0(Θ1), and 0

on σ0:

u = ud on Θ0, i = id on Θ1, and ϕ = 0 on σ0.(2.3)

Let us remark that the sign of ud and of id on an edge e depends on the orientation
of e.

An impedance 1
g ∈ P

0(Θ2) is associated with Θ2, which means that u and i are
linked by the constitutive linear equation on Θ2:

i = gu on Θ2.(2.4)

We assume that g ≥ gmin > 0.
We recall that a voltage to current amplifier is a device which imposes two equa-

tions between currents and voltages of two edges. The sets Θ3 and Θ4 are, respectively,
the sets of amplifier inputs and outputs. Each input edge el3 ∈ Θ3 is associated with
a unique output edge el4 ∈ Θ4, where l varies from one to the number of amplifiers
used.

The constitutive relations of the voltage to current amplifier are for each l

i|el4 − klu|el3 = 0 and i|el3 = 0,(2.5)

where kl ∈ R is the amplification coefficient. The edges el3 and el4 are, respectively,
called the input and the output of the amplifier. Since (2.5) applies to each amplifier,
we consider that k ∈ P

0(Θ3), and we write the amplifier constitutive equations as
follows:

i|Θ4
− ku|Θ3

= 0 and i|Θ3
= 0.(2.6)

2.3. The variational formulation. In what follows, we give the variational
formulation equivalent to the above equations.

For ud ∈ P
0(Θ0), let us define the admissible functions set for the variational

problem

Ψad(ud) = {ψ ∈ P
1(Θ), ψ = 0 on σ0 and L ∇τψ = ud on Θ0}(2.7)

and the following variational formulation. Consider (ϕ, i) ∈ Ψad(ud) × P
0(Θ4) the

solution of⎧⎪⎪⎨⎪⎪⎩
∫

Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

i∇τψdl(x) = −
∫

Θ1

id∇τψdl(x),∫
Θ3

kL∇τϕ jdl(x) −
∫

Θ4

ijdl(x) = 0

(2.8)

for all (ψ, j) ∈ Ψad(0) × P
0(Θ4).

Let us remark that j ∈ P
0(Θ4) is used on Θ3. We adopt the rule that j takes the

same value on the input el3 and on the output el4 of an amplifier.
Lemma 2.1. The variational formulation (2.8) is equivalent to (2.1)–(2.6).
Proof. Let us consider (2.2). Since i = gL∇τϕ on Θ2, i = 0 on Θ3, and i = id

on Θ1,

∫
Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ0

i∇τψdl(x) +

∫
Θ4

i∇τψdl(x) = −
∫

Θ1

id∇τψdl(x),

(2.9)
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for all ψ ∈ P
1(Θ), such that ψ = 0 on σ0. The variational formulation of (2.5) and

the condition u = ud on Θ0 are∫
Θ3

kL∇τϕ jdl(x) −
∫

Θ4

ijdl(x) = 0 for every j ∈ P
0(Θ4)(2.10)

and ∫
Θ0

L∇τϕ j dl(x) =

∫
Θ0

ud j dl(x) for every j0 ∈ P
0(Θ0),(2.11)

where j takes the same value on each el3 and el4 belonging to the same amplifier. Here i
on Θ0 plays the role of a Lagrange multiplier. Equivalently, (ϕ, i) ∈ Ψad(ud)×P

0(Θ4)
is the unique solution of⎧⎪⎪⎨⎪⎪⎩

∫
Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

i∇τψdl(x) = −
∫

Θ1

id∇τψdl(x),∫
Θ3

kL∇ϕ jdl(x) −
∫

Θ4

ijdl(x) = 0

(2.12)

for all (ψ, j) ∈ Ψad(0) × P
0(Θ4).

The proof of the converse is straightforward.

2.4. An abstract variational system. The analysis of the problem (2.8) in-
volves a variational formulation with the form (2.14) hereafter. This section is devoted
to the study of this abstract variational formulation with inf-sup conditions which are
necessary and sufficient for the unique solvability of the correspondent problem. The
equations (2.8) can be written as follows: Find (ϕ, i) ∈ Ψad(ud) × P

0(Θ4) satisfying{
a(ϕ,ψ) + b1(i, ψ) = l(ψ),
b2(ϕ, j) − c(i, j) = 0

(2.13)

for all (ψ, j) ∈ Ψad(0) × P
0(Θ4). Here, b1(., .) and b2(., .) are different, and c �≡ 0.

The general abstract variational formulation is now stated. Let Xi and Mi (i =
1, 2) be real reflexive Banach spaces. We assume we are given four continuous bilinear
forms, a : X2 ×X1 → R, bi : Xi ×Mi → R (i = 1, 2), and c : M1 ×M2 → R. For any
given f in X ′

1 and g in M ′
2, we consider the following problem: Find (u, p) ∈ X2 ×M1

such that {
a(u, v) + b1(v, p) = 〈f, v〉,
b2(u, q) − c(p, q) = 〈g, q〉(2.14)

for all (v, q) ∈ X1 ×M2.
Remark 2.2. In our case Xi = Xj and Mi = Mj.
In order to study this problem, let us introduce the linear operators A ∈ L(X2, X

′
1),

Bi ∈ L(Xi,M
′
1) (i = 1, 2), and C ∈ L(M1,M

′
2), associated with the forms a, bi

(i = 1, 2), and c, by the relations

∀u ∈ X2, ∀v ∈ X1, 〈Au, v〉 = a(u, v),(2.15)

∀u ∈ Xi, ∀q ∈ Mi, 〈Biu, q〉 = bi(u, q),(2.16)

∀p ∈ M1, ∀q ∈ M2, 〈Cp, q〉 = c(p, q).(2.17)
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We denote by Bt
1 ∈ L(M1, X

′
1) the adjoint operator of B1. The problem (2.14) is

equivalent to the following one: Find (u, p) ∈ X2 ×M1 such that{
Au + Bt

1p = f,
B2u− Cp = g.

(2.18)

We define the Banach subspaces

W1 = {(u, p) ∈ X2 ×M1 : B2u− Cp = 0},(2.19)

W2 = {(u, p) ∈ X2 ×M1 : Au + Bt
1p = 0}(2.20)

and give four conditions Ci (i = 1, . . . , 4):
Condition C1.

∀(u, p) ∈ W1 − {0}, sup
v∈X1

(a(u, v) + b1(v, p)) > 0.

Condition C2. There exists a constant α > 0 such that

∀v ∈ X1, sup
(u,p)∈W1−{0}

a(u, v) + b1(v, p)

‖(u, p)‖X2×M1

≥ α ‖v‖X1
.

Condition C3.

∀(u, p) ∈ W2 − {0}, sup
q∈M2

(b2(u, q) − c(p, q)) > 0.

Condition C4. There exists a constant β > 0 such that

∀q ∈ M2, sup
(u,p)∈W2−{0}

b2(u, q) − c(p, q)

‖(u, p)‖X2×M1

≥ β ‖q‖M2
.

Let us remark that the operator C, according to (2.12), is continuously invertible.
In our case the second equation of (2.18) can be easily solved for p and its solution
inserted into the first equation. Exploiting the particularly simple structure of the
form C would simplify the assumptions C3 and C4. Nevertheless, we will not take
into account this simplification voluntarily because we have in mind later to extend
this technique for networks with general amplifiers; we think that the simplification
of C3 and C4 will be impossible, and one aim of the present paper is to provide a tool
for more general networks.

We can prove the following theorem.
Theorem 2.3. The problem (2.14) admits a unique solution (u, p) ∈ X2 ×M1 if

and only if the four previous conditions Ci (i = 1, . . . , 4) are satisfied. Moreover, the
following inequality is satisfied:

‖(u, p)‖X2×M1 ≤ 1

α
‖f‖X′

1
+

1

β
‖g‖M ′

2
.(2.21)

Proof. Let us consider the two following problems (2.22)–(2.23): Find (u, p) ∈ W1

such that

Au + Bt
1p = f,(2.22)
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and find (u, p) ∈ W2 such that

B2u− Cp = g.(2.23)

The problem (2.18) admits a unique solution if and only if each of the problems
(2.22)–(2.23) admits a unique solution. Moreover, the solution of (2.18) is the sum of
the solutions of the problems (2.22)–(2.23). Consider now the linear operator M :{

M : W1 −→ X ′
1

(u, p) 
→ Au + Bt
1p.

(2.24)

Since B2 and C are continuous, it is clear that W1 is a closed subspace of the Banach
space X2×M1; thus W1 is a Banach space. The bilinear form m defined by m(x, v) =
a(u, v)+b1(v, p) (here x = (u, p)) is the bilinear form associated with the operator M .
Now, M is one to one if and only if

∀x ∈ W1 − {0}, sup
v∈X1

m(x, v) > 0.(2.25)

Equation (2.25) is Condition C1.
Using Theorem II.19 of [4], M is onto if and only if there exists α > 0 such that

α‖v‖X1 ≤ ‖M∗v‖W ′
1

∀v ∈ D(M∗).(2.26)

Since M is bounded its domain is W1, and D(M∗) (the domain of M∗) is equal
to the space X1. Now, we have ‖M∗v‖ = sup‖x‖≤1〈x,M∗v〉 = sup‖x‖≤1 m(x, v) =

supx∈W1

m(x,v)
‖x‖ . The previous equality and (2.25) give C2.

Now, let us assume that M is an isomorphism; then thanks to (2.26) we obtain
an estimation of the norm of M−1: ‖M−1‖ ≤ 1

α , and the solution of Mx = f satisfies
the estimation

‖x‖ ≤ 1

α
‖f‖ .(2.27)

Using the same arguments as previously for the problem (2.23), we obtain Conditions
C3 and C4, and the solution x′ satisfies the estimate

‖x′‖ ≤ 1

β
‖g‖ .(2.28)

The estimate (2.21) comes from (2.27)–(2.28).
Remark 2.4. In the particular case C = 0 (typically the Stokes equations), the

previous proof says that Conditions Ci, i = 1, . . . , 4, are equivalent to the isomorphism
of the operator Λ: {

Λ : X2 ×M1 → X ′
1 ×M ′

2

(u, p) 
→ (Au + Bt
1p,B2u).

Consequently, from Theorem 2.1 of [3], Conditions Ci, i = 1, . . . , 4, are reduced to
the conditions C ′

i, i = 1, 2, and C ′′
i , i = 1, 2, hereafter:

Condition C ′
1.

∀u ∈ KerB2 − {0}, sup
v∈KerB1

a(u, v) > 0.
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Condition C ′
2. There exists a constant α > 0 such that

∀v ∈ KerB1, sup
u∈KerB2−{0}

a(u, v)

‖u‖KerB2

≥ α ‖v‖X1
.

Condition C ′′
i , i = 1, 2. There exists a constant βi > 0 such that

∀q ∈ Mi, sup
u∈Xi−{0}

bi(u, q)

‖u‖Xi

≥ βi ‖q‖Mi
.

Also let us note that in [5] the case B1 = B2, C = 0 is also studied. It is a
particular case of the equations considered in [3]. We can find there some results
when C �= 0 but with some hypothesis of coercivity for the bilinear forms a and c.

3. Existence and uniqueness under graph like assumptions.

3.1. Statement of the result. In this subsection, we introduce assumptions
based on the graph theory which ensure that Conditions Ci (i = 1, . . . , 4) are satisfied.
This means that it is an interpretation in terms of the location of the various devices
such as resistors, amplifier inputs and outputs, current and voltage sources, and earth.
At the end of this subsection, the theorem for the existence and uniqueness of the
solution is stated under these graph like assumptions.

First, let us recall the definitions of path and circuit (see [17] for instance).
Definition 3.1. (i) A path is a sequence of edges where the end of an edge is

connected to the beginning of the following one.
(ii) A circuit is a path where the beginning of the first edge is connected to the end

of the last one. The circuits are denoted by the letter β.
For these definitions, all vertices belonging to σ0 (the earth) are considered as one.

