Mathl. Comput. Modelling Vol. 26, No. 5, pp. 79-106, 1997
Pergamon Copyright(©1997 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

0895-7177/97 $17.00 + 0.00
PII: S0895-7177(97)00159-3

Models of Elastic Plates with
Piezoelectric Inclusions
Part I: Models without Homogenization

E. CANON AND M. LENCZNER
Université de Franche-Comté
Laboratoire de Calcul Scientifique, Groupe Matériaux Intelligents
16 Route de Gray, 25030 Besangon Cedex, France

(Received and accepted April 1997)

Abstract—In this paper, we present models of elastic plates, dielectric plates, and elastic plates
with piezoelectric inclusions. Single layer plate models and multilayered plate models are presented.
They are studied in view of the active controlled structures design. Various sorts of boundary con-
ditions for the piezoelectric cells are considered. They represent different ways of controlling the
structure: voltage, current, or voltage/current control. The derivation of these models is based on
asymptotic methods.
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1. INTRODUCTION

For more than ten years, the field of Smart Materials has been an area of intensive research.
The first principle of Smart Materials consists of replacing mass by energy. Energy is easier to
carry than material. Smart Materials are equipped with transductors which are transforming
this carriable energy into mechanical energy, and with a system transporting this energy. The
more usual examples are the elastic thin structures (plates, shells, or beams) with piezoelectric
inclusions. The second principle of Smart Materials consists of including a certain form of smart-
ness. With the progress in analogical electronics, one may think that it is now possible to design
distributed analogical electrical circuits included in the structures. The electrical circuit may link
the piezoelectric inclusions and acts as a command.

On the one hand, numerous authors have obtained different models of structures coupling
elastic and piezoelectric materials [1-6]. On the other hand, for fifteen years, classical models of
thin elastic structures have been justified by an asymptotic approach {7-11], for example. The
first goal of this work is to justify some plate models including piezoelectric transductors using
an asymptotic method based on [9,10].

By another way, homogenization techniques {12-15] lead to models of composite materials with
periodic structures. Plates including periodically distributed heterogeneity have been derived
in [8,16-18]. The second goal of this work is to derive models of elastic plates including small
piezoelectric inclusions. This will be done in Part II.

The third goal is the treatment of several boundary conditions for the inclusions. Three classes
of boundary conditions are considered: Dirichlet boundary conditions when the electrical poten-
tial is controlled, Neumann boundary conditions when current is controlled, and mixed boundary
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conditions when the inclusions are connected to an analogical circuit with R-L-C devices. Two
sorts of mixed boundary conditions are considered: the case where the upper and lower surfaces
of each inclusion are connected (but with no connection between inclusions) and the case where
the circuit links several inclusions. In our models, an inclusion may be connected only with its
direct neighbours. These neighbours can be in the in-plane (considered only in Part IT) or in the
out-plane direction. This leads to nonlocal boundary conditions. In practice, the piezoelectric
faces are covered with a conductive metal. This implies that the tangent electrical field van-
ishes on each metallized face. Then, the electrical potential is constant on such faces. Models
concerning both metallized and nonmetallized faces are derived.

Last, let us point out our technique of models derivation. The approach [10] is based on a
stress-displacement formulation of the elasticity equations. The approach of [9,11] are based
on a displacement formulation. In this paper, we follow the displacement approach concerning
a priori estimates. But the model derivation, which is obtained by eliminating some of the fields,
is done in the space of the gradients of the solutions. It results in some projection operations. This
leads to fully algebraic computations. This procedure simplifies significantly the model derivation
(which otherwise needs rather long formulas). The resulting formulae are especially interesting in
view of numerical computation. They are based on sums, products, inverses of matrices, and on
projection maps. Even for well-known models, our approach leads to appreciable simplifications
in their formulation.

