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Abstract-h this paper, we present models of elastic plates, dielectric plates, and elastic plates 
with piesoelectric inclusions. Single layer plate models and multilayered plate models are presented. 
They are studied in view of the active controlled structures design. Various sorts of boundary con- 
ditions for the piezoelectric cells are considered. They represent different ways of controlling the 
structure: voltage, current, or voltage/current control. The derivation of these models is based on 
asymptotic methods. 
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1. INTRODUCTION 

For more than ten years, the field of Smart Materials has been an area of intensive research. 
The first principle of Smart Materials consists of replacing mass by energy. Energy is easier to 
carry than material. Smart Materials are equipped with transductors which are transforming 
this carriable energy into mechanical energy, and with a system transporting this energy. The 
more usual examples are the elastic thin structures (plates, shells, or beams) with piezoelectric 
inclusions. The second principle of Smart Materials consists of including a certain form of smart- 
ness. With the progress in analogical electronics, one may think that it, is now possible to design 
distributed analogical electrical circuits included in the structures. The electrical circuit may link 
the piezoelectric inclusions and acts as a command. 

On the one hand, numerous authors have obtained different models of structures coupling 
elastic and piezoelectric materials [l-6]. On the other hand, for fifteen years, classical models of 
thin elastic structures have been justified by an asymptotic approach [7-111, for example. The 
first goal of this work is to justify some plate models including piezoelectric transductors using 
an asymptotic method based on [9,10]. 

By another way, homogenization techniques [12-151 lead to models of composite materials with 
periodic structures. Plates including periodically distributed heterogeneity have been derived 
in [8,16-181. The second goal of this work is to derive models of elastic plates including small 
piezoelectric inclusions. This will be done in Part II. 

The third goal is the treatment of several boundary conditions for the inclusions. Three classes 
of boundary conditions are considered: Dirichlet boundary conditions when the electrical poten- 
tial is controlled, Neumann boundary conditions when current is controlled, and mixed boundary 
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conditions when the inclusions are connected to an analogical circuit with R-L-C devices. Two 
sorts of mixed boundary conditions are considered: the case where the upper and lower surfaces 
of each inclusion are connected (but with no connection between inclusions) and the case where 
the circuit links several inclusions. In our models, an inclusion may be connected only with its 
direct neighbours. These neighbours can be in the in-plane (considered only in Part II) or in the 
out-plane direction. This leads to nonlocal boundary conditions. In practice, the piezoelectric 
faces are covered with a conductive metal. This implies that the tangent electrical field van- 
ishes on each metallized face. Then, the electrical potential is constant on such faces, Models 
concerning both metallized and nonmetallized faces are derived. 

Last, let us point out our technique of models derivation. The approach [lo] is based on a 
stress-displacement formulation of the elasticity equations. The approach of (9,111 are based 
on a displacement formulation. In this paper, we follow the displacement approach concerning 
a priori estimates. But the model derivation, which is obtained by eliminating some of the fields, 
is done in the space of the gradients of the solutions. It results in some projection operations. This 
leads to fully algebraic computations. This procedure simplifies significantly the model derivation 
(which otherwise needs rather long formulas). The resulting formulae are especially interesting in 
view of numerical computation. They are based on sums, products, inverses of matrices, and on 
projection maps. Even for well-known models, our approach leads to appreciable simplifications 
in their formulation. 

This first part of our work is organized as follows. Section 2 is devoted to the derivation of 
the elastic plate model. This model is classical, but the formulation and convergence properties 
established for this derivation are used in Section 4. Section 3 is devoted to the derivation of 
models of dielectric thin plates with various boundary conditions. In Section 4, models of elastic 
thin plates with piezoelectric inclusions are derived. The proofs in Section 4 are based on the 
results of Sections 2 and 3. For the sake of clarity, we choose to present them only for single 
layered plates. The models of multilayered plates are stated. Their proofs are not reported, but 
they are very similar to those of the single layered plate models. Discussion of models is done on 
the multilayered case because in practice they are the most often considered. 

Even if some models of Sections 2 and 3 are not new, we present them for two reasons. The 
first one is, as we said before, that the difficulties in the proofs of Section 4 (due to notations) 
become simple to understand after the reading of Sections 2 and 3. The second reason is that 
the presentation with the same formalism of all these models allows easy comparisons. 

2. THE ELASTIC THIN PLATE MODEL 

2.1. The Single Layered Plate Model 

2.1.1. Statement of the three-dimensional plate geometry and equations 

First, we introduce the notations for geometry and equations relative to thin elastic plates. 
They are taken from [9]. The plate is represented by a cylindrical domain 0” = wx ] - a, a[, 
where w is the mean section of the plate, its boundary is dw. 

?? The thickness of the plate is equal to 2a and a is considered as a small parameter which 
is intended to tend to zero. 

?? za = (zy,sz, sg) is the current point in Wa, (s~,cI$) E w, and CI_$ E] - a,a[. 
?? The lateral boundary Pa = dw x ] - a, a[ of Ra is divided into two parts Fg = ^fo x ] - a, a[ 

and I?: = yi x ] - a, a[ such that meas (ye) # 0. 
?? Fa+ and Pa- represent, respectively, the upper and the lower faces of the plate Pai = 
ra+ ura-. 

?? The stiffness tensor R = (Rijkl)i,j,k,l=1,...,3 E (~5~(Sl~))~l is assumed to be independent 
of 2s and verifies the following symmetry: 

&jkl = Rklij = Rjiklr Vi,j,k,l= l,..., 3, (1) 
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and the ellipticity property: 

RijklKijKkl 2 CKi, V (Kij)i,3=l ,._., 3 E lRg such that Kij = Kj,, (2) 

where C is a positive constant. In all the paper, the Einstein convention of summation on 
repeated indexes is used, with summation from one to three for Latin indexes and from 
one to two for Greek indexes. 
The volume forces are denoted by f” = (f,P)i=l,...,s E (L2(C2a))3. Surface forces ga = 
(gq)i=1,...,3 E L2(P* u I??) are applied on P* U rp. The plate is clamped on I’;. 
The mechanical displacements are denoted by ua = (ui)i=i,...,s. The linear strains ssso- 
ciated with a field of displacements v = (vi)i=i,...,s are denoted by sij(v) = (1/2)(8jvj + 
8jui). Here, Bi denotes the derivation in the direction xi. The mechanical stress is 
da = (a,“j)i,j,i,...,g. The linear elasticity equations are given by the Hooke law, the equi- 
librium equations and the boundary conditions 

-aja,a3 = f: in W, a,“j?lj =g4 0nryuP*, and ua = 0 on l?” 0. (3) 

Scaling and statement of the theorem 

In order to reformulate (3) on the reference domain 52 = wx ] - 1, l(, we use the transforma- 
tion Fa: 

F” : 
xa H F” (x”) = x = (x1, 52,x3) = 

1 
x:,x;, ;, x$ 

> 
. 

The geometric characteristics of R are deduced from those of R” with the transformation Fa. The 
notations relative to fl are the same as those relative to W except that the index a is removed. 

The following scaling on volume forces, surface forces, and displacements is classical [9]: 

P (x) = (UP (xa) , UX (x’) , au$ (xa)) in 0, 

+ (x) = 
( 

f: (Xa) , fz (xa) , *) in fi, 

z (x) = 
( 

93” W) 
9;” (xa), 91 (x”) 1 - 

) 
on rl, 

a 

1 
i?(x)=; 9:(X”),91(Xa),----- 

( 

g3a Cx”) on rf 

a > 

(5) 

The forces are assumed to satisfy 

-a I/ I/ f 2 ~*(n)3 + Ilg%2(rl”r*)~ 5 CT 

-n - f in (L2(R))3 weak f and 2 - g in (L2 (I’i U r*))3 weak, 
(6) 

when a vanishes. Here 6’ and Gary are independent of 2s (this assumption is done in order to 
obtain a simpler strong formulation of the plate model). It can easily be released. 

For every v E (H1(R))3, the functions (Kiaj)i,j=l,...,3 are defined by 

K:&9 = sap(v), 
1 

K&(v) = %3(v) = - scr3(v), 
a 

K3a3b) = -$ s33Cv). 

Let K”(v) = (KG(v))i,j=l,..., 3 be decomposed as K”(v) = K’(V) + (l/a)K-‘(v) + (l/a2) 
Ke2(v), which defines the 
ments space is 

VKL = 

= 

operators K”, K-l Km2. , The admissible Love-Kirchhoff displace- 

{u E &; K-‘(u) = K-2(u) = 0) 

{ U = (aI - X&Q, ii2 - 2&!21s, ~3) E v&, (7) 

where (z,),=,,, E (H’(w))~ and u3 E H2(w)}. 



ue 
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REMARK. Since the coefficients Rijkl are independent of 2s and since the plate has a single layer 

(St, 53 d2s = 0), the coefficients Q12 and Q21 vanish. 