Statements of the assumptions.
(H1) There is no circuit solely made up of edges belonging to Θ0.
It is intuitively clear that two or more voltage sources cannot form a circuit in

a network graph since the tensions are independently given on such a circuit, and
the voltage Kirchhoff equations on such a circuit might lead to a contradiction with
assumption (H1).

Assumption (H1) implies that, for all ud ∈ P
0(Θ0), ψad(ud) �= ∅.

Definition 3.2 (of Θ2). Let us consider the subgraph Θ0 ∪ Θ2 of Θ. Thanks
to (H1), there exists at least a subset of edges X of Θ2 such that Θ0 ∪ Θ2 −X is a
subgraph without a circuit of Θ0 ∪Θ2 (i.e., a forest of Θ0 ∪Θ2). If, for all X ′ ⊂ X,
Θ0 ∪ Θ2 −X ′ contains at least one circuit, we say that X is minimal.

Remark 3.3. In that case Θ0 ∪Θ2 −X is a spanning forest of Θ0 ∪Θ2 (for this
definition and the following remarks see [12, 13, 14, 15, 16, 17]).

Remark 3.4. Every X minimal in the previous definition contains the same
number of edges.

Remark 3.5. There exist algorithms for the construction of such a spanning
forest.

Now, let us fix such a subset X and denote for what follows Θ̃2 = X and Θ2 =
Θ2 −X.

(H2) For every edge e ∈ Θ1 ∪ Θ3 ∪ Θ4, there exists a circuit β such that {e} ⊂
β ⊂ Θ0 ∪ Θ2 ∪ {e}.

In order to satisfy the current Kirchhoff law for a graph without amplifiers, a
necessary condition for the unique solvability of a network is that the set Θ1 should
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not contain any cut set, where a cut set is a minimal set of edges whose deletion will
increase the number connected components by one (see [17, Chapter 2]). Since the
current is given independently on each edge of Θ3 and Θ4, physically we extend this
condition for all the edges of Θ1 ∪ Θ3 ∪ Θ4. Using the definition of Θ2, we can show
that the interpretation of this last condition is (H2); nevertheless, we leave the details
to the reader since the justification is quite technical.

Lemma 3.6. Hypothesis (H2) does not depend on the choice of X.
Proof. If it is not true, there exist X ′ minimal and a branch e ∈ Θ1 ∪ Θ3 ∪ Θ4

such that there is no circuit in Θ0 ∪ (Θ2 −X ′) ∪ {e}.
Since Θ0∪Θ2 is a spanning forest of Θ0∪Θ2∪{e}, if we add any edge of Θ̃2∪{e}

we will obtain a circuit. On the other hand, Θ0 ∪ (Θ2 −X ′) is not a spanning forest
of Θ0 ∪ Θ2 ∪ {e} since there is no circuit in Θ0 ∪ (Θ2 −X ′) ∪ {e}. Therefore we can
get a spanning forest containing Θ0 ∪ (Θ2 −X ′) ∪ {e}. But X and X ′ have the same
cardinal, so we have obtained two spanning forests of Θ0 ∪ Θ2 ∪ {e} with a different
number of edges. By section 1.2 of [17], this is not possible.

Definition 3.7. For e ∈ Θ1 ∪ Θ̃2 ∪Θ3 ∪Θ4, there exists a unique circuit β such
that {e} ⊂ β ⊂ {e} ∪ Θ0 ∪ Θ2 (see section 1.2 of [17], definition of a fundamental
system of circuits associated with Θ0 ∪ Θ2). We denote this circuit by Z(e).

The definition of Z(e) implies ∇τψ|e is a linear combination of (∇τψ|e′)e′∈Z(e)−{e}.
Therefore the following result holds.

Lemma 3.8. If (H1), (H2) are fulfilled, there exists C > 0 such that for all

e ∈ Θ1 ∪ Θ̃2 ∪ Θ3 ∪ Θ4 we have the estimate

|∇τψ|e ≤ C|∇τψ|Z(e)−{e} ∀ψ ∈ Ψad(ud).(3.1)

Corollary 3.9. If (H1), (H2) are fulfilled, there exists C > 0 such that for all

e ∈ Θ1 ∪ Θ̃2 ∪ Θ3 ∪ Θ4 we have the estimates

|∇τψ|e ≤ C|∇τψ|Θ0∪Θ2
∀ψ ∈ Ψad(ud)(3.2)

and

|∇τψ|e ≤ C|∇τψ|Θ2
∀ψ ∈ Ψad(0).(3.3)

Now, we give some definitions and immediate consequences useful in what follows.
These definitions are illustrated with examples in the following subsection.

Definition 3.10 (of a relation r in the set Θ̃2 ∪ Θ3 ∪ Θ4). For e and e′ in

Θ̃2 ∪ Θ3 ∪ Θ4, we say that e r e′ if and only if Z(e) ∩ Z(e′) ∩ Θ2 �= ∅.
Remark 3.11. The previous definition implies that if e r e′, then the set

Y (e, e′) = Z(e) ∪ Z(e′) − (Z(e) ∩ Z(e′)) is included in Θ2 ∪ Θ0 ∪ {e, e′} and is a
circuit.

Lemma 3.12. If e r e′, then

|∇τψ|e′ ≤ C|∇τψ|Y (e,e′)−{e′} ≤ C|∇τψ|Θ2∪{e} ∀ψ ∈ Ψad(0).

Definition 3.13. A sequence c(e, e′) associated with the relation r is a set

{e, e1, . . . , ek, e
′} of elements in Θ̃2 ∪ Θ3 ∪ Θ4 such that e r e1, e1 r e2, . . . , ek r e′.

Definition 3.14. The set-valued function R from Θ4 to P(Θ3) is defined by

e4 ∈ Θ4 
−→ R(e4) = {e3 ∈ Θ3 : there exists a sequence

which satisfies c(e3, e4) − {e3, e4} ⊂ Θ̃2}.
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Now, we assume that the network Θ contains N ∈ N amplifiers denoted by
Ai = {ei3, ei4}, i = 1, . . . , N . The corresponding coefficients will be denoted by ki.
Let us associate with the function R the directed graph G = (V,E), where the set
of points V are the amplifiers Ai (i = 1, . . . , N) and the set of directed edges are
the pairs (Ai, Aj) when ej3 ∈ R(ei4). The following assumption is formulated as an
hypothesis on the graph G.

(H3) G is without a circuit.
Remark 3.15. One can use classical algorithms to check (H3) (see [12, 17]).
Roughly speaking, a path in the directed graph G shows the propagation of the

information through the amplifiers. So assumption (H3) does not allow any circuit of
amplification which would lead to a infinite amplification.

(H4) In each connected component of Θ − Θ1 there is a vertex belonging to σ0.
Assumption (H4) eliminates the constant potential.
Remark 3.16. Assumption (H2) implies that there exists a positive constant C

such that for every ψ ∈ Ψad(0) we have |∇τψ|Θ1 ≤ C|∇τψ|Θ−Θ1 . It implies the
continuity of the linear form l(ψ) = −

∫
Θ1

id∇τψdl(x) with respect to the seminorm

|∇τψ|Θ. Taking account of (H4) we obtain that |∇τψ|Θ is a norm on Ψad(0).
Now we are ready to state the theorem of existence and uniqueness.
Theorem 3.17. If assumptions (H1)–(H4) are fulfilled, then the variational

formulation (2.8) has a unique solution.

3.2. Illustration of the assumptions. We consider two similar examples de-
scribed in Figure 3.1 for which we determine the graph G.

For both examples, assumptions (H1), (H4) are obviously satisfied. Removing the
set {ẽ2} ∪Θ1 ∪Θ3 ∪Θ4 from these two networks we obtain the same spanning forest
Θ0 ∪ Θ2 described in Figure 3.1.

So Θ̃2 = {ẽ2}, and it is clear that assumption (H2) is satisfied.

Fig. 3.1. The spanning forest for Examples 1 and 2.
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Fig. 3.2. Example 1.

Fig. 3.3. Graphs G1 and G2.

Example 1 (see Figure 3.2). The amplifiers Ai = {ei3, ei4}, i = 1, 2, 3, are such
that Z(e1

4) ∩ Z(e2
3) ∩ Θ2 �= ∅ and Z(e2

4) ∩ Z(e3
3) ∩ Θ2 �= ∅, so

e1
4 r e2

3 and e2
4 r e3

3.(3.4)

Thus c(e1
4, e

2
3) = {e1

4, e
2
3} and c(e2

4, e
3
3) = {e2

4, e
3
3}. Hence, c(e1

4, e
2
3)−{e1

4, e
2
3} = ∅ ⊂ Θ̃2

and c(e2
4, e

3
3) − {e2

4, e
3
3} = ∅ ⊂ Θ̃2. Therefore the function R is defined by

R(e1
4) = {e2

3}, R(e2
4) = {e3

3}, and R(e3
4) = ∅.

The directed graph G1 is given on the left side of Figure 3.3.
There is no circuit in G1: assumption (H3) holds.
Example 2 (see Figure 3.4). The amplifiers Ai = {ei3, ei4}, i = 1, 2, 3, satisfy (3.4)

and

e2
4 r ẽ2; ẽ2 r e1

3.(3.5)



HOMOGENIZATION OF ELECTRICAL NETWORKS 371

Fig. 3.4. Example 2.

From (3.5), there exists an additional sequence c(e2
4, e

1
3) = {e2

4, ẽ2, e
1
3} such that

c(e2
4, e

1
3) − {e2

4, ẽ2, e
1
3} = {ẽ2} ⊂ Θ̃2. Thus the function R is defined by

R(e1
4) = {e2

3}, R(e2
4) = {e1

3, e
3
3}, and R(e3

4) = ∅.

The directed graph G2 is given on the right side of Figure 3.3. The circuit {A1, A2}
belongs to G2, so assumption (H3) does not hold.

3.3. Notations for the proof. Some additional notations and properties are
introduced in this section. They are of constant use in the proof of the existence and
uniqueness theorem.

First, we define a subset of Θ̃2 associated with each edges in Θ3 ∪ Θ4.
Definition 3.18. Under (H1), (H2), if e ∈ Θ3∪Θ4, X(e) is the set of elements e2

of Θ̃2 such that there exists a sequence c(e, e2) which satisfies

c(e, e2) − {e} ⊂ Θ̃2.

We also define

Z ′(e) =

(
Z(e)

⋃
e2∈X(e)

Z(e2)

)
∩ Θ2.

From Definition 3.18 and Lemma 3.8 we have the following.
Lemma 3.19. Under (H1), (H2), there exists C > 0 such that for all e ∈ Θ3∪Θ4

and e′ ∈ X(e) ∪ {e} the following estimate holds:

|∇τψ|e′ ≤ C|∇τψ|Z′(e) ∀ψ ∈ Ψad(0).

Now we give two lemmas useful in what follows.
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Lemma 3.20. Under (H1), (H2), there exists C > 0 such that for all e ∈ Θ3∪Θ4

and ẽ ∈ Θ̃2 −X(e) we have

|∇τψ|ẽ ≤ C|∇τψ|Θ2−Z′(e) ∀ψ ∈ Ψad(0).

Proof. An immediate consequence of Definition 3.18 is that if ẽ ∈ Θ̃2−X(e), then
Z(ẽ) ∩ Z ′(e) = ∅. We conclude with the help of Lemma 3.8.

Lemma 3.21. Under (H1), (H2), there exists C > 0 such that for all e3 ∈ Θ3

and e4 ∈ Θ4 which satisfy e3 /∈ R(e4) we have the estimate

|∇τψ|e4 ≤ C|∇τψ|Θ2−Z′(e3)
∀ψ ∈ Ψad(0).(3.6)

Proof. By the definitions of R (see Definition 3.14) and Z ′(e3) (see Definition 3.18)
we have Z ′(e3)∩Z(e4) = ∅. With the help of Lemma 3.8 we conclude the proof.