This first part of our work is organized as follows. Section 2 is devoted to the derivation of
the elastic plate model. This model is classical, but the formulation and convergence properties
established for this derivation are used in Section 4. Section 3 is devoted to the derivation of
models of dielectric thin plates with various boundary conditions. In Section 4, models of elastic
thin plates with piezoelectric inclusions are derived. The proofs in Section 4 are based on the
results of Sections 2 and 3. For the sake of clarity, we choose to present them only for single
layered plates. The models of multilayered plates are stated. Their proofs are not reported, but
they are very similar to those of the single layered plate models. Discussion of models is done on
the multilayered case because in practice they are the most often considered.

Even if some models of Sections 2 and 3 are not new, we present them for two reasons. The
first one is, as we said before, that the difficulties in the proofs of Section 4 (due to notations)
become simple to understand after the reading of Sections 2 and 3. The second reason is that
the presentation with the same formalism of all these models allows easy comparisons.

2. THE ELASTIC THIN PLATE MODEL
2.1. The Single Layered Plate Model

2.1.1. Statement of the three-dimensional plate geometry and equations

First, we introduce the notations for geometry and equations relative to thin elastic plates.
They are taken from [9]. The plate is represented by a cylindrical domain Q% = wx] — a,al,
where w is the mean section of the plate, its boundary is Jw.

e The thickness of the plate is equal to 2a and a is considered as a small parameter which
is intended to tend to zero.

e 1% = (zf,2%, %) is the current point in Q¢, (z{,24) € w, and z§ €] — a,qaf.

e The lateral boundary I'* = dwX | — a, a] of N is divided into two parts I'§ = o x ] — a,a[
and I'Y = 71X ] — a,a[ such that meas{-) # 0.

e I'** and I'*~ represent, respectively, the upper and the lower faces of the plate ['** =
reture-.

e The stiffness tensor R = (Ryjkt)ijk.i=1,..3 € (LZ(02%))8! is assumed to be independent
of z3 and verifies the following symmetry:

Rijkl = Rklij = Rjikla Viaj’ kal =1,...,3, (1)
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and the ellipticity property:
Ri;juKij K > CKJ; v (Kij)

2 3 € R® such that K;; = K, (2)

5=1,..,
where C is a positive constant. In all the paper, the Einstein convention of summation on
repeated indexes is used, with summation from one to three for Latin indexes and from
one to two for Greek indexes.

e The volume forces are denoted by f2 = (f%);=1,..3 € (L%(Q®))3. Surface forces g® =
(92)i=1,...3 € L3(T'** UT?) are applied on ['** UT¢. The plate is clamped on I'g.

e The mechanical displacements are denoted by u® = (u;);=1,...3. The linear strains asso-
ciated with a field of displacements v = (v;)i=1,...,3 are denoted by s;;(v) = (1/2)(8,v; +
Ojv;). Here, §; denotes the derivation in the direction z;. The mechanical stress is
o® = (0'%)i,j=1'_..,3. The linear elasticity equations are given by the Hooke law, the equi-
librium equations and the boundary conditions

—09j07; = i in 4, ogni =g; on I'TU r**, and u®=0onTg. (3)

2.1.2. Scaling and statement of the theorem

In order to reformulate (3) on the reference domain 2 = wx ] —1,1[, we use the transforma-

tion Fe:
Q% — 0

a
. 1
x% - F* (x*) =x = (21,22, %3) = (:v‘l‘,xg, Pt x§> .