2.1.3. Proof of Theorem 2.1 

In the subsequence of this proof, the hats - are suppressed on the functions defined on the 
reference domain 52. This simplification will be done in the proof of every subsequent theorem, 
and this will not be repeated. The variational formulation of (3) is 

V$ = v E (H’ (i-P))“; v = 0 on I$}, 

s RijklSkl (Ua) Sij (V) dX” = 
s 

f,” vi cixa + 
s 

9,” vi ds” , 
n- S2a lyur-* 

Qv E V$, where ua E VG. 

(14) 

The application of the scaling (5) and the choice of test functions of the form (vi(x), ‘u2(x), 
(us/u)(x)) in th e a b ove variational formulation lead to (remember that the hat has been sup- 
pressed on the scaled functions) 

v,d = v E (H1(R))3; v = 0 on r,} ) 

J 
RijklKil (ua) KG (v) dx = 1: (v) , 'd/v E V&j, where ua E Vad, 

n 

l:(v)=~f~v~dx+~,urig~vids. 

In particular, for v = ua, 

s cl 

RijklKil (U”) K~j (Ua) dx = Zz (Ua), 

(15) 

which using (2) and (6) leads to 

2 llKi”j (u~)~~,,~,~ i C’J. 
i,j=l 

Then, the a priori estimate 

holds for every i,j = 1,. . . , 3. Prom the Korn inequality, for every i,j = 1,. . . ,3, an extracted 
subsequence of (KG ( ua ) , ua) converges weakly to some (Kij,u) in L2(n) x (H1(R))3. Now, we 
derive the equations satisfied by the limit K = (Kij)i,j=l,.,,,s E (L2(s2))g. 

In the sequel, the fields denoted by K will be considered on the above format. The variational 
formulation (15) above may be rewritten as 

s ‘K” (v) RK” (u=) dx = 1; (v) . 
R 

Multiplying this equation successively by a2, a, and 1, and passing to the limit when a vanishes, 
the three variational formulations are obtained: 

J 
tK-2(v)RK dx = 0, Qv E V,, 

cl 

J 
tK-‘(~)RK dx = 0, Qv E Vad such that Ke2(v) = 0, (16) 

n 
n 

I tK”(v)RK dx = Zu(v), Vv E Vd such that Km2(v) = K-‘(v) = 0, 
n 

where for v E VKL, 

L(v) = 
/ 

n (fa (%a - s3&v3) + f3v3) dX + 
s 

rlUrf (ga @a - ~30~3) + 93213) ds. (17) 

To compute K, we need the following lemmas. 
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LEMMA 2.1. 
(i) The subspaces of K, {Km2(v); v E &}, {K-r(v); v E V&.J and KT2(v) = 0}, are dense 

in Elm2 and in IK-l, respectively. 
(ii) {KO(v); v E V&,Km2(v) = K-‘(v) = 0) = K”. 

PROOF. For every K33 E D(n), there exists ‘~3 = so”” K33(zr,23,t) dt E V, such that 
d3u3 = K33. Thus, D(n) C {Km2(v); v E Vd} C IKd2. It follows that the set {Ke2(v);v E Vd} 
is dense in Km2. The proof is similar for K- ‘. Part (ii) is just a restatement of the definition 
of KO. I 

Applying Lemma 2.1, we deduce from (16) that 

In the last 
K-l @ KO, 

J tK-2RK dx = 0, vJ?-2 E K-2, 
n 

J tK-lRK dx = 0, vii-’ E K-1, (18) 
R 

J %‘RK dx = 1, (v) , VIZ0 E RO. 
cl 

equation, v E V,, is the unique vector field associated with K”. Since K = KW2 $ 
(18) is equivalent to 

J ‘J&K dx = Z,(v), (19) 
n 

for every K E K, where v E VKL is the vector field associated with k. 

LEMMA 2.2. 
(i) The limit K of Ka(ua) belongs to K. 

(ii) Under assumptions (1) and (2), the variational formulation (19) has a unique solution. 

PROOF. The a priori estimate ((K$(u~)[[~;z(~J 5 C for every i,j = 1,. . . ,3, implies that the 
weak limit u of ua belongs to VKL. Thus, the weak limit Kap of Sag is equal to sap(u) and 
belongs to K”. The functions (1/u)s,3(ua) and (l/a2)s33(u”) converges weakly in L2(S2) to some 
limits Ko13 and K33, and (0, (&3)a=1,2,0) E K-l and (0, 0, K33) E lKW2. In conclusion, Ka(ua) 
converges to K = ((s,p(u))~=r,3, (Ka3)a=1,2, K33) E K. The existence and uniqueness of the 
solution of (19) result of the Lax-Milgram lemma and of assumptions (1) and (2). I 

Now, from (18) or (19), we derive the plate model. The sum of the first two equations of (18) 
leads to 

J %RKdx= 0, VK E K--l @K-3. (29) 
R 

Hence, R K is orthogonal to K-r @ Ko2 or equivalently II’RK = 0. Let us introduce the decom- 
position K = IIK+KO, where K” E K”. Then IIIRHK = -IIIRKO, which leads to the expression 
of IIK with respect to K” : IIK = TK’. Using this expression in (19) and choosing K E K on 
the form K = (Id + T) k”, where K” E lK”, then 

J t~"~Ko dx = z+), Vito E RO, (21) 
s-l 

where v E VKL is the field associated with K ‘. Taking account of that K” and K” E K”, then 
-0 - K& = sap@) - 23d&u3 and Kap - s,p(i~) - s3d&u3. Thus, (21) is equivalent to 

J n t(hp (vi) - 53@$3~3)Q4+5 (W (m) - ~3d$3) dx = l,(v), for all v E VKL, 

which is in turn equivalent to u = (nr - 23&213, a3 - x363213, ‘1~3) E VKL and 

dx = Z,(v), (22) 

for every v = (Or - z3dru3,v3 - z3&u3,u3) E 1/KL. This is the variational formulation of (12) 
and (13). I 
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2.2. The Multilayered Plates Model 

Notations and assumptions are identical to those in the preceding section except those explicitly 
specified. 

For multilayered plates, the domain R” is divided into N layers (R:)E=~,...,N = (wx ]az,bz[), 
where -a = a? < b! = ai < be . . . a% < b$ = a. Upper and lower faces of the layer number < are 
denoted by I’:+ and rz-. The stiffness tensor is supposed to be independent of 23 in each layer. 

Its value in the layer e is denoted by (R~~kl)i,j,b,l=1,...,3. The equilibrium equation (3) holds in 
each layer. Continuity equations are written between the layers 

(a: = wry+, and (o:~.Tz~),,+ = - (~tj.nj)~;+~, for E = 1,. . . ,N - 1, (23) 

where n = (nj)j=1,,,.,3 represents the vector in the normal direction of 80:. The layer 0; scaled 

by (4) is fin = (wx ]ac,b&), w h ere at and bc are defined by at = a-la: and be = a-l bi. 

THEOREM 2.2. Under assumptions (l), (21, and (61, the sequence of weak solutions to (3) 
and (23) scaled by formula (5) converges weakly towards the unique weak solution of equa- 
tions (12) and (13). 

PROOF. The variational formulation (14) still holds. The proof is the same as the proof of 
Theorem 2.1, but, since R is different in each layer, the coefficients Q1’ and Q21 do not vanish 
anymore. 

(ii) From a practical point of view, the computation of the stiffness tensor 
( 

Q” ,TF6 Q22 Q::,, can 
‘=8V6 a!+ib > 

be carried out independently in each layer. The tensor R is constant in each layer 

(2R&)n,+1,2 (R’D33) a,P=1,2 

(2Ri333L=l.2 . 

@333 <=l,...,N 

Let us denote by IIC the restriction of lI to (L2(fl,))7, Tc = -(II~R%I~)-lII~R~, and Qc = 
(Id + tTf)Rc(Id + Tc). Then, 

Q1l crpy6 “%+) = $ l; (_z;;:,, ;$) dx3. 
Q:;',,, Q:& 

3. THE DIELECTRIC PLATE MODELS 

3.1. Statement of the Problem 

3.1.1. The plate geometry 

The geometry of single and multilayered plates has already been defined in Sections 2.1 and 2.2. 
Here, the same notations are used. In addition, the domain P is divided into two parts fly 
and Slq. They are, respectively, filled up with a dielectric and an elastic material. These two 
subdomains are cylindrical: 0: = w1 x ] - a, a[ and 0: = w2 x ] - a, a[, i;sl U w2, being a partition 
of w, Wl cc w. 

First, consider the single layer case. The lateral, upper and lower boundaries of the inclu- 

sions fly are denoted by l?fn,, = yincx ] - a, a[, I’yn:,+,, and I’TnJ. Index inc on geometrical elements 
refers to inclusions. 