Now, we define a partition of Θ4 based on assumption (H3).
Lemma 3.22. Under (H1)–(H3) there exists a partition Θ1

4 ∪Θ2
4 ∪ · · ·∪Θp

4 of Θ4

such that (i) and (ii) hereafter are satisfied:

(i) Θ1
4 = {el4 ∈ Θ4 | ∀e4 ∈ Θ4, e

l
3 /∈ R(e4)}.

(ii) Θj
4 =

{
el4 ∈ Θ4

∣∣∣∣∣ ∀e4 ∈ Θ4 such that el3 ∈ R(e4); then

e4 ⊂
⋃
i<j

Θi
4, and there exists e4 ∈ Θj−1

4 such that el3 ∈ R(e4)

}
, j = 2, . . . , p.

Proof. From (H3), G is without a circuit. The set of vertices of V without a
predecessor is not empty (see, for instance, [12, Chapter 2]). Then we can associate
with each vertex Ai one and only one level j = 1, . . . , p in the following way:

(i) Ai is of level 1 if and only if Ai is without a predecessor.
(ii) For j = 2, . . . , p, Ai is of level j if and only if its predecessors are of level

strictly lower than j and at least one of them is exactly of level j − 1.
Now we consider the partition Θ4 =

⋃p
j=1 Θj

4 such that ei4 ∈ Θj
4 if Ai is of level j.

From Definition 3.14 and G, it is clear that this partition satisfies (i) and (ii).
Definition 3.23. Under (H1)–(H3), we define the partition Θ1

3 ∪ Θ2
3 ∪ · · · ∪ Θp

3

of Θ3 such that el3 ∈ Θj
3 if and only el4 ∈ Θj

4, j = 1, . . . , p.

3.4. Technical results. The proof of Theorem 3.17 is based on the following
general technical results.

Lemma 3.24. If (H1), (H2), (H4) are fulfilled, then the seminorm |∇τψ|Θ2
=

(
∫
Θ2

|∇τψ|2)
1
2 dl(x) is a norm on Ψad(0).

Proof. It is a direct consequence of Corollary 3.9 and Remark 3.16.
Lemma 3.25. If (H1), (H2), (H4) are fulfilled, then the bilinear form a(., .)

defined by

a(ϕ,ψ) =

∫
Θ2

gL∇τϕ∇τψdl(x) ∀ϕ,ψ ∈ Ψad(0)

is continuous and coercive on Ψad(0). Moreover, the problem

a(ϕ,ψ) = l(ψ) ∀ψ ∈ Ψad(0),
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where l is a linear continuous form on Ψad(0), admits a unique solution ϕ ∈ Ψad(0).
There exists a constant C, C > 0, such that the solution ϕ follows the estimation

‖ϕ‖ ≤ 1

C
‖l‖(Ψad(0))′ .

Proof. The continuity follows immediately. For all ψ in Ψad(0), a(ψ,ψ) =∫
Θ2

Lg |∇τψ|2 dl(x) ≥ Lmingmin |∇τψ|2Θ2
. From Lemma 3.24 there exists C ′ > 0 such

that |∇τψ|2Θ2
≥ C ′ ‖ψ‖2

. Setting C = gminLminC
′, the bilinear form a is coercive on

Ψad(0) since for all ψ in Ψad(0)

a(ψ,ψ) ≥ C ‖ψ‖2
.

We conclude with the Lax–Milgram theorem.
Lemma 3.26. Let us consider K1 ⊂ Θ2 and K2 = Θ2 −K1 and set

Ψi = {ψ ∈ Ψad(0) : ∇τψ|e = 0 ∀e ∈ Ki}, i = 1, 2.(3.7)

Under (H1), (H2), (H4), Ψad(0) = Ψ1 ⊕ Ψ2.
Proof. For any ψ ∈ Ψad(0), let ψ1 be a function in Ψ1 such that

∇τψ1 = ∇τψ on K1

= 0 on K2.

ψ1 exists because there is no circuit in Θ2. Thus from Lemma 3.24 ψ1 is defined on Θ.
It is the same for ψ2 ∈ Ψ2 such that

∇τψ2 = ∇τψ on K2

= 0 on K1.

Hence ∇τψ = ∇τψ1 + ∇τψ2 on Θ2; thus from Lemma 3.24 ψ = ψ1 + ψ2 on Θ. If
ψ ∈ Ψ1∩Ψ2, then ∇τψ = 0 on Θ2, and from Lemma 3.24 ψ = 0. So the sum Ψ1⊕Ψ2

is direct.
Lemma 3.27. Under (H1), (H2), we have the following:

(i) For all e ∈ Θ3 ∪ Θ4 and all e′ ∈ Θ̃2 we have

e′ ∈ X(e) if and only if Z(e′) ∩ Z ′(e) �= ∅.

(ii) For all e ∈ Θ3 and all e′ ∈ Θ4 we have

e ∈ R(e′) if and only if Z(e′) ∩ Z ′(e) �= ∅.

Proof. (i) If e′ ∈ X(e), then obviously Z(e′) ⊂ Z ′(e). Reciprocally, if Z(e′) ∩
Z ′(e) �= ∅ there exists a sequence c(e, e′), and thus e′ ∈ X(e).

(ii) It uses analogous arguments as in (i).
Corollary 3.28. Under (H1), (H2), (H4), for e ∈ Θ3 ∪ Θ4, let K1 = Z ′(e),

K2 = Θ2−K1, and Ψ1 and Ψ2 be defined as in Lemma 3.26. Then, for all (ψ1, ψ2) ∈
Ψ1 × Ψ2, ∫

Θ̃2

gL∇τψ1∇τψ2dl(x) = 0.
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Proof. Since ψ1 ∈ Ψ1, then ∇τψ1 = 0 on X(e) ⊂ Z ′(e), and, consequently,∫
Θ̃2

gL∇τψ1∇τψ2dl(x) =

∫
Θ̃2−X(e)

gL∇τψ1∇τψ2dl(x).(3.8)

For all e′ ∈ Θ̃2 − X(e), Z(e′) ∩ Z ′(e) = ∅ by Lemma 3.27. Thus Z(e′) ∩ Θ2 ⊂ K2,

and this implies ∇τψ2 = 0 on Z(e′). Thus, ∇τψ2|e′ = 0 for all e′ ∈ Θ̃2 −X(e). With
(3.8), this leads to the result.

Corollary 3.29. Let us assume that (H1), (H2), (H4) hold. Let e ∈ Θ3 ∪ Θ4,
K1 = Z ′(e), K2 = Θ2 −K1, and ϕ ∈ Ψad(0) be the unique solution of

a(ϕ,ψ) =

∫
e

∇τψdl(x) ∀ψ ∈ Ψad(0).

Then ϕ ∈ Ψ2 (Ψ2 defined as in Lemma 3.26); that is, ∇τϕ = 0 on Θ2 − Z ′(e).
Proof. By Lemma 3.26, Ψ1 ⊕ Ψ2 = Ψad(0). Let ϕ = ϕ1 + ϕ2, ϕ1 ∈ Ψ1, and

ϕ2 ∈ Ψ2; then ϕ2 is the unique solution of

a(ϕ1, ψ) = −a(ϕ2, ψ) ∀ψ ∈ Ψ1,

since
∫
e
∇τψ= 0 for all ψ ∈Ψ1. Therefore for all ψ ∈Ψ1, a(ϕ2, ψ) =

∫
Θ2

g∇τϕ2∇τψ=∫
Θ̃2

g∇τϕ2∇τψ = 0 by Corollary 3.28. Hence a(ϕ1, ψ) = 0; thus
∫
Θ̃2∪Z′(e) g∇τϕ1∇τψ

= 0 for all ψ ∈ Ψ1. This implies ∇τϕ1 = 0 on Z ′(e) and thus on Θ2, and, finally,
ϕ1 = 0 on Θ. Consequently, ϕ = ϕ2; i.e., ∇τϕ = 0 on Θ2 − Z ′(e).

Lemma 3.30. Let us assume that (H1)–(H4) hold. Let j ∈ {1, . . . , p} (here and
in what follows p is given by Lemma 3.22), e4 ∈ Θj

4, K1 = Z ′(e4), K2 = Θ2 − K1,
and ϕ ∈ Ψad(0) be the unique solution of

a(ϕ,ψ) =

∫
e4

∇τψdl(x) ∀ψ ∈ Ψad(0).

Then ∇τϕ = 0 on
⋃

1≤i≤j

⋃
e3∈Θi

3
Z(e3), where Θi

3 is given in Definition 3.23.

Proof. By Corollary 3.29, we know that ∇τϕ = 0 on Θ2 − Z ′(e4). It remains to
prove that Θ2 ∩ Z(e3) ⊂ Θ2 − Z ′(e4) for all e3 ∈ Θi

3 and all 1 ≤ i ≤ j. However,
if Z(e3) ∩ Z ′(e4) �= ∅, then e3 ∈ R(e4) and is a contradiction with the fact that
i ≤ j.

Corollary 3.31. Let us assume that (H1)–(H4) hold. For all Θ′ ⊂ Θj
4 (j ∈

{1, . . . , p}), α ∈ P
0(Θ′), let l be the linear form defined by l(ψ) =

∫
Θ′ α∇τψdl(x) and

ϕ ∈ Ψad(0) be the unique solution of

a(ϕ,ψ) = l(ψ) ∀ψ ∈ Ψad(0).(3.9)

Then ∇τϕ = 0 on
⋃

1≤i≤j

⋃
e3∈Θi

3
Z(e3).

Proof. For e4 ∈ Θj
4, we denote by ϕe4 the solution given by Corollary 3.29.

Hence ϕ =
∑

e4∈Θj
4
α|e4ϕe4 . Then ϕ is the solution of problem (3.9). Therefore, by

Lemma 3.30, each ∇τϕ|e4 = 0 on Z(e3) for all e3 ∈ Θi
3 and all i ∈ {1, . . . , j}. So this

is also true for ϕ.
Lemma 3.32. Let us assume that (H1), (H2) hold. Let e ∈ Θ3 and ϕ ∈ Ψad(0)

be given. Let us consider ψ ∈ Ψad(0) such that

∇τψ = 0 on Θ2 − Z ′(e)(3.10)

= ∇τϕ on Z ′(e);(3.11)
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then

∇τψ = 0 on (Θ4 −R−1(e)) ∪ (Θ̃2 −X(e))

= ∇τϕ on R−1(e) ∪X(e),

where R−1(e) = {e4 ∈ Θ4 : e ∈ R(e4)}.
Proof. Since ∇τψ = ∇τϕ on Z ′(e) and for all e′ ∈ X(e), Z(e′) − {e′} ⊂ Z ′(e),

then ∇τψ = ∇τϕ on Z(e′) − {e′}, and thus ∇τψ|e′ = ∇τϕ|e′ . The same proof holds

for e′ ∈ R−1(e).

If e′ ∈ Θ̃2 ∪ Θ4 − (R−1(e) ∪X(e)), then by Lemma 3.27 Z(e′) ∩ Z ′(e) = ∅, and
thus ∇τψ = 0 on Z(e′) − {e′}, and, consequently, ∇τψ|e′ = 0.