The geometric characteristics of 2 are deduced from those of 2* with the transformation F*. The
notations relative to £ are the same as those relative to 2% except that the index a is removed.
The following scaling on volume forces, surface forces, and displacements is classical [9]:

U (x) = (uf (x*),uj (x*), aug (x*)) in Q,

(4)

o~ a a
0 = (0509, 20D
a a 5
’g‘a (X) = (gfll (xa)agl (xa),g_S__Elx_)_> on Flv ( )
~a 1 o o 2 (x@
800 = 2 (68 )01 ) B .
a a
The forces are assumed to satisfy
o 2 2
@ <
L2(Q)3 +118% I Z2r,ur2)s < € (6)

f*—fin (L2(§2))3 weak and g*—gin (L?(T1U I‘i))3 weak,

when a vanishes. Here £ and 'gi‘m are independent of x3 (this assumption is done in order to
obtain a simpler strong formulation of the plate model). It can easily be released.
For every v € (H(Q))3, the functions (K% )i j=1,....3 are defined by

Koo =sap(),  Kialv) = KSa(¥) = =saalv),  K5(¥) = =5 ssa(v).

Let K*(v) = (K%(V))ij=1...3 be decomposed as K*(v) = K°(v) + (1/a)K~'(v) + (1/a?)
K~2(v), which defines the operators K°, K=, K~2. The admissible Love-Kirchhoff displace-

ments space is
VkL = {u € Vag; K—l(u) = K‘Z(u) = 0}

= {u = (Uy — 2301u3, Uz — T302u3,u3) € Vaq, (7)

where (To),—; 2 € (Hl(w))2 and uz € H2(w)} :
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Define a format on the fields of (L2(Q))” by

{((Kap)ap=t...ts (Kad)ary,..2 - Kas) € (P(@))5 Kiz = K} ®)

Then, define K° K~!, K~2, and K, the subspaces of (L?())” stored accordingly with the
format (8)
K® = {(Kap(V)a,p=12,0,0); v € VkL},

K™= {(0, (Ka3)a=l,2a0); Koz € (L2(Q))2} ’

) R )
K™= {(01 0; K33); K33 S L (Q)}) and
K=K'¢oK'eoK2
REMARK. Each element of K° is associated with a unique element of V.
The stiffness tensor R is stored in a format compatible with K:
(Raﬁ‘w)a,g,%a:l,z (2Raﬂ‘73)a,5,7=1,2 (Raﬂ33)a,ﬂ=1,2
R= (2Ra3‘75)a,7,6=1,2 (4Ra373)a,—y=1,2 (2Ra333)a=1,2 . (10)
(R33v6).y 5=1,2 (2R3343).=1 2 R3ass
Let us denote by II the projector from (L?(£2))7 to K~! @ K~2. Remark that *IT = II. Let
T=-(ORI)™'OR and Q= (Id+'T)R(Id+T). (11)

Note that (1) and (2) guarantee that IIRII is invertible on K~ @ K2,

Define last Q“ le ) Q Q
(Q” Q""") = /_1 (—zaq 22Q ) 4z3.

THEOREM 2.1. Assume that (1), (2), and (6) hold. Then the sequence (i*),~¢ associated with
the weak solutions (u®),>o of (3) by formulae (5) converges weakly in H'(Q) to the unique weak
solution u € Vi, of

+1
—0p (Qalsy55+6 () + Qabys075u3) = | fadts +0a(1) + ga(-1) in @,
2 21 — 22 52 _ + P d (12)
aaﬂ (Qaﬂ'y&s‘ﬁs (u) + QaB’yﬁ ‘76“3) = . (z30a fo + f3) dx3
+ (aaga) (1) ~ (0aga) (_1) + 93(1) + 93(_1) inw,
with the following boundary conditions:
+1
(Qlh 55+ (W) + Q1%.,5025u3) ng = / | Y dz3 on 71,
7] _ —
= 57 (@856 (T) + Qars075u) MaTs) = Ba (Qapyesvs (T) + Qapysdysus) mg
1
a
= / 3 (g.7)z3 + z3 (f.n) dzg — (g.n) (+1) + (g.n) (1) on 71, (13)
-1

1

(Q?,},.,&s.,a (@) + Qg"ﬂw&f&u,g) Mang = — / . g.nz3drs on v,

Ous
on

Ty =g =uz = =0 on 7,

where n and T denote the normal and tangent vectors to the boundary of w.
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REMARK. Since the coeflicients R;;; are independent of x3 and since the plate has a single layer
( f_ll r3dz3 = 0), the coefficients Q' and Q2! vanish.