The dielectrical domain w1 is divided into several simply connected subdomains which are 
called inclusions. The inclusions are indexed by A4 = (il, i2) E 2, where Z represents a set of 
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couple of integer indexes. The restriction of a function to an inclusion M is indexed by M. For 
a function f E L’(I’kz) and M E Z, (f) M represents the mean value of f on the upper face of 
inclusion M, and (f) represents the function defined on I’:: such that its restriction to the upper 
face of the inclusion M is (f)M. 

It has to be mentioned that mechanical effects and electrical effects are discoupled. Then, the 
electrical phenomena can be studied in Rq independently of the mechanical phenomena occurring 
in 0. Except in the case of the boundary condition which couples the different inclusions, each 
inclusion can be treated independently. However, the problem is treated with several inclusions 
in view of the derivation of the piezoelectric plate models in Section 4. 

3.1.2. Equations 

The electrical potential cpa is governed by the equations 

03 = cijej (cp”) and - a# = 0 in s2:, (24) 

where the components of the electrical field (ei(cp”))i,i ,...,a are the derivative of cpa with respect 
to (zi)i=i,...,a, the field (Q)i=i ,..., 3 represents the electrical displacement, and c = (cij&i ,..., 3 E 
(L”(s21))~ represents the tensor of permitivity. It is supposed to be constant in the thickness of 
the plate and strictly elliptic. It means that there exists a constant C > 0 such that 

2 cijW?j 2 Cllr11129 v77 = (%)i=1,...,3 62 JR3. (25) 
i,j=l 

Subsequently, C represents a constant independent of a. The boundary conditions on the lateral 
faces are 

Da.n = h” on I’&, with Ilhall&p,,~ I C, 
where (h”)a is a given sequence of functions. 

for every a > 0, (26) 

3.1.3. Boundary conditions on the upper and lower faces 

Three types of boundary conditions are considered on the upper and lower faces I’:: and I’;&. 
In practice, each of the upper and lower faces of a piezoelectric patch are covered with a conductive 
film. Then, the electrical potential is constant on each of these faces. If an electrical circuit is 
linked to one of these faces, the electrical displacement of the charges flowing in this circuit is 
equal to (Da.n)M. For each boundary condition described below, two cases are distinguished: the 
case where the lower and upper faces of the piezoelectric patches are covered with a conductive 
film and the case where they are not. For the sake of simplicity, we assume that, in each model, 
every face is metallized or every face is not metallized. The functional space 

H,’ (V = {+ E H1 6-Q ; &4,r rn: is constant for every M E 1, if the face M is metallized ) 

is of constant use in the sequel. 
Now, we define the three sorts of boundary conditions on l?zz U I’:;. For each of them, there 

are two equations. In the three cases, the electrical potential is imposed on the lower face rk;. 
This leads to the Dirichlet condition. Then, the boundary conditions differ only on l?r”;,-,. The 
names of the boundary conditions refers, therefore, to the condition on I’?$. 

?? Neumann boundary condition: 

cp a = ‘p; on rg and D”.n = ha on I’rnz, for nonmetallized faces, 

‘pa = cp$ on I’;“; and (Da.n) = ha on I’::, for metallized faces, 

with ll&Jl~~p~n-~ + IlWl~~p~~~ L C, for every a > 0, 
(27) 
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where ha and cp& are given functions. If the faces are metallized, ha and cpk are constant 
on each inclusion. 

?? Dirichlet boundary condition: 

(26) 

where cp& and ‘pz are given functions. If the faces are metallized, then cp& and ‘pz are 
constant on each inclusion. 

a Mixed boundary conditions: if the upper and lower faces of each inclusion are linked by an 
electric circuit of admittance Ga, and if the faces are metallized, then the current which 
flows out from the upper face of each inclusion is 11~ = -$(D”.~)M, where 5 represents 
the time derivative. If there is a source ha of current, the equation of the circuit is then 
IM = --$(Da.n)M = GavM + ha, where PM = ‘pi - (pi!+-. Since this paper does not 

i”C 
treat the evolution problem, we consider a stationary version of this condition 

cpa = cpg on I’yn; and (D”.n)M = Gai&$, 

cpa = cp”, on I’Tn; and Da.nIrp,+, = Gap, 

with II~“,ll~~p~~~ + Ilh”ll&;~) 5 CT 

for every M E 1 for metallized faces, 

for nonmetallized faces, (29) 

for every a > 0, 

where ha and cp”, are given functions. If the faces are metallized, ha and cp”, are constant 
on each inclusion. 

3.1.4. Multilayered plates 

Let us consider multilayered plates. The description of the domain aa has been done in 
Section 2.2. In addition, the restriction of fiq to the layer < is denoted by RYE = WI< x ]a;, bt[ . 
The lateral, lower, and upper boundaries of inclusions are l?& = U~~lI’&c~, I’:& = U~clI’~n,t, 
and I’$ = Urzl I’;&, where I?&<, I$, and I’$ are their restrictions to the layer [. 

The domains wit may be different in each layer. A consequence is that dielectric inclusions are 
not necessarily superposed. In particular, some layers may be without inclusion. In this case, 
wit is void. The restriction to the layer number < of each function defined on fly is indexed by <. 
The set Z of inclusions indexes for the layer number 5 depends on <. It is, therefore, denoted 
by 1~. The inclusions are indexed by M,c, where MC E 1~. 

For every f E L1(I’~~), (f) ~~ is the mean value of f in the cell MC. (f) is the function defined 
on I’;$ such that its restriction to the inclusion MC is equal to (f)~~. 

The equations satisfied by the electrical potential are 

D& = c<ijej (cp”) and - &D& = 0 in RTE, for [ = 1,. . . , IV. (39) 

On the lateral, upper, and lower faces of the inclusions, the boundary conditions are the same 
as in the single layer case. They have to be considered independently for each layer. They are 
written as in (26)-(29). 

A fourth condition which couples consecutive layers is considered. Since this kind of condition 
uses the finite difference approximation of (dsei(cpa))+i ,...,s, it may be useful when an approx- 

imate of the derivatives (&e;(cpa))+i,...,s is needed for the controller design (for example, for 
the design of a plate reflecting or absorbing acoustic waves). For this condition, every wit for 
5 = l,..., N are identical. Upper and lower faces of each inclusion are linked by an electrical 
circuit characterized by its admittance GT, and upper faces of consecutive inclusions (in the 
thickness direction) are linked by another electrical circuit of admittance G;. If there is a cur- 
rent source in each layer, the Kirchhoff current and voltage laws (see (191) lead to the boundary 
conditions 
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cpa = cp& on l? ,nc 7 for metallized and nonmetallized faces, 

- (Da.n)Mt = G;“vME 

- G; (R&+1 - 2x4< + Kf~-1) + h& fort=2,...,N-l, 

- (Da.n)M, = GyFM1 

- G; FZbz -EL) + h:, 
- (D”.n),, = GypMN 

for metallized faces, 

fort=2,...,N-1, 

-G;(E-Z)+h’T,‘” 

-Da.nlrPLN = GyFN 
- G;(-E$ +V%LI)+~%, for nonmetallized faces, 

with ll~ZIl$(~;~) + llh”ll~2p~~~ I C, for every a > 0, 

(31) 

where pME = (PM< - ‘p~rpnJL, and ha and 9% are given functions. If the faces are metallized, 

ha and cpg are constant on the restriction of I’kz and I’:“< to each inclusion. In the following 
sections, the models relative to these boundary conditions are derived. 

3.2. Neumann Conditions 

The scaling on h”, pa, and cp& is 

P”(x) = cpa (x9, for 2 E a:, 

j?(z) = h” (zP>, for z E I’inc U I’;,, and 

C%(z) = ‘p; (9 7 for x E r;,. 

Hypotheses (27s) and (26s) then become 

(32) 

(33) 

In addition, we assume that 

C% - vrn in H’ (r;J , p - hlat in L2 (ITi,,) , 

We denote also by h and (pm the functions defined in 
h = +-:,, and pm = %,lrlnC. 

and xa - h in L2 (I’;,) . (34) 

Ri, independent of x3 and such that 

THEOREM 3.1. Under assumptions (25), (262), (27s), and (34), 
(i) the weak solution p of (24), (261, and (27r,z), scaled by formula (32) converges weakly 

towards cp = pm in H’(Q), 
(ii) F converges weakly in L2(sZl) towards L3 = (h - ca,e,(cp,))/c33. 

PROOF. The variational formulation related to (24), (26), and (271,s) is 

J cijej (~7”) ei($) dx = J ha 11 ds, 
Y rr”Curiz 

for every 1(1 E Q$(O), with cpa E Qtd (9:). 