3.5. Proof of Theorem 3.17. Since (H1) is satisfied, there does not exist any
circuit included in Θ0. Therefore, for all ud ∈ P

0(Θ0), Ψad(ud) �= ∅. Let us consider
ϕ̃ ∈ Ψad(ud) and the problem satisfied by (ϕ, i) ∈ Ψad(0) × P

0(Θ4):{
a(ϕ,ψ) + b1(i, ψ) = l(ψ) − a(ϕ̃, ψ) − b1(̃i, ψ),

b2(ϕ, j) − c(i, j) = −b2(ϕ̃, j) + c(̃i, j)
(3.12)

for all (ψ, j) ∈ Ψad(0) × P
0(Θ4), where we have set ϕ = ϕ− ϕ̃, ĩ|Θ4

= k∇τ ϕ̃|Θ3
, and

i = i− ĩ.
The problems of existence and uniqueness of (ϕ, i) or (ϕ, i) are equivalent. Thus,

in what follows, we consider only the case where ud = 0.
Now, let us write more simply the problem (3.12) as follows: Find (ϕ, i) ∈

Ψad(0) × P
0(Θ4) the solution of{

a(ϕ,ψ) + b1(i, ψ) = l1(ψ),
b2(ϕ, j) − c(i, j) = l2(j)

(3.13)

for all (ψ, j) ∈ Ψad(0) × P
0(Θ4) (here l1 and l2 are linear continuous forms).

We will check the four conditions Ci (i = 1, . . . , 4) successively.
Condition C1.

∀(ϕ, i) ∈ W1 − {(0, 0)}, sup
Ψad(0)−{0}

(a(ϕ,ψ) + b1(i, ψ)) > 0,

where W1 = {(ϕ, i) ∈ Ψad(0) × P
0(Θ4) : i|Θ4

= k(L∇τϕ)|Θ3
}.

If C1 does not hold, there exists ϕ ∈ Ψad(0), ϕ �= 0, such that for all ψ ∈ Ψad(0)∫
Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) = 0.(3.14)

For all e ∈ Θ3, we choose ψ ∈ Ψad(0) satisfying (3.10)–(3.11). Using Lemma 3.32,
(3.14) leads to∫

Z′(e)∪X(e)

gL |∇τϕ|2 dl(x) +

∫
R−1(e)

k(L∇τϕ)|Θ3
∇τϕ|Θ4

dl(x) = 0.(3.15)

We shall show by iteration that ∇τϕ|e3 = 0 for all e3 ∈ Θi
3.

If e ∈ Θ1
3, R

−1(e) = ∅, then (3.15) leads to ∇τϕ = 0 on Z ′(e); thus ∇τϕ|e = 0.

For j > 1 and e ∈ Θj
3, every el4 ∈ R−1(e) is in one of the subsets Θi

4 with i < j, and
hence ∇τϕ|el3 = 0; consequently, we also get ∇τϕ|e = 0.
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Now, with ψ = ϕ in (3.14), it remains that
∫
Θ2

gL |∇τϕ|2 dl(x) = 0. This leads
to ϕ = 0 and proves C1.

Condition C2. We have to show that there exists α > 0 such that, for all ψ ∈
Ψad(0), we can find (ϕ, i) ∈ W1 − {0} satisfying∫

Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

i∇τψdl(x) ≥ α ‖(ϕ, i)‖ ‖ψ‖

or, equivalently, find ϕ ∈ Ψad(0) − {0} such that∫
Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) ≥ α ‖ϕ‖ ‖ψ‖ .(3.16)

For all ψ ∈ Ψad(0), let us suppose for the moment that there exists ϕ �= 0, so that

a(ϕ,ψ) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) = a(ψ,ψ),(3.17)

with the following estimate:

‖ϕ‖ ≤ C ‖ψ‖ ,(3.18)

where C > 0. Then from (3.17) and (3.18)

a(ϕ,ψ) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) = a(ψ,ψ) ≥ LmingminC ‖ϕ‖ ‖ψ‖ .

That proves C2. It remains to find ϕ.
Let us denote ψ = ψ0. By iteration on j = 1, . . . , p, with the help of Lemma 3.25,

let us consider the solution ψj of

a(ψj , ψ
′) = lj(ψ

′) ∀ψ′ ∈ Ψad(0),(3.19)

where lj is the linear form defined on Ψad(0) by

lj(ψ
′) = −

∑
el3∈Θj

3

∫
el4

kel3

(
L∇τ

(
j−1∑
i=0

ψi

))
|el3

∇τψ
′dl(x).(3.20)

We set

ϕ =

p∑
j=0

ψj .(3.21)

It is easy to show that (3.18) holds. Applying Corollary 3.31 we see that ∇τψj = 0
on

⋃
1≤i≤j

⋃
e3∈Θj

3
Z(e3). Therefore, for each j = 1, . . . , p, we can write

−
∑

el3∈Θj
3

∫
el4

kel3

(
L∇τ

(
j−1∑
i=0

ψi

))
|el3

∇τψ
′dl(x)

= −
∑

el3∈Θj
3

∫
el4

kel3

(
L∇τ

(
p∑

i=0

ψi

))
|el3

∇τψ
′dl(x)

(3.22)
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for all ψ′ ∈ Ψad(0). Using (3.19) and (3.22) we have the following equalities:

a(ϕ,ψ) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x)

= a

(
p∑

i=0

ψj , ψ

)
+

∫
Θ4

k

(
L∇τ

(
p∑

i=0

ψj

))
|Θ3

∇τψdl(x)

= a(ψ,ψ) +

p∑
j=1

a(ψj , ψ) +

p∑
j=1

∑
el3∈Θj

3

∫
el4

kel3

(
L∇τ

(
p∑

i=0

ψi

))
|el3

∇τψdl(x)

= a(ψ,ψ).

Thus (3.17) holds.
Condition C3.

∀(ϕ, i) ∈ W2 − {0}, sup
j∈P0(Θ4)

(b2(ϕ, j) − c(i, j)) > 0,

where

W2 = {(ϕ, i) ∈ Ψad(0) × P
0(Θ4) : ∀ψ ∈ Ψad(0), a(ϕ,ψ) + b1(i, ψ) = 0}.

Suppose that we do not have C3: there exists (ϕ, i) ∈ W2 − {0} satisfying, for all
j ∈ P

0(Θ4), ∫
Θ3

k|el3(L∇τϕ)|el3 j|el4dl(x) −
∫

Θ4

i|el4j|el4dl(x) = 0.(3.23)

It is clear that (3.23) means i|Θ4
= k(L∇τϕ)|Θ3

and, consequently, implies∫
Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) = 0

for all ψ ∈ ψad(0). Since C1 holds, we obtain ϕ = 0, and therefore i = 0.
Condition C4. There exists a constant β > 0 such that

∀j ∈ P
0(Θ4), sup

(ϕ,i)∈W2−{0}

b2(ϕ, j) − c(i, j)

‖(ϕ, i)‖Ψad(0)×P0(Θ4)
≥ β ‖j‖

P0(Θ4)
.

Let j ∈ P
0(Θ4), j �= 0. Let us suppose that there exists ϕ ∈ Ψad(0) such that

a(ϕ,ψ) =

∫
Θ4

(j − (kL∇τϕ)|Θ3
)∇τψdl(x) ∀ψ ∈ Ψad(0),(3.24)

with the estimate

‖ϕ‖ ≤ C ′ ‖j‖
P0(Θ4)

,(3.25)

C ′ > 0. If we set

i = −j + k(L∇τϕ)|Θ3
∈ P

0(Θ4),(3.26)
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(3.24) implies that (ϕ, i) ∈ W2 −{0} with the estimate ‖i‖ ≤ C ′′ ‖ϕ‖. Then, from the
previous estimate, the estimate (3.25), and (3.26), we have

b2(ϕ, j) − c(i, j) =

∫
Θ3

kL∇τϕ jdl(x) −
∫

Θ4

i jdl(x)

=

∫
Θ4

j j dl(x) = ‖j‖2

≥ 1

C ′ ‖ϕ‖ ‖j‖ ≥ C ′′′

C ′ ‖(ϕ, i)‖ ‖j‖ .

That will prove C4. It remains to find ϕ: let us denote ψ0 = 0. Let ψk ∈ Ψad(0) be
the solution of

a(ψk, ψ
′) =

∫
Θj

4

(
j − k

(
L∇τ

k−1∑
j=0

ψj

)
|Θj

3

)
∇τψdl(x) ∀ψ ∈ Ψad(0),(3.27)

k = 1, . . . , p. Using the same argument as in the proof of C2, the function ϕ defined
by (3.21) is the solution of (3.24) with the estimate ‖ϕ‖ ≤ C ′ ‖j‖

P0(Θ4)
. Now, we set

i = −j + k(L∇τϕ)|Θ3
∈ P

0(Θ4); hence (3.24) implies that (ϕ, i) ∈ W2 − {0} with the
estimate (3.25).

3.6. Optimality of conditions (H1)–(H4). Theorem 3.17 gave sufficient con-
ditions for the unique solvability of networks, containing voltage and current sources,
resistors, and voltage to current amplifiers. Since negative resistors or negative ampli-
fiers are useful to model certain physical devices, we do not wish to exclude them. In
what follows, we consider networks which do not satisfy one of assumptions (H1)–(H4),
and we prove the existence of some coefficients g and k such that the unique solvabil-
ity does not occur. Indeed, we have already seen the usefulness of conditions (H1),
(H2) (for e ∈ Θ1), and (H4). In subsections 3.6.1 and 3.6.2 we prove, respectively,
that (H2) (for e ∈ Θ3 ∪ Θ4) and (H3) are necessary for the unique solvability of the
networks considered in this paper.

3.6.1. (H2) is necessary. First, we show that if our problem admits a unique
solution, then each e ∈ Θ3 ∪ Θ4 is included in a circuit.

If an edge e3 ∈ Θ3 does not belong to a circuit, Condition C2 is not satisfied;
indeed, we do not have (3.16) with ψ ∈ Ψad(0), ∇τψ|Θ2∪Θ4

= 0, and ∇τψ|e3 �= 0.
Whereas, if an edge e4 ∈ Θ4 does not belong to a circuit, Condition C3 is not satisfied.
To see that, we consider ϕ such that ∇τϕ|Θ2∪Θ3

= 0, i = 0, and ∇τϕ|e4 �= 0. Hence

(ϕ, i) ∈ W2 − {0}, and (3.23) holds for all j ∈ P
0(Θ4).

Now, we assume that (H2) (for e ∈ Θ3 ∪ Θ4) does not hold. Then there exists
e ∈ Θ3 ∪Θ4 such that no circuit is included in Θ0 ∪Θ2 ∪{e}. Thus for every circuit β
which contains e the following assertion holds:

(P) There exists e′ ∈ Θ3 ∪ Θ4 such that {e, e′} ⊂ β ⊂ Θ0 ∪ Θ2 ∪ {e, e′}.
Three cases for such e and e′ can be distinguished.

First case. e ∈ Θ3 and e′ ∈ Θ3. There exists ψ �= 0 such that ∇τψ = 0 on
Θ2 ∪ Θ4 − {e, e′} and (L∇τψ)|e = −(L∇τψ)|e′ , and we get∫

Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) = 0

for all ϕ in ψad(0). So C2 is not satisfied.
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Second case. e ∈ Θ4 and e′ ∈ Θ4. There exists ϕ �= 0 such that ∇τϕ = 0 on
Θ2 ∪ Θ3 − {e, e′} and (L∇τϕ)|e = −(L∇τϕ)|e′ , and we get∫

Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψdl(x) = 0

for all ψ in ψad(0). Thus, C1 does not hold.

Third case. e ∈ Θ3 and e′ ∈ Θ4. Consider ϕ ∈ Ψad(0) − {0} such that ∇τϕ �= 0
and ∇τϕ = 0 on Θ2. Thus ∇τϕ = 0 on Θ2 and, for all ψ ∈ Ψad(0),

∫
Θ2

gL∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψ|Θ4

dl(x) =

∫
Θ4

k(L∇τϕ)|Θ3
∇τψ|Θ4

dl(x).