2.1.3. Proof of Theorem 2.1

In the subsequence of this proof, the hats =~ are suppressed on the functions defined on the
reference domain ). This simplification will be done in the proof of every subsequent theorem,
and this will not be repeated. The variational formulation of (3) is

8 = {ve (#? (Q“))S; v=0on 1"3},

/ Rijrkisk (u?) 835 (v) dx® =
ae Qe

Vv € V5, where u® € V.

fludx® + / gt v; ds®, (14)

reurex

The application of the scaling (5) and the choice of test functions of the form (v;(x), va(x),
(vs/a)(x)) in the above variational formulation lead to (remember that the hat has been sup-
pressed on the scaled functions)

Vad = {ve (Hl(ﬂ))a; v =0o0n Po},

/ RijKiy (0*) K (v) dx =1} (v), Vv € Vg, where u® € Vo4, (15)
Q
B = [ frodxs [ gruds
Q I‘;UI‘i

| o (u®) K () de =15 (),
Q
which using (2) and (6) leads to

In particular, for v = u®,

3
P ):¢ (@) 2y < C

i,5=1
Then, the a priori estimate
15 ()] 2y < ©

holds for every i,7 = 1,...,3. From the Korn inequality, for every i,j = 1,...,3, an extracted
subsequence of (K (u®), u®) converges weakly to some (Kj;,u) in L) x (HY())3. Now, we
derive the equations satisfied by the limit K = (Kj;); j=1,....3 € (L2(Q2))°.

In the sequel, the fields denoted by K will be considered on the above format. The variational
formulation (15) above may be rewritten as

/ 'K® (v) RK® (u®) dz = 12 (v).
Q

Multiplying this equation successively by a2, a, and 1, and passing to the limit when a vanishes,
the three variational formulations are obtained:

/ YK 2(v)RK dx = 0, Vv € Vaq,

Q

/ 'K~} (v)RKdx =0, Vv € Vg such that K=2(v) =0, (16)
Q

/ !KO(v)RK dx = I,(v), Vv & Vg suchthat K™2(v) =K }(v) =0,
Q
where for v € Vg,

L(v) = /n (Fo (T — T38av3) + fovg) dx + /

- (9o (To — 230av3) + gavs) ds. (17)
ur

To compute K, we need the following lemmas.
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LEMMA 2.1.
(i) The subspaces of K, {K~%(v); v € Vaq}, {K~1(v); v € Voq and K~2(v) = 0}, are dense
in K~2 and in K™!, respectively.
(i) {K°(v); v € Voq,K72(v) = K~ 1(v) = 0} = K°.
PROOF. For every K3z € D(R), there exists vz = f:s K33(z1,29,t)dt € V,q such that
B3v3 = K33. Thus, D(2) C {K~2(v); v € Vaa} C K~2. It follows that the set {K~2(v);v € Vag}
is dense in K=2. The proof is similar for K~!. Part (ii) is just a restatement of the definition

of KO, |
Applying Lemma 2.1, we deduce from (16) that
/ *K2RKdx =0, VK-?2eK™?,
Q
/ tK~1RK dx = 0, VK leK, (18)
Q

/ *KORKdx =1, (v), VK°eK°.
Q

In the last equation, v € Vi is the unique vector field associated with K° SinceK=K29
K-! ® K°, (18) is equivalent to

/ tKRK dx = 1, (v), (19)
Q

for every Ke K, where v € Vi is the vector field associated with K.

LEMMA 2.2.

(i) The limit K of K%(u®) belongs to K.