(35) 
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For every $ E Hi(%), the vectors La($) = (~5T($,))i=1,...,3, Lo($), L-l(@) me defined by 

La(+) = (el(ti),e2(4Jl, i e3($,> = Lo($) + i Lel(+). 

The scaling (32) applied to the variational formulation (35) leads to cp” E Q,d((pz) and 

Qad (Cpfkn) = {+ E Hi(%); + = ‘Pk on rLc> 7 

where 

s cijLja (cp”) L;($) dx = s halC, ds + 1; (L;(q)), vti E Q&4&% 
(36) 

Rl rinc 

1; (L$($)) = i s,+ h” $ds = / h”L;($) dx. 
In= 01 

LEMMA 3.1. If cp”, E H’(I’,,) satisfies JI’P&I[~~(~,,) _ < C uniformly in a, then there exists an 
extension $?” E H,l(Q,) such that $,” = cp”, on I’?& and llLa(@,Q)lI(~a(01))3 I C. 
PROOF. Consider the function +,” = cp% constant in the thickness of the plate. Then Ls(pa) = 0 
and L”,(@,“) = L”,(cpk), f or o = 1,2. Thus, IIWP)II(LZ(CI~))~ I ~II(PFAII~~~~~,~. I 

Let us state ij? = cpa - $7. Then p E S,(O) is the solution of 

s n1 
cij L4 (qP) L; ($) dx = - 

I a1 
cijL; (Q”) L;(T+!J) dx 

State 11, = p, using (25), (33), (35) and Lemma 3.1, then 

IIL” (P)ll(L2(,I))3 I C and IF” (vJ~)II(~z(~~J)~ I C. 
It follows that for each i = 1 , . . . ,3, there exists an extracted subsequence of Ly(@‘) which 
converges weakly towards a limit Li in L2(0,). From the Poincare inequality, up to the extraction 
of another subsequence, the function ?j?” and cpa converges weakly in H’(S1i). The limit of cpa is 
denoted by cp, then L, = e,(p). But when a -+ 0, es(@) -+ 0, then es(p) = 0, cp = (P,,,, and 
L, = e=(cp,). This proves Part (i). 

The space (L2(n1))3 * 1s decomposed on the form ((La&i,2, Ls), where Li E L2(s2,). Let us 
define the subspaces of (L2(s2~))3: 

IL-’ = { (0, L3) ; L3 E L2(Q,)} . (37) 

The following lemma is trivial. 

LEMMA 3.2. 
(i) The space {L = L-l($); $ E Qd(O)} is dense in L-i. 

(ii) L = (Li)i=1,...,3 E IL-‘+((e,((p,)),=l,z,O). 

Consider C, the permitivity matrix stored on a format compatible with the above decomposition 
of (L2(s2,))? 

c _ 
-( 

(Ca&,/3=1,2 (c&=~,2 

(C~&4,2 c33 >* 

After multiplication by a and 1, successively, we take the limit of (35) when a vanishes. This 
leads to 

J a1 ‘L-‘($)CLdx = r+ h$ds J VlcI E Qadd(O), I”C 
J (38) 

“Lo($) CL dx = J hl,tlCI ds, for every $ E *ad(O) such that L-‘(q) = 0. 
o1 rinc 
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In the second equation, the fact that $J E qad(0) and L-l($) = 0 leads to 1c, = 0. Thus, only the 
first equation plays a role in the model. For T,!J E Q,(O), $J,~L~ = J_‘, &l/,&s, using Lemma 3.1, 
it follows that the first equation of (38) is equivalent to 

where 

for every z1 = (O,O,Ea) E E, (39) 

I 
1 

i3 dx3 ds = I h t, dx. 
\ I JGC J-l J% 

From the Lax-Milgrarn lemma and Lemma 3.2 (ii), this variational problem has a unique solution 
L E IL-‘~((e,((pm))~=l,2,0). Th’ f is ormulation is equivalent to CsiLi = h. In conclusion using 

cP=(Pm 
and L3 = h - ~3,e,(cpm) in w1 

c33 
This completes the plate model. I 

3.3. Dirichlet Conditions 

Let us scale the boundary conditions, 

i-@(x) = ha(P), for X E rinc, 

G%(x) = cP;(za) and $7~) = ‘P: (0, for every x E wi. (40) 

Hypotheses (28s) and (262) then become 

(41) 

In addition, we assume that 

8 A (pc in ~2 (FL,) , pm - qrn in H1 (Pi,,) , and %’ - hi,t in L2 (Fin,) - (42) 

THEOREM 3.2. Under assumptions (251, (2621, (2&), and (42), 
(i) the solution p of (24), (26 ) i , and (281) scaled by formula (40) converges weakly towards 

cp = vrn in HVW, 
(ii) y converges weakly in L2 (RI) towards cpc. 

First, let us prove the following lemma. 

LEMMA 3.3. Let cp& and ‘pz be two functions defined on WI such that 

then there exists @’ E H’(R1) such that 

REMARK. If the faces are metallized, since Qa is constant on each inclusion, L”(Qa) = 0. 

PROOF. Define (za by $?a(X17X2rX3) = (pg(X1,X2) +#(21,Xz,X3), where @$(X1,X2,X3) = &(X1, 

X2,(X3/a)), & being defined on 52: by 

-A& = 0 in SZT, V&n = 0 on I’%,, & = acpz on I’$, and & = -opt on I?;&. 
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The solution (zc of the above problem is the unique solution of the minimization problem, 

inf,,j Jo: (V$(2dx, where 1c, E H’(SZT), + = a@ on I’:#$ and 1c, = -acpE on I’yny. Then, by 

definition, llGGll~I,2~r~~UrP,;) = P&l2 or equivalently 1V@,J2 = 2a2~J(p~~~~,,+~. Application 

of the scaling then leads to )ILa(@,,)ll~~a(n1jj3 < Call~~ll~l~l~wl~. Thus, IILa(+a)ll~p(,l))s I 
C (41~~11~1+1~ + IIv~ll2H+,+ 1 
PROOF OF THEOREM 3.2. The variational formulation of (24), (261), and (281) scaled by for- 

mula (40) is 

Define p by p = @ - @Y’. Then F E Q&(O) satisfies 

J cgjL4 (p) LT($) dx = - J CijLg (qa) Lp($) dx + J ha+ ds, for every $ E Q&(O). 
RI 01 rine 

Choosing 1c, = F, using (25),(412) leads to IIL~($P)ll tzpl) L C, and thus to IIL:(cpa)ll~~(~l) 15 C, 
fori=l,... ,3. Hence, there exists a subsequence of La(cpa) which converges weakly towards L E 
(L2(s21))3. As in the case of Neumann conditions, the function cpa converges weakly towards qrn 
in Hl(St,). This is Point (i). 

Define the operators M, h/ by 

M(L) = f J _’ Ldxs, for every L E (L’(RI))~ and N = Id - M. 
1 

(46) 

LEMMA 3.4. The space {L = L-l($); 1c, E &(O,O)} is dense in N&-l). 

The proof is straightforward. 

LEMMA 3.5. The limit L E N&-l) + ((ecr((Pm))a=1,2,(Pc). 

PROOF. Because JJ, L3 dq = lim,,o ST, (l/a)&@dx3 = lim,+o 2~: = 2~,, this means that 

J!l(L~ - cpc) dxs = 0, then L-((e,(cpm))a=l,2, cpc) E JW-‘). i 

Passing to the limit in (45) and applying Lemma 3.4, the variational formulation satisfied 
by L is 

J %CLdx = 0, for every i, = 0, L3 E IL-'. 
( > (47) 

Rl 

From the Lax-Milgram lemma, this variational problem has a unique solution. This formulation is 
equivalent to &(c33Ls + csaecr(pm)) = 0 in 01. Then LJ is independent of x3. From Lemma 3.5, 
L3 = cpc. This proves Point (ii). I 

3.4. Mixed Conditions 

The scaling on the data is (32) and 
E=aGa, 

where e is a positive constant independent of a, 

(48) 

THEOREM 3.3. Under assumptions (25), (262), (24), and (34), 

(i) the weak solution $7 of (24), (291,2), and (261) scaled by formulae (32),(48) converges 
weakly towards cp = vrn in H’(Rl), 

(ii) y converges weakly in L2(s21) towards L3 = (~33 + 2@-‘(h - csaen(qn)). 
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PROOF. The variational formulation in fly verified by @ E XQ,(&,) solution of (24), (29r,s), 
and (261) is 

J Cijej (9”) ei($) dXa + 
J 

G”qT?+bds = 
J l=+ 

h”II,ds+ 
Q Wl 1°C J h” II, ds, 

cl, 
for every $ E \kzd (0). 