(3.28)

For each e3 ∈ Θ3 such that ∇τϕ �= 0, setting k|e3 = 0 we get, for all ψ ∈ Ψad(0),∫
Θ2

Lg∇τϕ∇τψdl(x) +

∫
Θ4

k(L∇τϕ)|Θ3
∇τψ|Θ4

dl(x) = 0.(3.29)

So C1 does not hold.

Hence, for every coefficient L, g, k assumption (H2) is necessary for the existence
and uniqueness of the solution.

Remark 3.33. In the last case, the existence and uniqueness does not occur when
some coefficients k|e vanish, i.e., when the input and output of the correspondent
amplifiers are some passive current sources. For such networks, it can occur that
the problem remains well posed when k �= 0 for every amplifier. Two such cases
are represented in Figure 3.5. Nevertheless, in both cases the output current i|e24 is
independent of the corresponding coefficient amplifier k2; that is, the amplifier does
not do its work. Those are degenerate situations.

Fig. 3.5. Two degenerate cases.

3.6.2. Optimality of (H3). Here, we assume (H2) but not (H3), so it turns
out that C1 cannot be satisfied. Let us consider all the fundamental circuits in G,
denoted by

Ai
1, . . . , A

i
Ni

,
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where i is the index of the circuit number i. We transform the Ai
N in the following

way:

eNi
3 is replaced by a current source id = 0,

eNi
4 is replaced by a current source id = iNi

d �= 0.

Hence, all the circuits are removed in G. Assumptions (H1)–(H4) are still satisfied
by this modified network. Thus we can apply Theorem 3.17, and we deduce that
there exists a unique solution ϕ for this network. Then, choosing the coefficients kNi

so that the amplification relations (2.5) are satisfied, ϕ �= 0 and fulfills the equality
(3.14). Consequently, Condition C1 does not hold, and this proves the optimality of
assumption (H3).

4. Homogenization of periodic electrical networks. The major emphasis of
the previous section was the derivation of the variational formulation for an electrical
circuit. The cornerstone of the simplified modelling of periodic mechatronic systems is
the possibility of dealing with periodically distributed electrical circuits. This section
is devoted to this point and make use of the well-known homogenization techniques.
It consists in passing to the limit in the model when the period size goes to zero. The
limit model derived with this asymptotic method is referred to as the homogenized
problem.

4.1. Statement of the periodic circuit equations. Let us first define the
standard unit cell Y = ]− 1

2 ,
1
2 [

n
which, upon rescaling to size ε = 1

N (N ∈ N
∗),

becomes the period in the periodic circuit. The network is now denoted by Θε to stress
that it is εY -periodic. We restrict our study to the case where Θε has N cells in each
of the n directions. So Θε is included in Ω = [0, 1]n; see Figure 4.1. The Nn identical
cells of the square Ω and of the circuit Θε are denoted, respectively, by Y ε

i and T ε
i

when their center is xε
i . A translation and an expansion by a factor N map Y ε

i and T ε
i

to Y and T ⊂ Y . The multi-integer i = (i1, . . . , in) which enumerates all cells in Ω
takes its values in N

n. We assume that the spatial distribution of the electrical devices
is also periodic. The set of nodes σε connected to the ground is an exception; it is
divided into two subsets, σε

0 and σε
Γ, that are periodically distributed, respectively,

in Ω and, as detailed later, on each of its faces constituting its boundary Γ.
When the values of the resistors gε ∈ P

0(Θε
2), the admittances gε ∈ P

0(Θε
2),

the amplifier coefficients kε ∈ P
0(Θε

3), the voltage sources uε
d ∈ P

0(Θε
0), the current

sources iεd ∈ P
0(Θε

1), and the branch lengths Lε ∈ P
0(Θε) are chosen, one rewrites

the variational formulation (2.8) of the circuit equation as follows: Find (ϕε, iε) ∈
Ψε

ad(u
ε
d) × P

0(Θε
4) the solution of⎧⎪⎪⎨⎪⎪⎩

∫
Θε

2

gεLε∇τϕ
ε∇τψ dl(x) +

∫
Θε

4

iε∇τψ dl(x) = −
∫

Θε
1

iεd∇ψ dl(x),∫
Θε

3

Lεkε∇τϕ
ε j dl(x) −

∫
Θε

4

Lεiε j dl(x) = 0,

(4.1)

satisfied for all (ψ, j) ∈ Ψε
ad(0) × P

0(Θε
4), where the set of the admissible functions is

Ψε
ad(u

ε
d) = {ψ ∈ P

1(Θε), ψ = 0 on σε, and Lε ∇τψ = uε
d on Θε

0}.

4.2. Homogenized model. The final result of this article is the homogenized
model whose solution ϕ0 can be seen as an approximation of the solution ϕε of the
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Fig. 4.1. A periodic network and its reference cell.

original problem when the number N = 1
ε of cells tends to infinity. The justification

of this approximation relies upon the convergence of ϕε in a sense that is fully detailed
in section 4.4.1. Before stating the homogenized model, let us introduce a partition
of T in crossing and no crossing branches.

Notation 4.1. (i) The subcircuit T ′ ⊂ T is constituted of paths which are
traversing the cell Y whose tips are located periodically on its boundary ∂Y .

(ii) The complement of T ′ in T is T ′′.
(iii) The subcircuit T ′ of crossing paths has nc connected components denoted

by T q′, where q takes its values in {1, . . . , nc}. In other words, T ′ =
⋃nc

q=1 T
q′.

(iv) Jq ⊂ {1, . . . , n} is the set of the directions of the paths which are traversing
the cell Y and belonging to the connected component T q′.

(v) For each q ∈ {1, . . . , nc} all vectors x ∈ R
n are divided into two blocks xq =

(xi)i∈Jq and ỹq = (yi)i/∈Jq .
Inverse translations and expansion mappings of section 4.1 applied to T q′, T ′,

and T ′′ define the subnetworks T qε′
i , T ε′

i , and T ε′′
i of T ε

i and then the subnetworks
Θqε′ =

⋃
i T

qε′
i , Θε′ =

⋃
i T

ε′
i , and Θε′′ =

⋃
i T

ε′′
i of Θε. Let us remark that the def-

initions of Θqε′ and Θε′′ of section 4.4.1 which are based on the two-scale transform
are equivalent to the last one. Figure 4.1 illustrates the definition of crossing subcir-
cuits Θε′ and no crossing subcircuits Θε′′ of Θε. In this case, the direction which goes
from the left to the right is a direction of crossing, and the direction which goes from
the bottom to the top is a direction of no crossing.

For the moment, we are unable to treat the most general case; hence we make the
three assumptions σε

0 ⊂ Θε′′, σε
Γ ⊂ Θε′, and T ′′ ∩ ∂Y = ∅. The first two are natural;

hence it does not seem necessary to weaken them. Let us emphasize that the third
one could be weakened in some sense but not totally omitted. A typical case that
does not fulfill the third assumption and therefore does not enter into our theory is
represented in Figure 4.2. The periodic network Θε is made of crossing paths in a
direction that is not orthogonal to any coordinate axis. So there is no crossing path
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Fig. 4.2. Typical example of T ′′ that is excluded.

with periodic tips in T and T ′′ which is equal to T meets ∂Y . As mentioned, we
are unable to treat, in a general manner, such an example, but a great part of our
program goes through, and we expect the method, suitably modified, to work in this
case also.

Since σε
Γ is included in Θε′, it is divided into nc subsets (σε

Γ∩Θqε′)q∈{1,...,nc}, which
are assumed, for the sake of simplicity, to be periodic on each face of the domain Ω.
For each index q enumerating the connected components, Γ may be separated into Γq

D,
which meets σε

Γ ∩ Θqε′, and its complementary set Γq
N .

The restrictions (ϕqε)q∈{1,...,nc} of the electric potential ϕε to Θqε′ converge, in
a sense that is explained in the material of section 4.4, toward the solutions ϕ0 =
(ϕ0q(zq))q∈{1,...,nc} of the homogenized model. This last is a system with nc partial
differential equations enumerated by p varying from 1 to the number of connected
components nc,

−
∑
i∈Jp

∂zi

( ∑
(q,j)∈J

G11
pqij ∂zjϕ

0q +

nc∑
q=1

G10
pqiϕ

0q

)
+

∑
(q,j)∈J

G01
pqj∂zjϕ

0q

+

nc∑
q=1

G00
pqϕ

0q =
∑
i∈Jp

∂ziH
1
pi + H0

p in Ω,

(4.2)

and with boundary conditions

∑
i∈Jp

( ∑
(q,j)∈J

G11
pqij ∂zjϕ

0q +

nc∑
q=1

G10
pqiϕ

0q

)
nΩi

= −
∑
i∈Jp

H1
pinΩi on Γp

N and ϕ0p = 0 on Γp
D.

(4.3)

The set J of multi-integers enumerates all the crossing directions for each reference
axis

J = {(p, i) ∈ {1, . . . , nc} × {1, . . . , n} so that i ∈ Jp}

and the coefficients (G11
pqij)((p,i),(q,j))∈J 2 , (G10

pqi)(p,i)∈J , q∈{1,...,nc}, (G01
pqj)p∈{1,...,nc}×(q,j)∈J ,

and (G00
pq)p,q∈{1,...,nc}, and the right-hand sides (H1

pi(z))(p,i)∈J , (H0
p (z))p∈{1,...,nc} are
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defined in (4.6) and (4.7). The parts Γp
D and Γp

N of the boundary Γ are defined in
section 4.4.1.

It is useful to say that ϕ0 ∈ H1(Ω)nc is the solution of the strong formulation
(4.2)–(4.3) if and only if it is the solution of the following subsequent variational
formulation: Find ϕ0 ∈ Ψ0

ad such that

a0(ϕ0, ψ0) = l0(ψ0) ∀ψ0 ∈ Ψ0
ad,(4.4)

where the set of admissible functions is

Ψ0
ad = {ψ0 = (ψ0p)p∈{1,...,nc} ∈ H1(Ω)nc so that ∇z̃pψ0p = 0 and ψ0p = 0 on Γp

D ∀p}.

The bilinear form and the linear form are

a0(ϕ0, ψ0) =

∫
Ω

∑
(p,i)∈J

( ∑
(q,j)∈J

G11
pqij ∂zjϕ

0q +

nc∑
q=1

G10
pqiϕ

0q

)
∂ziψ

0p

+

nc∑
p=1

( ∑
(q,j)∈J

G01
pqj∂zjϕ

0q + G00
pqϕ

0q

)
ψ0p dz

and

l0(ψ0) = −
∫

Ω

∑
(p,i)∈J

H1
pi(z) ∂ziψ

0p(z) +

nc∑
p=1

H0
p (z) ψ0p(z) dz.

As usual, existence and uniqueness of ϕ0 can be established indifferently with any of
the two above-mentioned formulations.

The scalar case, nc = 1, is well documented in Chapter 8 of Gilbard and Trugin-
ger [11] for Dirichlet boundary conditions. Other boundary conditions are studied in
articles referred to in this treatise.

4.3. Homogenized coefficients and right-hand sides. The aim of this part
concerns the determination of the coefficients G and the right-hand sides H of the
equations of the homogenized model. The usual method consists in the use of the
problem micro or cell problem, stated in section 4.4.4, in order to express the fields
micro as functions of the fields macro and then to plug these expressions into the
two-scale model stated in section 4.4.3. This yields a set of equations having only
macroscopic fields as unknowns, which is precisely the homogenized model. We will
follow this method, except that we make use of the so-called modified cell problem
in place of the cell problem. There are at least two drawbacks in using the original
cell problem. The first one is that it includes some nonstandard devices that are not
implemented in classical electronic circuit simulators. Thus the modified cell problem
has been designed so that on one hand it produces an equivalent solution to that of
the original problem and on the other hand it is directly implementable with usual
simulators. The second point is that a new theorem for the existence and uniqueness
of the solution is required when nonstandard devices are in the circuit cell. This is
evidently avoided when a reformulation with standard devices is possible.