(ii) Under assumptions (1) and (2), the variational formulation (19) has a unique solution.
PROOF. The a priori estimate [|K{;(u®)||12(n) < C for every i,j = 1,...,3, implies that the
weak limit u of u® belongs to Vi . Thus, the weak limit K4 of sqg(u®) is equal to s43(u) and
belongs to K°. The functions (1/a)s,3(u®) and (1/a2)s33(u®) converges weakly in L%(Q2) to some
limits K43 and K33, and (0, (K43)a=1,2,0) € K~! and (0,0, K33) € K2. In conclusion, K%(u®)
converges to K = ((sag(0))a,s=1,2, (Ka3)a=1,2, K33) € K. The existence and uniqueness of the
solution of (19) result of the Lax-Milgram lemma and of assumptions (1) and (2). ]

Now, from (18) or (19), we derive the plate model. The sum of the first two equations of (18)
leads to

/ 'KRKdx=0, VKeKloK> (20)
Q

Hence, R K is orthogonal to K~! @ K~2 or equivalently IIRK = 0. Let us introduce the decom-
position K = ITK + K, where K° € K°. Then [TRIIK = —IIRK?, which leads to the expression
of ITK with respect to K : ITIK = TK?°. Using this expression in (19) and choosing K e Kon
the form K = (Id + T) K°, where K° € KO, then

/ 'K'QK%dz = 1,(v), VK°eK°, (21)
Q

where v € Vi, is the field associated with K°. Taking account of that K° and K° € K°, then
K35 = 8ap(T) — 230%5u3 and K5 = 504(V) — 23925v3. Thus, (21) is equivalent to

Q
/n‘(sag (¥) — 2302 5v3) Qapys (S5 (W) — £3025u3) dx = ly(v), for all v € Vxy,

which is in turn equivalent to u = (%; — z30,u3, Ty — 2382us, uz) € Vg and

a2 }!13‘76 Q}!zﬂ'w S5 ()
(saﬂ (V) ’ aaﬁv3) 2 dr = lu(v)’ (22)
. s Q) \ ot

for every v = (T; — zal1vs, T2 — 230203, v3) € Vip. This is the variational formulation of (12)
and (13). 1
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2.2. The Multilayered Plates Model

Notations and assumptions are identical to those in the preceding section except those explicitly
specified.

For multilayered plates, the domain Q° is divided into NV layers (Q§)¢=1,..., N = (wx ]ag, b‘e‘[),
where —a = a§ < b} = ag < b} ---a% < b} = a. Upper and lower faces of the layer number ¢ are
denoted by I‘?“L and FZ‘. The stiffness tensor is supposed to be independent of z3 in each layer.
Its value in the layer £ is denoted by (Rzgjkl)i,j,k,l=1,~-..3- The equilibrium equation (3) holds in
each layer. Continuity equations are written between the layers

(u;’)rz = (u;-‘)rngl and (0';~‘]-.1LJ-)[,£.,Jr = - ("?J""J')rg;l’ foré¢ =1,...,N —1, (23)

where n = (n;);=1,.,3 represents the vector in the normal direction of BQg. The layer €2 scaled
by (4) is Q¢ = (wx Jag, be[), where a¢ and b¢ are defined by a; = a~'a¢ and b = a~'b.

THEOREM 2.2. Under assumptions (1), (2), and (6), the sequence of weak solutions to (3)
and (23) scaled by formula (5) converges weakly towards the unique weak solution of equa-
tions (12) and (13).

PRroOF. The variational formulation (14) still holds. The proof is the same as the proof of
Theorem 2.1, but, since R is different in each layer, the coefficients @' and Q2! do not vanish

anymore.