Consider the extension @” E Hi(Rr) of the boundary condition cp& defined in Lemma 3.1, the 
decomposition of the solution in the form cpa = pa + p and the operator M defined in (46). 
After application of the scaling (32),(48), the variational formulation satisfied by p E *I,(O) is 

J CijLT (F) Lq($) dx + 
J 

2GM (G 037) LiXti) dx 
01 a 

= S,,.. hati ds + 1; (L:(G)) - J,, CijLy (Pa> LF(llr) dx, 

where I;( Lf ($)) is defined in (36). Choose 1(1= p, then 

J R1 GjLj” (P) LF (V> dx + J 2GM (L; (v))2 ds 
01 

r 
= I hap ds + 1; (L; (q?)) - _ 

J 
CijLT ($‘) Lr (p) dz. 

f21 

(49) 

vlc, E Q&i(O), 

We deduce that II%%(~>>ll~2~n~~ + IIW’F)~~(L~(~~)) 3 < C. Then, there exists an extracted _ 
subsequence of La(@) which converges weakly to some L E (L2(f11))3. For the same reason that 
in Section 3.2, cpa converges to cp weakly in Hl(flr), L, = e,(cp,), and the electrical field Ls 
is independent of 2s. L E IL-’ @ ((e,(&)a=r,2,0). The derivation of the model is similar to 
that in the case of Neumann boundary conditions. From Lemma 3.2(i), the resulting variational 
formulation is 

J ‘CCL dx + A, 2G i3 M(L3) ds = 1, (x3) , for every L E L-l, (50) 
Rl 

where &,(1/s) is defined in (39). We used the fact that M(L$(@)) = M(L$(p)) + M(L$(p)) 
and M(L$(Fa)) = 0. From the Lax-Milgram lemma, this variational problem has a unique 
solution. The equation (50) leads to CsiLi + 2GM(L3) = h. Thus, 

L3 = (~33 + 2G)-’ (h - c3ae,(cp,)) in WI. (51) 

This is Point (ii). I 

3.5. Multilayered Plates 

Since the models for multilayered plates are derived in the same way as those of single layer 
plates, only the cases of Neumann conditions and conditions coupling the layers are detailed. 
Models relative to other conditions may be derived by a similar method. The space lb-’ is 
defined in (37). The operators M and N are defined by their restriction on each layer Qrc : 

+&) = J%(L) = WC - 4 J:; Ld x3 and Ajo,, = N<(L) = L - ME(L), for any 
L E (Lqn#. 
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3.5.1. Neumann boundary conditions 

The scaling is, 

F$(x) = IL@“), for 5 E J?L,, U rinccr 

Z&r) = cpzz&~a)~ for z E r,,,, for every { = 1, . . . , N. 

The scaled data satisfy 

93 

(52) 

-a II I/ 
2 

4 L2(TI,,F) 
+I$ 

I/ II 

2 

Lz(r+ ) + ll~EIIH~(r~ct) 5 c, 
forevery[=l,...,N, 

lncC 
-a hc - hc in L2 I?;,, , 

( 1 
3 - hem in L2 (I’inc~), (53) 

G$ --L PmE in H’ (r&) ’ foreveryJ=l,...,N. 

THEOREM 3.4. Under assumptions (53) and (541, 

(i) the solution p of (30) and (26) with Neumann boundary conditions on I?$,+, scaled by 

formula (52) converges weakly towards cp = pm in H1(U$rflrc), and 
(ii) %Z a ,nlF converges weakly in L2(sl,,) towards L3c = (hc - C3,~e,(~m~))/C33<. 

PROOF. @ being the extension of p&C defined in each layer as in Lemma 3.1, letting $ = 

‘pi - @, then cp -_a E Qad(0) is the solution of the variational formulation 

Qad(qm) = {$ E H,’ (u&l%,) ; @t = ‘P&c on r;cc} ) 

(54) 

For every I,!J E H~(U~!-Y=,flr~), the vector L*(Q) is defined in U~=rflr~ by L”(6) = (er($), 

e2(1CI>, 0/4e3(llr)) = Lo(+) + (lla)L-‘(ti). The choice r,!~ = p in (54) implies that 

llLa(~)ll(L2(“,N_,n,,)) 3 5 C, and therefore, that I[La(cpa)[l(L~(u~=,n,,))3 I C. Then, for each 

i = l,..., 3, there exists a subsequence (LT(QP))~>o weakly converging towards a limit Li 
in L2(nl). As in Section 3.2, the sequence cpa converges in H’(Ur=‘=,nrc) towards (P,,, and 

L E 1L-l @ ((ea((pm))a=r,a,O). Th e model related to a single layer plate is thus valid for each 

layer 

‘PC = prnc and ~53~s 
he - c3n&cpm~) 

in a~, foreveryt=l,...,N. 
c33c 

3.5.2. Boundary conditions coupling the layers 

The scaling of the admittances is 

&=aGT and e2=aG;, 

g1 and es being positive constants. Define two N x N matrices, 

0 0 . . 

I.2 (54 -&3 0 . . 

L= . . 
. . 
. . 

0 

0 

--Gz~N 

(55) I 

(56) 

i 

1 (57) 

\ 0 0 0 0 0 --G2rN-l TN (g2 +a,) / 

where rt = bc - at and I the identity matrix. 
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THEOREM 3.5. Under assumptions (53) and (25), 

(i) the weak solution p of (30), (31), and (26) scaled by formulae (52) and (56) converges 
weakly towards (pm in @(U$iRit), 

(ii) % converges weakly in L2(U&&) towards LB~ = Crc1((cs31 + &-l)~,J-cQase, 
(cpmTJ + h,) for < = 1,. . . ) N. 

PROOF. After application of the scaling, suppression of the hats on scaled functions and con- 
struction of the extension @“ of the Dirichlet boundary conditions on F,,. as in Section 3.5.1, 
the variational formulation is similar to (54) with the additional bilinear form a(L$(p), L;(g)) 
on the left-hand side, where 

+W&W&) dx + Ne /- G2 (r~+iW+~(p) - r&(p)) 
E-1 WI (53) 

x (q+lMc+&) - wWd) ds, for every p, q E L2(Q). 

The same estimate is obtained as for Neumann boundary conditions. In addition, a(L!$(p), 
L$(p)) 5 C. Then, for each i = 1,. . . ,3, there exists a subsequence (L~((P”))~ weakly converging 
towards a limit Li in L2(i21). As in Section 3.5.1, the sequence cpa converges in H’(u&R~~) 
towards (P,,, and L E IL-’ $ ((e,(cp,)),,l,2,0), which proves (i). Arguing as in Sections 3.2 
and 3.4, the variational formulation of the limit problem is 

J 01 
tiLdz+a (Ls,G) = I, (zs) , for every 2 = (o,O,L,) E IL-‘, (59) 

where 

From the Lax Milgram lemma, this variational problem has a unique solution L = IL-’ @ 
((ea(pm))a=l,zr 0). Equation (59) is equivalent to 

N 

CC ~33~ + & > LB~ + csa Ee, (cp& = he, forE=l,...,N, 
q=l 

(60) 

which proves (ii). Point (iii) follows from (i) and (ii). I 

4. THE ELASTIC PLATE WITH PIEZOELECTRIC INCLUSIONS 

First, let us consider the single layer plate. Now the inclusions located in 0: are made of pieze 
electric material and 0; contains an elastic material. Let us state the equations of piezoelectricity 
in statics. The tensor of piezoelectricity (dijk)i,j+1,...,3 satisfies the symmetries 

f&j& = h&j, foreveryi,j,Ic=l,..., 3, (61) 

and is assumed not to depend on 2s. The tensor (dijk)i,j,k=i,...,s vanishes in a$. We assume 
that Qf is electrically insulated of fi$ (see condition (64s)). Then, the electrical field in n!j neither 
affects the electrical field in n: nor the mechanical field in Ra. For this reason, the equation 
governing the electrical potential is not considered in R 5. The strong form of the piezoelectricity 
equations results of the expression of the stress tensor and of the electrical displacement vector 
(see PI) 

O$j = &j&ls&l (Ua) + d&ije& (9”) in aa and 0; = -dkijSij (U”) -I C&& (9”) in ny, (62) 
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of the elastostatic and electrostatic equations 

-ajUG = f,’ in 0’ and - &DT = 0 in 0:. (63) 

Subsequently, the permitivity tensor c is considered as a tensor defined on W but equal to zero 
on 02. In the previous section, we have shown that the source term h” on r$,, does not contribute 
in the plate models. For simplicity of the derivation, it is therefore taken equal to zero. The 
boundary conditions are 

a,“nj=gFonI’yUI’a*, ua=Oon I’;, and Da.n=OonI’~,. (64) 

The boundary conditions on I’Fn: U l?yn; are one of (27)-(29). They lead to different models 
considered in the following sections. 