The definition of the modified cell problem is presented in the first subsequent
subsection when the expression for G and H that make use of certain of its solutions
are fully stated in the next one.
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4.3.1. The unit circuit cell T . Accordingly to the partition of Θε, the unit cir-
cuit cell T ⊂ Y is partitioned in voltage sources T0 with voltages ud, current sources T1

with currents id, resistors T2 with admittances g, and inputs T3 and outputs T4 of
amplifiers with coefficients k. The nodes that are connected to the earth are denoted
by S0. The so-called modified circuit cell T =

⋃4
i=0 Ti, which will be built in what

follows, is generated, starting from the circuit T =
⋃4

i=0 Ti, by two transformations.
The voltages, the currents, the electric potential, and the voltage sources in T are
denoted, respectively, by u, i, ϕ, and Ud. The current sources are the same as in the
original circuit, so their notation id remains unchanged.

In this section, one makes use of the vectors η = ((ηqi )i∈Jq )q∈{1,...,nc} and φ =
(φq)q∈{1,...,nc} that will be replaced by the macroscopic fields of electric potential ϕ0 =
(ϕ0q)q∈{1,...,nc} and by their derivatives ((∂ziϕ

0q)i∈Jq )q∈{1,...,nc} for the derivation of
the homogenized model. At this stage φ and η are some given vectors of real numbers.

Now, we depict the two nonstandard features of the original cell problem which is
stated in section 4.4.4 and the required transformations. Using a standard simulator,
the way to impose the periodicity conditions to the electrical potential ϕ1 is to link
the concerned nodes by a zero voltage source. In addition, let us mention that the
restriction of the electric potential ϕ0 to each subcircuit T q′ is constant and is viewed
as a macroscopic field when its restriction to the subcircuits T ′′ is a microscopic field.
Thus, at every node, where the subcircuits T ′′ meet the subcircuits T q′, the potential
is imposed by the common value ϕ0

|T q′ . The standard realization of these constraints
consists in making a link between all these nodes and a common voltage source. The
two transformations are summarized as follows.

1. One adds zero voltage sources T per
0 between the nodes which belong to the

same crossing path and which are located on opposite edges of the unit circuit cell in
a periodic way. In brief, Ud = 0 on T per

0 .
2. One cuts the connections between T ′ and T ′′, and one duplicates the nodes

being located at the cutting points. Then one connects together all the so-created tips
of the side T ′′ to a common voltage source, denoted by T q

0 , which imposes a voltage
equal to Ud = φq.

In addition to the above-mentioned modifications, we have to take into account
the contributions of the macroscopic electrical potential which plays the role of given
data in the circuit cell problem. This is achieved by adding macroscopic voltage
sources u0q

d which are equal to u0q
d = L

∑
i∈Jq η

q
i τ i parallel to the original voltage

sources, the resistors, and the amplifiers’ inputs.
3. One replaces the imposed voltages ud on the voltage sources T0∩T q′ by the ad-

equately modified imposed voltages Ud = ud−(u0q
d )|T0

. To each resistor e2 ⊂ T2∩T q′,

one connects in series a voltage source e0 that imposes a voltage of Ud = −(u0q
d )|e2 .

The set of these voltage sources is denoted by T02. Similarly, the amplification relation
of each amplifier (e3, e4) ⊂ (T3 ∩ T q′) × T4 is replaced by i|e4 = k(u|e3 + (u0q

d )|e3).
The other circuit equations remain unchanged:

u = Ud = ud on T ′′
0 , i = id on T1, i = gu on T ′′

2 ,

i = 0 on T3 and i|e4 = ku|e3 when e3 ∈ T ′′
3 ,

ϕ = 0 on S0,

as well as the usual relation between the voltages and the electric potential, u =
ϕ(s+) − ϕ(s−).

Furthermore, we assume that the modified unit circuit cell fulfills assumptions
(H1)–(H3), so that the cell circuit problem is well posed in the usual sense for the
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problems micro, where only the uniqueness of the ∇τϕ is required but not that of
the ϕ.

Theorem 4.2. If conditions (H1)–(H3) relative to the modified network are
satisfied, then there exists a unique solution, up to a constant on each connected
component, to the modified circuit cell problem.

Proof. The variational formulation equivalent to the set of the circuit equations
is now clear. Find (ϕ, i) ∈ Ψ1

ad,T (η, φ, ud) × P
0(T4) so that

a1(ϕ,ψ) + b11(i, ψ) = l11(ψ),(4.5)

b12(ϕ, j) − c1(i, j) = l12(j)

for any (ψ, j) ∈ Ψ1
ad,T (0, 0, 0) × P

0(T4), where

a1(ϕ,ψ) =

∫
T2

Lg ∇τϕ∇τψ dl(y), c1(i, j) =

∫
T4

i j dl(y),

b11(i, ψ) =

∫
T4

i ∇τψ dl(y), b12(ϕ, j) =

∫
T3

k L∇τϕ j|T4
dl(y),

l11(ψ) = −
∫
T1

i1d ∇τψ dl(y) −
nc∑
q=1

∫
T2∩T q′

g u0q
d ∇τψ dl(y),

l12(j) = −
nc∑
q=1

∑
e3∈T3∩T q′

∫
e4

k(u0q
d )|e3 j dl(y), e4 being the output of e3.

The space of admissible electric potentials and currents is

Ψ1
ad,T (η, φ, ud) = {ψ ∈ P

1(T ) so that L∇τψ = Ud on T0 and ψ0 = 0 on S0}.

Except for the presence of the right-hand side in the second equation, this system
has exactly the same form as the system (2.14), which admits a unique solution, up
to a constant on each connected component, under assumptions (H1)–(H3). Thus, it
remains to prove the continuity of the linear form l12, which is evident.

4.3.2. Formulae for coefficients calculation. In this section, the imposed
currents ud and voltages id, obtained via the two-scale convergence in section 4.4.3,
are considered indifferently as functions ud ∈ L2(Ω; P0(T0)) and id ∈ L2(Ω; P0(T1)) or
as vectors (udi(z))i∈{1,...,|T0|} and (idi(z))i∈{1,...,|T1|}.

The expression of the homogenized coefficients and of the homogenized right-hand
sides is summarized hereafter:

G11
pqij =

∫
T2

LgL̂3
piL̂3

qj dl(y) +

∫
T4

k(LL̂3
pi)|T3

L̂3
qj dl(y),(4.6)

G10
pqi =

∫
T2

LgL̂3
piL4

q dl(y) +

∫
T4

k(LL̂3
pi)|T3

L4
q dl(y),

G01
pqj =

∫
T2

LgL4
pL̂3

qj dl(y) +

∫
T4

k(LL4
p)|T3

L̂3
qj dl(y),

G00
pq =

∫
T2

LgL4
pL4

q dl(y) +

∫
T4

k(LL4
p)|T3

L4
q dl(y),
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H1
pi(z) =

∫
[0,1]nc−|Jp|

∫
T1

L̂3
piid dl(y) +

|T0|∑
j=1

∫
T4

k(LL1
j )|T3

L̂3
pidl(y)udj

(4.7)

+

|T1|∑
j=1

∫
T4

k(LL2
j )|T3

L̂3
pidl(y)idj +

|T0|∑
j=1

∫
T2

LgL1
j L̂3

pidl(y)udj

+

|T1|∑
j=1

∫
T2

LgL2
j L̂3

pidl(y)idj dz̃,

H0
p (z) =

∫
[0,1]nc−|Jp|

∫
T1

L4
p id dl(y) +

|T0|∑
j=1

udj

∫
T4

k(LL1
j )|T3

L4
p dl(y)

+

|T1|∑
j=1

∫
T4

k(LL2
j )|T3

L4
p dl(y) idj +

|T0|∑
j=1

∫
T2

LgL1
jL4

p dl(y) udj

+

|T1|∑
j=1

∫
T2

LgL2
jL4

p dl(y) idj dz̃,

where L̂3
pi = χT p′τ i + L3

pi. The Lk are determined from the general formula

u(y)

L(y)
=

|T0|∑
i=1

L1
i (y)udi +

|T1|∑
i=1

L2
i (y)idi +

nc∑
q=1

∑
i∈Jq

L3
qi(y)η

q
i +

nc∑
q=1

L4
qφ

q.(4.8)

Here u is a voltage which is solution of the unit circuit cell equations and χT p′ is
the characteristic function of the set T p′ which is equal to one on T p′ and to zero
elsewhere. The calculation of each Lk is conducted by making particular choices of the
imposed data ud, id, φ, and η. For example L1

1 is computed by imposing ud1 = 1 and
the other components of ud, id, φ, and η vanishing. Further details of the calculation
are safely left to the reader.

4.4. Justification of the homogenized model based on the two-scale
convergence. In this section, we apply Theorem 2 of [16], with a little variation, to
derive the two-scale model, from which the homogenized model is extracted.

4.4.1. Two-scale convergence. Let us recall the mathematical framework of
two-scale transform and convergence, and let us state the convergence theorem that
allows us to pass to the limit in the circuit equations.

We begin with the definition of the geometric transform of the domain Ω, the
so-called two-scale transform, into the product of the macroscopic domain Ω and the
unit circuit cell T .

Definition 4.3. The two-scale transform of Θε is the map defined from Θε to
Ω × T that is defined cell by cell as follows:

T ε
i → Y

ε

i × T

x 
→ (z, y) = Y
ε

i ×
{
x− xε

i

ε

}
.

The two-scale transform is onto. Thus, the inverse two-scale transform may be
applied to any subset Ω ×X for any X ⊂ T . This is how the subsets Θε′, Θqε′, Θε′′,
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(Θε
k)k∈{0,...,4}, (Θε′

kl)k∈{0,...,4}, l∈{1,2}, and σε
0 of Θε may be built as the inverse two-

scale transform of Ω×X, where X is successively equal to T ′, T q′, T ′′, (Tk)k∈{0,...,4},
(Tkl)k∈{0,...,4}, l∈{1,2} (defined below), and S0.

Definition 4.4. (i) The two-scale transform v̂ε of a function vε ∈ Lp(Θε) is
defined almost everywhere on Ω × T by v̂ε(z, y) = vε(x), where (z, y) is any couple
belonging to the two-scale transform of x ∈ Θε.

(ii) One says that a sequence of functions (vε)ε ∈ Lp(Θε) two-scale converges
strongly (resp., weakly) toward some function v ∈ Lp(Ω×T ) if its two-scale transform
(v̂ε)ε converges strongly (resp., weakly) toward v in Lp(Ω × T ).

By its very definition, the limit v has two arguments, the macroscopic variable z
and the microscopic variable y.

The norm for (ϕ, i) ∈ H1(Θε)×L2(Θε
4) that plays a key role for the convergence

of (ϕε, iε) is

‖(ϕ, i)‖2
r,ε =

∫
Θε′

|∇τϕ|2 + |ϕ|2 dl(x) +

∫
Θε′′

|ε∇τϕ|2 + |ϕ|2 dl(x)

+

∫
Θε′

41∪Θε′′
41

|ε−ri|2 dl(x) +

∫
Θε′

42∪Θε′′
42

|ε−r−1i|2 dl(x),

r being any real number that is chosen regarding the estimates on the data. The
subnetworks Θε′

kl are defined as the corresponding parts in Θε of the subnetworks T ′
kl

and T ′′
kl of T defined hereafter. Each of the sets T ′

3, T
′′
3 , T ′

4, and T ′′
4 is divided into

two complementary subsets: T ′
31, T

′
32, T

′′
31, T

′′
32, T

′
41, T

′
42, T

′′
41, T

′′
42 so that the input and

output of each amplifier belong to one of the subsequent couples: (T ′
31, T

′
41), (T ′

32, T
′′
41),

(T ′′
31, T

′
42), (T ′′

32, T
′′
42).

The key theorem that is used for passing to the limit is stated hereafter. It is a
reformulation slightly different from that of Theorem 2 in [16].

Theorem 4.5. (i) For any sequence (ϕε, iε) ∈ {ψ ∈ H1(Θε), ψ = 0 on σε} ×
L2(Θε

4) that is uniformly bounded ‖(ϕε, iε)‖2
r,ε ≤ C, one can extract a subsequence,

still denoted by (ϕε, iε), which satisfies the following weak two-scale convergences in
L2(Ω × T ):

ϕε
|Θε′ ⇀ ϕ0, ∇τϕ

ε
|Θε′ ⇀ D(ϕ0, ϕ1) on Ω × T ′,

ε∇τϕ
ε
|Θε′′ ⇀ D(ϕ0, ϕ1) on Ω × T ′′,

ε−riε ⇀ i on Ω × T ′
4 and ε−r−1iε ⇀ i on Ω × T ′′

4 ,

where the two-scale fields ϕ0 ∈ L2(Ω;H1(T )), ϕ1 ∈ L2(Ω;H1
� (T ′)), and i ∈ L2(Ω×T4).

The restriction of ϕ0 to the qth connected component Ω×T q′ is denoted by ϕ0q. This
is the macroscopic electric potential; in other words, it is constant with respect to
the microscopic variable y. It has further regularity ∂ziϕ

0q(z) ∈ L2(Ω × T ′q) in each
crossing direction i ∈ Jq, and it vanishes on part Γq

D of the boundary.

(ii) Moreover, if (ϕε, iε) ∈ P
1(Θε) × P

0(Θε
4), then ϕ0 ∈ L2(Ω; P1(T ′′)), ϕ1 ∈

L2(Ω; P1
� (T

′)), and i ∈ L2(Ω; P0(T4)).

The index 
 refers to Y -periodic functions. Any function ψ0 defined on Ω ×
T ′, which is constant with respect to y in each Ω × T q′, may be seen as a vector
ψ0 = (ψ0q)q∈{1,...,nc}; so D(ψ0, ψ1) = χT ′∇zψ

0.τ + d(ψ0, ψ1) on T , where ∇zψ
0 =

((∂ziψ
0q)i∈Jq )q∈{1,...,nc} and χT ′ is the characteristic function of T ′. In other words,
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D(ψ0, ψ1) =
∑
i∈Jq

∂ziψ
0q(z)τ i(y) + d(ψ0, ψ1) on Ω × T q′

= d(ψ0, ψ1) on Ω × T ′′,

where

d(ψ0, ψ1) = ∇τψ
1 on T ′

= ∇τψ
0 on T ′′.

The definitions of the variables τ , z, z̃ as well as the variable nΩ used hereafter are
based on Notation 4.1(v).

Proof. The proof of Theorem 4.5 follows that of Theorem 2 in [16] with some
changes that are detailed hereafter. The reader is referred to [16] for further details.

The discussion is carried out for one connected component T q′ of T ′. As explained
in [16], there exists an extracted subsequence of (ϕε

|Θqε′)ε still denoted by (ϕε
|Θqε′)ε,

which two-scale converges weakly in L2 toward a limit ϕ0q(z, y) so that ∇τϕ
0q = 0

in Ω × T q′. This implies that ϕ0q is constant on Ω × T q′.
Let us compute the limit f of fε = ∇τϕ

ε
|Θqε′ . Without loss of generality, we

assume that z1 is a crossing direction in the qth connected component T q′ of T ′. Let
us denote by t′ ⊂ T q′ one of the paths that cross Y in this direction and (s−, s+) its
left and right tips located on the cell boundary ∂Y . By virtue of formula (18) in [16]∫

Ω×t

f̂ε(z, y) ψ(z, y) dl(y)dz = −
∫

Ω×t′

1

ε
ϕ̂ε(z, y) ∇τψ(z, y) dl(y)dz

+

∫
Ω

1

ε
[ϕ̂ε(z, y) ψ(z, y)]

s+

s− dz.

Lemma 6.2 in [16], for any ψ ∈ H1(Ω × t′) verifying ∇τψ = 0 on t′, says that

lim
ε→0

∫
Ω

1

ε
[ϕ̂ε(z, s) ψ(z, s)]

s+

s− dz = −
∫

Ω×t′
ϕ0q(z, y) τ1∂z1ψ(z, y) dl(y)dz

+

∫
(Γ+∪Γ−)×t′

ϕ0q(z, y)ψ(z, y) τ1nΩ1 dl(y)ds(z).

Choosing any ψ such that ∇τψ = 0 on Ω × t′ yields∫
Ω×t′

f(z, y)ψ(z, y) dl(y)dz =

∫
Ω×t′

∂z1ϕ
0(z)τ1 ψ(z, y) dl(y)dz,

from which one extracts the expression of ∂z1ϕ
0q:

∂z1ϕ
0q(z) =

1∫
t′ τ1dl(y)

∫
t′
f(z, y)dl(y) ∈ L2(Ω).

Similarly, one may prove the regularity result ∂ziϕ
0q(z) ∈ L2(Ω) for any crossing

direction i ∈ Jq.
Since

∫
t′ τ i dl(y) = 0 for any no crossing direction i �= 1, the integrand in the

above limit can be replaced by an expression that is not related to the chosen crossing
direction:∫

Ω×t′
f(z, y)ψ(z, y) dl(y)dz =

∫
Ω×t′

∇zϕ
0q(z).τ(y) ψ(z, y) dl(y)dz.
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This equality holds for any ψ belonging to the kernel of ∇τ . Thus, by a classical
orthogonality argument, one may establish that there exists a function ϕ1 such that
the formula∫

Ω×t′
f(z, y)ψ(z, y) dl(y)dz =

∫
Ω×t′

∇zϕ
0q(z).τ(y) ψ(z, y) − ϕ1(z, y)∇τψ(z, y) dl(y)dz

is valid for every ψ ∈ H1(Ω;H1
� (t′)). The interpretation of this variational equality is

∇τϕ
1(z, y) + ∇zϕ

0q(z).τ(y) = f(z, y) in Ω × t′,[
ϕ1(z, y)

]y=s+

y=s−
= 0 in Ω,

where the second equality is a consequence of the periodicity of the test functions ψ.
Combination of the regularity result ϕ0q ∈ H1(Ω) and the first equality in the above
characterization of the limit f yields the regularity ϕ1 ∈ L2(Ω;H1

� (t′)).

The construction of ϕ1 has been carried out for a given path t′ ⊂ T q′. It remains
to prove that ∇τϕ

1 is uniquely defined on the whole T q′.
This results immediately from the fact that both limits f and ϕ0q are defined on

the whole connected component T q′ and that the choice of any crossing path t′ would
have led to the same limit.

Point (ii) of the theorem is proven as follows. For any subcircuit X ⊂ T , Ξε de-
notes the subset of the whole periodic circuit Θε, which has Ω × X as the inverse
two-scale transform. The characteristic functions of X in T and of Ξε in Θε are de-
noted, respectively, by χΞε and χX . Consider a sequence ϕε(x) that is constant on
each cell Y ε

i ∩ Ξε. It may be expressed as ϕε(x) = aε(x)χΞε(x); thus its two-scale
transform is ϕ̂ε(z, y) = âε(z)χX(y), and âε is independent of y. Assuming that ϕε

is two-scale weakly convergent in L2, its limit ϕ(z, y) is necessarily a product on the
same form a(z)χX(y), which tell us that it remains constant on X with respect to the
y variable. Such reasoning applied to any branch X = e of T4 combined with a linear
combination leads to the desired result i ∈ L2(Ω; P0(T4)). Obviously, the derivation
of ϕ0 ∈ L2(Ω; P1(T ′′)) and ϕ1 ∈ L2(Ω; P1

� (T
′)) can be done on a similar way. For the

sake of brevity, the details are left to the reader.

4.4.2. Assumptions. For any ε, if assumptions (H1)–(H4) hold, then there
exists a unique solution of the circuit equations (4.1). In order to pass to the limit
in these equations, the two-scale convergencies of the data are required. Moreover,
uniform estimates are required on the solutions for application of Theorem 4.5. This
is the spirit of assumptions (H5) and (H6) that we summarize now.

(H5) Let us postpone for a few lines the definition of the precise scaling of each
data. Taking into account this scaling, the data iεd, u

ε
d, L

ε, kε, and gε are two-scale
convergent toward some limits id ∈ L2(Ω,P0(T1)), ud ∈ L2(Ω,P0(T0)), L ∈ P

0(T ),
g ∈ P

0(T2), and k ∈ P
0(T3). Let r be a given real number, which may be chosen

arbitrarily; and all the fields that play a role in the problem are scaled in a manner
that depends on r.

(H5-1) The current sources and the voltage sources:

ε−riεd → id in L2(Ω × T ′
1), ε−r−1iεd → id in L2(Ω × T ′′

1 ),

ε−1uε
d → ud in L2(Ω × T ′

0), uε
d → ud in L2(Ω × T ′′

0 ).

(H5-2) The branch lengths:

ε−1Lε ⇀ L in L∞(Ω; P0(T )) weak∗.
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(H5-3) The admittances:

ε1−rgε ⇀ g in L∞(Ω; P0(T ′
2)) weak∗ and ε−1−rgε ⇀ g in L∞(Ω; P0(T ′′

2 )) weak∗.

(H5-4) The amplification coefficients:

ε−r+1kε ⇀ k in L∞(Ω; P0(T ′
3)) weak∗ and ε−r−1kε ⇀ k in L∞(Ω; P0(T ′′

3 )) weak∗.

In accordance with the usual way to proceed when one uses an asymptotic method,
one would like to complete the graph assumptions (H1)–(H4), which ensure the well
posedness of the problem for a fixed ε, with further assumptions which imply uniform
estimates of the solution (ϕε, iε) with respect to ε. Unfortunately, we have not yet
discovered these assumptions, and we are obliged to assume, in a direct way, that the
solution is uniformly bounded.

(H6) The couple (ϕε, iε) is uniformly bounded ‖(ϕε, iε)‖2
r,ε ≤ C.

4.4.3. Convergence toward the two-scale model. Under the above assump-
tions and Theorem 4.5, one can pass to the limit in the circuit equations and find
that the limit (ϕ0, ϕ1, i) is the solution of the following weak formulation, the so-called
two-scale circuit model: Find (ϕ0, ϕ1, i) ∈ Ψts

ad(ud) × L2(Ω; P0(T4)) such that

ats((ϕ0, ϕ1), (ψ0, ψ1)) + bts1 (i, (ψ0, ψ1)) = lts1 ((ψ0, ψ1)),(4.9)

bts2 ((ϕ0, ϕ1), j) − cts(i, j) = lts2 (j)

for any (ψ0, ψ1, j) ∈ Ψts
ad(0) × L2(Ω; P0(T4)), where

ats((ϕ0, ϕ1), (ψ0, ψ1)) =

∫
Ω×T2

Lg D(ϕ0, ϕ1)D(ψ0, ψ1) dl(y),

cts(i, j) =

∫
Ω×T4

i j dl(y),

bts1 (i, (ψ0, ψ1)) =

∫
Ω×T4

i D(ψ0, ψ1) dl(y),

bts2 ((ϕ0, ϕ1), j) =

∫
Ω×T3

Lk D(ϕ0, ϕ1) j|T4
dl(y),

lts1 ((ψ0, ψ1)) = −
∫

Ω×T1

id D(ψ0, ψ1) dl(y), lts2 (j) = 0.

The space of admissible electric potential is

Ψts
ad(ud) = {(ψ0, ψ1) ∈ L2(Ω; P1(T )) × L2(Ω; P1

� (T
′)) so that

ψ0
|Ω×T ′ ∈ Ψ0

ad, ψ
0
|Ω×T ′′ ∈ L2(Ω; P1(T )), LD(ψ0, ψ1) = ud, ψ

0 = 0 on Ω × S0}.