Let us consider multilayered plates. The equations (62)-(64) h ave to be written in each layer 0: 
and 0;L,: 

UFj = RijklSkl (Ua) -k dkijek (9”) in fl: and D;t = -dkijSij (ua) + Ckiei (9”) in flz;“<, 
-ajcG = f: in C$ and - &Df = 0 in Cl;l,, (65) 

cr$nj = g,” on I’$ U I’:‘, ua = 0 on I’:,, and D”.n = 0 on I’:&, 

foreveryJ=l,... , N. The three tensors R, d, and c are independent of x3 in each layer. The 
continuity conditions between the layers are 

bmr: = tQr;+l and (gFj.nj),: = - (gb.nj)r,, , for f = 1,. . . , N - 1. (66) 

As for dielectric multilayered plates, the layers are electrically insulated, so there are no continuity 
conditions relative to the electrical displacement or to the electrical potential. The boundary 
condition on l?F”:C U rFn;,-,, is one of (27)-(29) or (31). 

4.1. Neumann Boundary Conditions 

For V = (v,$) E (H1(R))3 x H’(Rl), define 

M”(V) = (saa (v)),,~+, ; (~a3 b’))a=1,2 7 $533 b’) 7 (e&t%=,,, 7 ; e34 1 (67) 

which provides a decomposition of a subspace of (L2(s2))ro. The tensor R composed of the 
stiffness tensor, piezoelectricity tensor, and permitivity tensor is built in a format compatible 
with (67): 

1 

(%+,6), b _, 6=1 2 
(2Ra376)h,;,k=l,; 

(2&&s), p .,=r 2 
(4Ro373)d,;=1,; 

(R@33)C2 p=12 I 1 (d~ao)a a -,=I 2 .> 1 (d3aB),~=~,2 

(2R01333)a=1,2 (2d~a3)a,7=1,2 @d3o3),=1,2 

I?.= (R33&,6=1,2 @R33-r3&1,2 R3333 @-~33)~=1,2 d333 

(-da-vs),,7,6=1,2 (-2dw3)o,7=1,2 (-du33)a=1,2 (CwL,7=1,2 kQ3),=1,2 

kd37&+,2 (-2d3r3)3,.+,2 -d333 (c3-r)7=1,2 c33 1, 

Now, introduce the spaces 

M = M0@M--lClQW2, 

Ml0 = {M = (K,O,) E K” x (L2 (01))~)) 

M-’ = {M = (K,L) E IK-’ x IL-‘}, 

IW2 = {M = (K,03) E K2 x (L2 @I))~}, (68) 

ILo = {M = (07,L) E (L2 (fl))7 x { ((ea($)),=1,2 ‘0) ; where 11, E H’(QI), a3$~ = 01, 

E = {M = (K,L) E (L2 (fi))7 x (L2 (OI))~}, 

IK, II@, K--l, P, and IL-’ are defined in (9) and (37). 
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The spaces K” and lb” being trivially identified to subspaces of E, for every such subspace X of IE, 
we denote by Px the identification operator 

X-+E 
Px : 

XHPXX 

such that the restriction of Pxx to X is equal to x, and its other components are null. For 
example, for L = (0, Ls) E lb, Pr_L = (Ox, L). For convenience, since no confusion is possible, we 
use in fact the abusive notation PL-1Ls instead of PL-~(0, Ls). The similar abusive notation is 
being used for the other subspaces Ki, lLi. 

We also use the following notations: 

II and I11 are the projector from lE onto M-r $ Mm2 and onto lb-‘, 

T = - (lIRl-I)-‘l-K?, 

Q = (Id+ ‘T)R(Id+T), 

H = (tlIiTl-Ir - (Id + “T) R(lYIRII)-‘) P,-,h, 

F = 2 ( H - QpLo (ea (‘P~)),,~,~ > , 

Q aora,Ftg are the components on K” of Q and F. 

VKL and lti(v) are defined in (7) and (17). 

THEOREM 4.1. Under assumptions (I), (2), (6), (25), @‘a), (61), and (34r,s), 
(i) the solution (i?,$‘) of (62)-(64), and (27) scaled by formulae (5) and (32) converges 

weakly towards (u, pm) in H1(Cl)3 x H1(%), where u = (El - 2sd1’113, Es - 2362213, 
us) E VKL is the unique solution of 

for every V =I& - x&v3,??2 - x3&v& v3) E VKL, 

(ii) y converges weakly in L”(~I) towards Ls such that PL-I(L~) = lTi(T(M’ + Pp(e, 

((~,4)~=1,2) + (nRITIPL-lh), where M” = (((~~p(u))~,p=-1,2,O,O,O,W 

PROOF. V$ and \k$(‘p&) are defined in (14) and (35). The variational formulation of (62)-(64) 
and (27) is 

w.,l (cp%) = cl x Qtd (&a> 7 

J (&jklskl (Ua) -I- dkijek (Cp”)) Sij (V) + (-dkij%j (ua> •I ckiei (Cp”)) ek($) dx 
S-P 

J 
g;vi ds + 

J 
ha+ ds, 

qJro* C”: 
with (ua, cp”) E W$ (cpz). 

(Recall that the tensors d and c vanish in a$.) 
Scaling the solution with (5) and (32), removing the hats on the scaled functions, Vd and 

IEd(cpg) being defined in (15) and (36), @’ being the extension of ‘p& defined in Lemma 3.1, 
letting p = cpa - @“, and Ua = (0, $“) to which this is equivalent, v = (ua,p) E Wad(O) is 
the solution of 

wad((P:n) = Kd x @ad (cpi3, 

J 
tMa (V)RMO (r) dx = l;(v) + 1; (L;($)) - J, ‘M’(V)RM= (Ua) dx, (70) 

R 
for every V = (v,$) E Wad(O), 
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where Z:(v) and Z$(L$($)) are defined in (15) and (36). From (l), (2), (25), and (61), one easily 
verifies that there exists C > 0 such that 

‘M.R.M > C llM(j2, for every M E lR” such that M2 = Ms. (71) 

Then, letting V = 3 in (70) implies that ))Ma(UY)II(~a(n)),x(~~(~,))3 L C and .IMa 

(U”)II(LZ(n))7X(LZ(nl)) - 3 < C. Thus, there exists an extracted subsequence of Ma(W) which 
converges weakly in (L2(s1))7 x (L2(fl~))3 towards a limit M = ((Kap)a+1,2, (Ko3)n=1,2, K33, 
(l;a)(r=1,2,L3). Application of Korn and Poincare inequalities leads to the weak convergence 
of U” towards a limit U = (u, cpm) in H’ (Q)3 x Ei’(nl). Define the operators MO(V), M-‘(V), 
and Mm2(V) on V = (v,$) E Wad(O) by 

M’(V) = (K’(v), 03) , M-‘(V)= (K-‘(v),L-‘(~6)) , and M-2(V) = (K-2(v), 03), (72) 

where operators K’, K-l, KA2 are defined in Section 2.2, L-’ is defined in Section 3.2 and 
O3 = (0, 0,O). MuItipIication of (70) by a2, a, and 1 successively implies 

J tM-2(V)RM dx = 0, vv = (vtti) E Wad(O), 
n 

J tM-l(V)RMdx = 1, (L;l($)), VV = (v,$) E Wad(O) n Ker (Mp2), (73) 
R 

J ‘M’(V)RMdx = Z%(v), 
R 

VV = (v,$J) E W,(O) n Ker (MF2) n Ker (M-l), 

where Z,(v) and Ip(LQ1($)) are defined in (17) and (39). Now, Lemmas 2.1 and 3.2 yield the 
following. 

LEMMA 4.1. The spaces IW2, MI-‘, and MI0 being defined by (68), 

(i) the spaces {Mm2(V); V E Wad(O)}, {M-‘(V); V E W,(O) and MW2(V) = 0) are dense, 
respectively, in Mm2 and IT’, and 

(ii) {MO(V); V = (v,$) E W,(O) and Mp2(V) = M-‘(V) = 0) = MO. In particular, for 
every M” E Wa’, there exists V = (v, 0) E W&(O) such that Me2(V) = M-l(V) = 0 and 
M” = MO(V). 

Lemma 4.1 and (73) imply that 

J tfi-2RMdx = 0, for every lW2 E lW2, 
R 

J %l-‘RM dx = 1, (L3) 1 for every ti-’ E M-l, 
R 

J n %l’X!M dx = lu(v), for every tie 6 MO, 

where v is the vector associated with Go. Since Ml = MW2 @ M-l @ MO, this is equivalent to 

J tiRMdx = l,&3) + l,,(v), for every %I E M. (74) 
n 

LEMMA 4.2. The limit M of Ma(Ua) belongs to M + Pp(ea(pm))a=l,2 and is the unique sol- 
ution of (74). 