Proof. The proof consists in dividing the two sides of the first variational formu-
lation by εr and in passing to the limit in each term. Let us start by rewriting every
term in a form adapted to pass to the limit:

aε(ϕε, ψ) = εr
∫

Θε′
2

(ε−1Lε)(ε1−rgε) ∇τϕ
ε∇τψ dl(y)

+ εr
∫

Θε′′
2

(ε−1Lε)(ε−1−rgε) (ε∇τϕ
ε)(ε∇τψ) dl(y),
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bε1(i
ε, ψ) = εr

∫
Θε′

41

(ε−riε)(∇τψ)|Θε′
31

dl(y) + εr
∫

Θε′
42

(ε−r−1iε)(ε∇τψ)|Θε′′
31

dl(y)

+ εr
∫

Θε′′
41

(ε−riε)(∇τψ)|Θε′
32

dl(y) + εr
∫

Θε′′
42

(ε−r−1iε)(ε∇τψ)|Θε′′
32

dl(y),

lε1(ψ) = −εr
∫

Θε′
1

(ε−riεd) ∇τψ dl(y) − εr
∫

Θε′′
1

(ε−1−riεd) ε∇τψ dl(y).

As a matter of fact, assumptions (H5), (H6) were stated so that the method of deriva-
tion of the limit problem, introduced in our previous paper [16], does apply. Instead of
using Theorem 2 of [16], one prefers to make use of its modified version, Theorem 4.5.
That is the way we get the first equation of the two-scale model.

The second variational formulation of (4.1) is equivalent to iε|Θε
4

= Lεkε(∇τϕ
ε)|Θε

3

or to

(ε−riε)|Θε′
41

= (ε−1Lε)(ε−r+1kε)(∇τϕ
ε)|Θε′

31
,

(ε−r−1iε)|Θε′
42

= (ε−1Lε)(ε−r−1kε)(∇τϕ
ε)|Θε′′

31
,

(ε−riε)|Θε′′
41

= (ε−1Lε)(ε−r+1kε)(∇τϕ
ε)|Θε′

32
,

and

(ε−riε)|Θε′′
42

= (ε−1Lε)(ε−r−1kε)(∇τϕ
ε)|Θε′′

32
.

By virtue of assumptions (H5), (H6) one can pass to the limit and find that

i|Ω×T4
= kD(ϕ0, ϕ1)|Ω×T3

,

which is equivalent to the variational formulation (4.92).
Remark 4.6. Before closing this section, let us summarize the role which is

played by the various assumptions that have been introduced. Assumptions (H1)–(H4)
imposed on the periodic circuit yield the well posedness of the original problem for all ε.
Assumptions (H5), (H6) make possible the extraction of bounded subsequences of the
sequence (ϕε, iε), which converge to one or several solutions of the limit model that
is also called the two-scale model. In addition, assumptions (H1)–(H3) related to the
modified circuit cell T are necessary and sufficient so that the modified problem has a
unique solution. One deduces from this that they are probably necessary to ensure the
convergence of the solution of the periodic problem toward that of the two-scale model.
Nevertheless, we stress that they do not suffice, as shown by Example 4 below.

4.4.4. An equivalent formulation of the cell problem. So far, for the rea-
sons already put forward, the cell problem has been formulated on the modified circuit
cell. Its derivation is carried out in two steps. First, we build the cell problem, formu-
lated on the original circuit cell, by using usual arguments (see, e.g., [16]). Then the
problem formulated on the modified unit cell is derived by application of the three
transformations listed in section 4.3.1. In what follows, we state the cell problem on
the original cell T when its derivation is briefly discussed in the next section.

Find (ϕ0, ϕ1, i) ∈ Ψ1
ad(η, φ, ud) × L2(Ω; P0(T4)) such that

a1((ϕ0, ϕ1), (ψ0, ψ1)) + b11(i, (ψ
0, ψ1)) = l11((ψ

0, ψ1)),(4.10)

b12((ϕ
0, ϕ1), j) − c1(i, j) = l12(j)
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for any (ψ0, ψ1, j) ∈ Ψ1
ad(0, 0, 0), where

a1((ϕ0, ϕ1), (ψ0, ψ1)) =

∫
T2

Lg d(ϕ0, ϕ1)d(ψ0, ψ1) dl(y), c1(i, j) =

∫
T4

i j dl(y),

b11(i, (ψ
0, ψ1)) =

∫
T4

i d(ψ0, ψ1) dl(y), b12((ϕ
0, ϕ1), j) =

∫
T3

Lk d(ϕ0, ϕ1) j|T4
dl(y),

l11((ψ
0, ψ1)) = −

∫
T1

i1d d(ψ0, ψ1) dl(y) −
nc∑
q=1

∫
T2∩T q′

Lgu0q
d d(ψ0, ψ1) dl(y),

l12(j) = −
nc∑
q=1

∑
e3∈(T3∩T q′)

∫
e4

k(u0q
d )|e3 j dl(y), e4 being the output of e3,

and the space of admissible electric potentials is

Ψ1
ad(η, φ, ud) = {(ψ0, ψ1) ∈ P

1(T ′′) × P
1
� (T

′) so that

Ld(ψ0, ψ1) = Ud on T0 and ψ0 = φ on T ′′ ∩ T ′, ψ0 = 0 on S0}.

The subsequent proposition summarizes the equivalence between the two cell problems
stated, respectively, on T and on T .

Proposition 4.7. When posing ϕ = ϕ0 on T ′′ and ϕ = ϕ1 on T ′, the two cell
problems are equivalent.

Proof. As a matter of fact, the proof is a straightforward consequence of the
construction of T detailed in section 4.3.1.

4.4.5. Derivation of the homogenized model. For the construction of the
homogenized model, one follows the usual method. We first have to establish the cell
problem (also called the problem micro), then observing that its solution is a linear
form of the fields macro and replacing it in the two-scale model yields the homogenized
model that concerns only fields macro.

The cell problem on its variational form (4.10) is derived from the two-scale model
by making a particular choice for ψ0 : ψ0

|Ω×T ′ = 0; hence D(ψ0, ψ1) = d(ψ0, ψ1). One

deduces that u = L d(ϕ0, ϕ1) depends linearly on the fields macro ud, id, (∇zϕ
0)|Ω×T ′ ,

and (ϕ0)|Ω×T ′ , which is said in other words in the formula (4.8) with η = ∇zϕ
0 and

φ = ϕ0:

d(ϕ0, ϕ1) =

|T0|∑
i=1

L1
i (y)udi +

|T1|∑
i=1

L2
i (y)idi +

nc∑
q=1

∑
i∈Jq

L3
qi(y)∂ziϕ

0q +

nc∑
q=1

L4
qϕ

0q.

Then, making another choice for (ψ0, ψ1) so that

d(ψ0, ψ1) =

nc∑
q=1

∑
i∈Jq

L3
qi(y)∂ziψ

0q +

nc∑
q=1

L4
qψ

0q

and replacing the current i by k D(ϕ0, ϕ1) leads to the weak formulation (4.4) of the
homogenized model.

5. Examples.

5.1. Discussion of the assumptions on T . The topic of this subsection is to
mention some simple examples for which one of the assumptions (H1)–(H3) is satisfied
for the ε-periodic circuit but is violated for the modified unit circuit cell T .
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Example 1. The first example is that of a one-dimensional electric network con-
stituted of a series of voltage sources. The electric potential is imposed to vanish on
the left side. The three circuits are represented in Figure 5.1. Assumption (H1) is
clearly satisfied for the complete network but does not hold for the modified circuit
cell. As a matter of fact, this is the consequence of the additional zero voltage source
that closes the loop constituted of voltage sources.

Fig. 5.1. Example 1: The whole network Θε, the cell T , and the cell T .

Example 2 (see Figure 5.2). This is a case where (H3) is satisfied for the ε-periodic
circuit and violated for the modified circuit cell. Let us mention that this could also
be the case if the subcircuit T ′′ was meeting the boundary of the cell. However, we
already have insisted on the fact that this case is excluded from our focus in this
paper.

Fig. 5.2. Example 2: The whole network Θε, the cell T , and the cell T .

Example 3 (see Figure 5.3). This is another situation where assumption (H1)
is clearly satisfied for Θε, but it is not for a reason different from that invoked in
Example 1. Here, the loop of voltage sources comes from the fact that a voltage
source is linked to a crossing path in the original cell.

5.2. Example 4: Numerical validation. The numerical comparisons of the
two solutions computed on one hand on the periodic network and on the other hand by
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Fig. 5.3. Example 3: The whole network Θε, the cell T , and the cell T .

Fig. 5.4. Example 4: The cell T .

using the homogenized model have been carried out for the unit circuit cell represented
in Figure 5.4 with the values R = k = 1. The four extremities of the resistors are
located on the cell boundary. In spite of appearances on the figure, the block (e3, ud)
is included inside the cell. In fact, its location in the cell does not play any role,
while it does not meet the crossing subcircuits. It is easy to check that assumptions
(H1)–(H4) are satisfied for the periodic circuit and that (H1)–(H3) are also satisfied
for the circuit cell. The homogenized model is

−1

2
∆ϕ0 = divH1 in Ω and ϕ0 = 0 on Γ,

with H1 ∈ L2(Ω). It has a unique solution ϕ0 ∈ H1
0 (Ω).

The electric potential is imposed to zero on the whole boundary Γ. The homog-
enized distribution of the voltage source that in the homogenized model is ud(z) =
−2π cos(πz1) sin(πz2) when its counterpart uε

d for the periodic circuit is taken to be
equal to ud(x

ε
i ), the xε

i being the center of the 15 × 15 cells. The homogenized po-
tential ϕ0(z) is computed using a P 1 finite element method with 15 elements in both
directions.

Distributed electric potentials ϕε(x1ε
i ) and ϕ0(x1ε

i , y1) are compared in the first
row of Figure 5.5, where x1ε

i = xε
i + εy1 and y1 = (−0.5, 0) are the coordinates of

the node 1 in Θε and T , respectively. By another way, the voltages uε(x2ε
i ) and
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Fig. 5.5. Example 4: ud(z) = −2π cos(πz1) sin(πz2).
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Fig. 5.6. Example 4: Errors and simulation times.

uH = LεD(ϕ0, ϕ1)(x2ε
i , y2) are represented in the second row, where x2ε

i = xε
i + εy2

and y2 = (−0.25, 0) are the middle of the resistors R1 in Θε and T , respectively. The
results show a good qualitative agreement between the two models.

Quantitative comparisons are detailed in Figure 5.6. Global relative errors, in the
L2 norm, for potentials and voltages are compared when Θε has 10, 15, or 20 cells in
each direction and when the finite element method is with N = 10, 15, or 20 elements
in each direction. It shows that, in this case, the errors diminish with the increase
of the number of cells but are not influenced much by the number of finite elements.
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Fig. 5.7. Example 4: ud(z) = 1 + z1.

The observation of the ratio tH

tε of the simulation times of the two models yields the
conclusion that the homogenized model presents great interest in this point of view.
This is particularly true for large numbers of cells. Moreover, we have observed that
the more the complexity of the circuit increases, the more the ratio is favorable to the
homogenized model.

It has already been emphasized that conditions (H1)–(H3) imposed on the cell
circuit are not sufficient to ensure the uniform estimate (H6). This can be observed
in this example when ud(z) = 1 + z1. An analytical calculation shows that the
convergence does not hold because a phenomenon of boundary layer occurs in the
vicinity of the boundary Γ. This may be observed in our simulation results, with
20 × 20 circuit cells and 20 × 20 finite elements, that are reported in Figure 5.7.
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