PROOF. The fact that M E M + ?LO(e,(cp,)),=1,2 is shown as K E K in Lemma 2.2 and 
L E IL-’ + %(e,(cp,)) a=1,2 in Section 3.2. Existence and uniqueness of (74) follow from the 
Lax-Milgram lemma on the Hilbert space M and of the ellipticity (71) of R. I 
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REMARK. From Lemma 4.2, the limit M = (K,L) satisfies L, = e,(cp,), ICap = s&u), and 
u is a Love Kirchhoff field: Us = iia - x&us. 

Now, we simplify as much as possible equation (74). The choice $I E M-‘@&lF2 in (74) leads to 
ITRM = Pr,-l h. Writing M = IlM+M’+P,o((e,(cp,)),=r,2), where MO E MO, then IlRIl M = 
PL-l h - IlIR(MO + Pp((e,(pm))a=l,2)) or equivalently IlM = T (MO + Pr,o((e,(cp,)),&) + 
(I17iTI)-‘PL-~ h. This gives the expression of M with respect to MO: 

M = (Id + T) (M” + PLO ((e, (‘P~)),,~,~)) + (IIKTI)-lP~-lh. (75) 

Choose fi on the form a = (Id + T)$I”, where Go E M” in (74). Replacing M by its 
expression with respect to MO and P~-lts by Llifi = Ilr(Ill@ = Ili(Id + T)l& leads to 

/ %I0 (Id + ‘T) R ((Id + T) (MO + PLO ( (ea(qm)),,l,2)) + (IIRII)-‘PL-1 h) dz 
R 

= lU(V) + 
J 

t (PL-1 h) .I’lrT& dx, (76) 
% 

or equivalently, 

H - QPLO (ea(cPm))a=1,2 dx + L(vh 
> (77) 

for every Go E h41°, where v is the vector of VKL associated with Go. Since 

a0 = P,, (sap (V) - ~s@&,B=1,2 and MO = PU (+a (a) - ~&+s)~,+i,~, (78) 

this completes the proof of Point (i). Point (ii) follows directly from (77) and (78). I 

4.2. Dirichlet Boundary Conditions 

We use the same notations as in the preceding section excepted that 

M-’ = {M = (K,L) E K-l x N (L-l)}. 

This changes the meaning of the preceding definitions of M, Il, and lli. 
operators 

1 fl 

here psI[-l is defined by 

(79) 

In addition, we need the 

* 
M(M)=5 _1 J Mdx3, foreveryMEM and N=IdM-M, 

II2 = Il - llr the projector from IE onto MF2 @ (K-’ x (0s))) 

TN = - (llRIl)-’ RR and TM = - (I12Rl12)-1 l&R, 

QN=~ (Id+TN)R(Id+TN) and QM =t (Id+TM)R(Id+TM), 

F = --ztQ~ (PM(L-~w + R.0 h&d,=I,2) y 

QM+w, QN+~, Fap me the components on K” of QM, QN, F, 

(80) 

and the definitions (7) and (17) of VKL and Z,(v). 

THEOREM 4.2. Under assumptions (l), (2), (6), (25), (26), (2&), (42), and (61), 
(i) the solutions (C?‘,p) of (62)-(64), and (28) scaled by formulae (5) and (40) converges 

weakly towards (u,(P~) in H1(R)3 x H’(CZl), where u = (El-x&us, EZ -x3&213, 
us) E V’L is the unique solution of 

P 

= C(v) + J sup (3 J?ap dx, 
Wl 
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for eVfZ%'yV = (El -X&213,& - x&v3,v3) E VKL; 
F converges weakly in L2(s21) towards LB such that P,-l(L3) = PL-I (cpC) -- 23 

PROOF. After scaling and suppression of the hats on scaled functions, if @,” is given by the 
Lemma 3.3, p = cpa - +,“, @ = (O,qa), then 3 = (u”,F) E Wad(O) is solution of the 
variational formulation on the scaled domain 

wad(&,(P:)= Kd x q,ad(&,$':), 

J tMa(V)RMa 3 dx = Z;(v) - ( > s, tMa(V)RMa (@) dx, (81) 
R 

for every V = (v,$) E w,,(O), 

where v,d and Qd((pk,(pz) are defined in (14) and (45). Choose V = rs” in (81). Tak- 
ing into account assumptions (l), (2), (6), (25), (26), (282), and (61) and Lemma 3.3, then 
llMa(Ua)ll(~~(~))7~(~~(n,) - 3 < C. Then, M”(W) has the same properties of convergence as in 
the case of Neumann conditions. The variational formulation satisfied by U” = (ua, cp”) E Wad 
(cpk,cpZ) is 

J tMa(V)RM” (Ua) dx = l:(v), for every V = (v, ?+!J) E Wad(O). (82) 
Cl 

Multiplying successively by a2, a, or 1 and passing in the limit in (82) leads to 

J tM-2(V)RM dx = 0, for every V E Wad(O), 
R 

J tM-’ (V)RM dx = 0, for every V E Wad(O) f~ Ker (M-“) , (83) 

’ J tM”(V)RKdx = I%(v), for every V = (v,@) E Wad(O) f’ Ker (Me2) f~ Ker (M-l) . 
n 

Similarly to Lemma 4.1, using Lemma 3.4, we have the following lemma. 

LEMMA 4.3. The spaces lW2, IW1, and M” b eing defined by (68) and (79), the conclusions of 
Lemma 4.1 hold. 

Using Lemma 4.3 and wI[ = MI0 @ M-l @ Me2, (83) is equivalent to 

J tiRMdx = Jtl(v), for every lGl E M, (84) 
n 

where v is the vector associated with Go = ‘&~$I). From Theorem 3.2(i), L, = e=(cp,) 
and arguing as in the proof of Theorem 3.2(ii), M(PL-IL~) = PL-IV,. From Lemma 2.2(i), 
K E lK. Writing then PLL~ = M(P,-I Ls) + N(P,-I Ls), where N(PL-I Ls) E N&-l), then 
M E M + PLO(e,(cp,)),=1,2 + P_AQ,-~)cP,. Then, the Lax Milgram lemma ensures the existence 
and uniqueness of M solution of (84). Now, choose &?I E M(M-’ @ RK2) in (84). Using the fact 
that R does not depend on x3 and decomposing M = M(M) + N(M) yields 

J tiRM dx = J tire dx = 0, 
Cl Cl 

where l!l hi(M) dxs = 0 has been used. Hence, l&RM(M) = 0. Similarly, (84) implies that 
IInn/ = 0. Writing M = IIM + MO + Pp(e,(cp,)),=1,2 + P,(,-~)cp,, where MO E MO, 
then 

N(l-IM) = - (I-IRII)-1 IIW (MO) and 

M (H2M) = - (&R&)-1 H2R (M (MO) + PM(,-~)v, + PLO (e=(/Om)),=1,2) . 
(85) 
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Thus, 
N(M) = (Id + T,&‘d(M”) and 

M(M) = (Id + TM) (M (MO) + pM(L-I)% + PLO (e,(‘Pm)),=I,a)e 
(86) 

For tie E MO, choose fi E M such that h/(a) = (Id + TN)A@I~) and M(G) = (Id + 
Tn*c)M(k’). Then, (84) yields 

= L(v) - J,, M (Go) QM (% (E-l) Cpc + PLO (e&‘,)),=,,,) dx, (87) 

for every a0 E MO, where v is the vector associated with fro, since 

This ends the proof of (i). Point (ii) follows directly from (i) and (85)-(88) the model. I 

4.3. The Mixed Boundary Conditions 

The definitions and notations of Section 4.2 are used except the definition of M-’ is replaced 
by (68) and the definitions of TN, TM, and (Fap)a,+r,s are replaced by 

TN = (lT7i%)-1 IIR and TM = (IKWI + 2IlrGIIi)-’ IIR, 

F=2(H- QMPLO(~(P~))~=I,~), 

H = (~TM - (Id+tTM) (R + 2IIrGlIr) (lWZII + 2IIrGIIr)-r) PL-lh, 

FLlp are the components of F on lK”. 

THEOREM 4.3. Under assumptions (l), (2), (6), (25), (2&), (293), (34), and (61), if G is positive, 
then 

(i) the solution (P, p) of (62)-(64) and (261,~) scaled by formulae (S), (32), and (48) con- 
VergeS Weakly towards (U, Cpm) in H’(n)3 X H’(i&) where U = (El - X3dlU3, & - X3&??i3, 
~3) E VKL is the unique solution of the equation 

= 1, (v) + 
J 

sap (v> FMCYB k (8% 
Wl 

for C?VeIyV = (01 -X361213,% - X3&v3,W3) E VKL; 
(ii) +$ converges Weakly in L2(fil) towards L3 such that PL-1(L3) = ~I(??M(&o(s,~ 

(~))r,6=1,2+PLO(ea((Pm))a=1,2)+(~~~+2~lG~l)-1'PL-~h)-X3~1TNPKO(a~6~3)r,6=1,2. 

PROOF. After scaling and suppression of the hats on scaled functions, if $a is given by Lemma 3.1, 
and p = cpa - @,“, state @ = (0, $“) and c = (uO,p). The spaces Vd and @[lad being defined 
in (15) and (36), 3 = (ua,p) E W&(O) is the solution of the variational formulation on the 
scaled domain 
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for every Go E l’Vl” where v is the vector associated with 61°. Using (88) this proves (i). Point (ii) 
follows as in Theorem 4.2. I 
REMARK. In the above analysis, the operator IIRGR is invertible. In the context of evolu- 
tion problems, G is an integro-differential operator in time, then R&$l is not invertible. The 
elimination of M(L3) is not possible. 

Subsequently, the model is derived without eliminating M(L3). The assumptions on the posi- 
tivity of G and invertibility of IIRIl + IIiGIli are not released in order to preserve the a priori 
estimates and the convergence properties. For evolution problems, these preliminary results may 
be obtained by specific methods. 

We use the same notations as in the preceding model, except that 

TN = - (IIRII)-l RR and TM = - (l&Rl&)-’ l&R, 

QM =t (Id + TM) R (Id + TM) and QN =t (Id + TN) R (Id + TN), 

F = ~QM~Lo(~~((P~)),,~,~, 

( 

L2(w1) if faces are not metallized, 
6'6) 

L = (E3 E L2(w1); E3 is constant on each inclusion}, 

if faces are metallized, 

F,s are the components of F on lK”. 

The matrices QM and F are decomposed by blocs, QM = ($ $ ) and F = ($ ) correspond- 

ing to the bloc decomposition of K” @ IL-‘; Q$&ra and Q~~p?a are the components of QE 
and QN on lK”. 

THEOREM 4.4. Under the same assumptions as in Theorem 4.3, the vector (u, L3) = (iii -x3aru3, 
a3 - z3&U3, U3, L3) E VKL x L: jS the SdUtbn of 

2Q%:apra 2Qi%-zp 0 

J( 
sao (v> ,2;3, a&3 > 2Q $76 2Qs++G 0 dx 

w 
0 0 i QN+J~~ (97) 

’ ’ =~12~&+(s,~(~),~~) (2) dx+l,(v), 

for every v = ( 31 - z3&U3,53 - 23&3,213,~3 > E VKL x L. 

PROOF. We start from (93). Taking 6I E MI such that N(a) E n/(lVlS2 @M-l) and M&I) E 
M(l&M), then N(IIM) = -(IIRII)-‘h/(M’) and M(l-12M) = -(IIzRl-13)-1 (M(M’+ 
PL-1 L3) + PLO(e,(cp”))a=1,3). Then 

h/(M) = (Id + TN)A~ (M’) and 

M(M) = (Id + TM) M (M” + PL-1L3 + PLO (edcpd),=,,,) . 
(98) 

We choose 6l in an analogous way N(a) = (Id + TN)J’V(~I~) and M(G) = (Id + TM) 

M($l” + PL-1z3). Then 

/, (M @ilo +PL-IL,) ,N (tie)) ( QM +ylGnl lN) (” ($)&$-1L3)) dx 

= 1, M (a” + PL-~L~) QMPLO (ea((pm)),,l,2 da: + 1, (v) + 1, (M (is)). (99) 

Letting M(L3) = ~!?3 and M(L3) = E3 leads to the theorem. I 
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4.4. Multilayered Plates 

The preceding notations, statements, and proofs have been conceived in order to be easily 
generalized for multilayered plates. Under a few precisions concerning notations, the proofs are 
close to the single layer case. These precisions are stated above. For the sake of brevity, we 
state the plate models for each boundary condition on I’:, U I’,, without giving any proof and 
convergence statement. 

The models are derived from the equations (65),(98), and one of the four boundary condi- 
tions (27)-(29), or (31). The definitions of the Mi are those of (68) (or (79),(80) in the case of 
Dirichlet conditions) except that ILo is defined by 

ILo = 
1 

M = (07,L) E (L2 (fZ))7 

x { ((LL42 A) ; k-IlR1~ = e,(v&), where $JC E H’(fi~c), a3& = O}. 

4.4.1. Neumann boundary conditions 

When Neumann condition (27) is applied on I’~,UI’&, the limit u = (Ei --~gdi~g, ?i2-z&21s, 
24) E VKL is the unique solution of 

= Lb(v) + s (sczp (v) 9 @$I~3) dx, (100) 
Wl 

for every v = (ai - 23&213,I72 - x3&v3,v3) E VKL, where 

T= 

Q= 
H= 

F” = 

F’ = 

II is the projector from lE onto MlvlI-’ CB MM2, 

- (IIRII)-l IIR, 

(Id+ ‘T)R(Id+T), 

(T - (Id + ‘T) R (WUl)-‘) P,-1 h, 

’ 
SC -1 

H - QPLO (4vm)),,l,2) dm 

J’( ( 
-32 

-1 
H - Qp1.0 (ea(ed),,,,2)) dm, 

Q PP a/3_,6 and F& are the components of QPfi and FP on IKO. 

REMARKS. 

(9 

(ii) 

This model is in the same form as an elastic multilayered thin plate model. The electrical 
field is not an unknown of the problem. The stiffness tensor (Q*fl)a,p=i,2 is affected 
by the piezoelectricity and permitivity coefficients. The forces (F”, F1) result from the 
mechanical forces and from the electrical sources as well. 
In practice, this sort of boundary condition seems difficult to realize. In general, the 
following Dirichlet boundary condition is preferred. 
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4.4.2. Dirichlet boundary conditions 

When Dirichlet condition (28) is applied to I’;, U I’,,, the limit u = (~1 - 2sdi us, ~2 - z3&v3, 
243) E VKL is the unique solution of 

dx, (101) 

for every v = (‘isi - x3dlv3,& - x3&113, ~3) E VKL,, where 

(bt - at) Qa 
a: -b% E 

~QM 
Q21( Q22t 

ai - bi t 
~QM 3QMf 12 

bf-ai f (bc -ad3 Q$ 

forevery<=l,...,N. 

Q $$ and F$ are the components of Qppc and Fd on lK”. The tensors Qa and Q$ are the 
restriction of the tensors QM and Qn/ to the layer number < defined by 

I 4 
Mdx3 ad 4ra,(M) = M - Mp,(M), for any M E IE, 

a6 
II1 is the projector from E onto lb-l, 

II2 the projector from E onto MS2 ~3 (K-’ x (0s)) , 

TN= - (rm-p Im and TM = - (I12RI12)-1 l&R, 

QN =t (Id+TN)R(Id+TN) and QM ct (Id-tTM))R(Id+TM). 

REMARKS. 

(9 

(ii) 

This model is the more classical one (see [1,2]). In general, (P,,,c is taken equal to zero. 
The forces FL and FL are only affected by cpe, the tension between the upper and lower 
inclusion faces. Electronic devices based on operational amplifiers permit us to impose a 
such condition. 
For the open loop control problem, the Dirichlet boundary condition is the more natural 
one. For the design of closed loop control with numerically computed feedback, this 
condition is also the more usual one. 

4.4.3. Mixed boundary conditions 

When mixed condition (29) is applied to I’$,,Ul?&, the limit (u, ~53) = @I--23&u3, &?-x3&3, 

213, L3) E VKL x t is the unique solution of 
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for every V = (?il - x381v3,g2 - 23i32213,v3,23) E VKL x c, where 

11E (103) 
2x 

’ 

GE = (bc - CJ~)~G. 

Qb and Q$ being the restriction of the tensors QM and QN to the layer number < defined 
by (96). 

are the components of Q’lc, Q12c, Q21t, Q22c, and FPc on R”; FiE is the component of F*c on 
IL-‘. 

REMARKS. 

6) 

(ii) 

(iii) 

In this model, the electrical tensions Ls, are unknown. In addition to the electrical sources, 
the effect of the electrical circuit results from the admittance G. 
This model is well suited for the design of dynamic feedback (see [21]). The control 
variable is Ls. 
General electrical circuits include also active components based on operational amplifiers. 
They do not have an admittance (see 1191, for example). Then, the electrical circuits 
considered in this model lead to a particular model of coupling between piezoelectric plate 
and an electrical circuit. 

4.4.4. Boundary conditions coupling the layers 

When mixed condition coupling the layers (31) is applied to I’:, U I’;,, the limit (u&s) = 
(~1 - 234~3, ~2 - 53&u3, u3,L3) E VKL x C is the unique solution of 

(104) 

for every v = (Vi - xsdivs,~s - xs&!us, us, 2;s) E VKL X L, where the notations are defined in 
Section 4.4.3 and x is defined in (58). 

REMARK. The same remarks as for mixed boundary conditions hold. The introduction of a 
coupling between the layers shows that it may be possible (using more general electronical circuits) 
to design a dynamic feedback using the finite difference approximation of $Ls. 
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