11 12
(ii) From a practical point of view, the computation of the stiffness tensor (g;’{’“ g;’f”é ) can
afyé ¥apvé
be carried out independently in each layer. The tensor R is constant in each layer

R = (Rg)gﬂ,_u,N = (2Ri376) iy 5=12 (4R‘E"373)a,«,=1,2 (2R2333> as1.2

Risos) (2RS5:) R§
( 33v8 ) so12 3393 ) 1 9 3333 ¢=1,...,N

Let us denote by IT¢ the restriction of IT to (L2(R%))7, T¢ = —(I¢RME) IR, and QF =
(Id + 'TE)RE(Id + T¢). Then,

11 12 N b 13 _ 13

( aByé uﬁ’y&) ZZ/E ( Qs stQaaqs) dzs
21 22 ’
afyé afBy6 ag ‘5133Q£ x%Qiﬁ-ys

£€=1 afBvy6

3. THE DIELECTRIC PLATE MODELS
3.1. Statement of the Problem

3.1.1. The plate geometry

The geometry of single and multilayered plates has already been defined in Sections 2.1 and 2.2.
Here, the same notations are used. In addition, the domain Q% is divided into two parts ¢
and 2. They are, respectively, filled up with a dielectric and an elastic material. These two
subdomains are cylindrical: Q¢ = wyx ] —a,a| and Qf = wyx | —a,a[, @, Uws, being a partition
of w, w; CC w.

First, consider the single layer case. The lateral, upper and lower boundaries of the inclu-
sions ¢ are denoted by I'%,. = Yincx | — a,a{, [%E, and T'{;. Index inc on geometrical elements
refers to inclusions.

The dielectrical domain w; is divided into several simply connected subdomains which are
called inclusions. The inclusions are indexed by M = (i1,i3) € Z, where T represents a set of
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couple of integer indexes. The restriction of a function to an inclusion M is indexed by M. For
a function f € LY(T'%t) and M € Z, (f)pm represents the mean value of f on the upper face of
inclusion M, and (f) represents the function defined on Fﬁ;t such that its restriction to the upper
face of the inclusion M is (f) .

It has to be mentioned that mechanical effects and electrical effects are discoupled. Then, the
electrical phenomena can be studied in Qf independently of the mechanical phenomena occurring
in Q. Except in the case of the boundary condition which couples the different inclusions, each
inclusion can be treated independently. However, the problem is treated with several inclusions

in view of the derivation of the piezoelectric plate models in Section 4.

3.1.2. Equations
The electrical potential ¢ is governed by the equations

D} = cije; (p*) and —9;Df =0in Of, (24)

where the components of the electrical field (e;(¢%))i=1,...,3 are the derivative of p* with respect
to (Ti)i=1,...,3, the field (D;)i=1,... 3 represents the electrical displacement, and ¢ = (ci;)i,j=1,....3 €
(L*°(€2;1))? represents the tensor of permitivity. It is supposed to be constant in the thickness of
the plate and strictly elliptic. It means that there exists a constant C > 0 such that

3
> cymn; = Clnll®, Vo= (m)iz1,..3 € R (25)
i,j=1

Subsequently, C represents a constant independent of a. The boundary conditions on the lateral

faces are
D*n=~h%onT{,, with ”ha”%’(l‘i‘nc) <C, for every a > 0, (26)

where (h®), is a given sequence of functions.

3.1.3. Boundary conditions on the upper and lower faces

Three types of boundary conditions are considered on the upper and lower faces I'** and I'®~

nc inc*
In practice, each of the upper and lower faces of a piezoelectric patch are covered with a conductive
film. Then, the electrical potential is constant on each of these faces. If an electrical circuit is
linked to one of these faces, the electrical displacement of the charges flowing in this circuit is
equal to (D%.n) . For each boundary condition described below, two cases are distinguished: the
case where the lower and upper faces of the piezoelectric patches are covered with a conductive
film and the case where they are not. For the sake of simplicity, we assume that, in each model,

every face is metallized or every face is not metallized. The functional space
H! (Q%) = {z/; € H' (29); Ypqyre+ 18 constant for every M € Z, if the face M is metallized}

is of constant use in the sequel.

Now, we define the three sorts of boundary conditions on I'} UT'%~. For each of them, there
are two equations. In the three cases, the electrical potential is imposed on the lower face I';;_.
This leads to the Dirichlet condition. Then, the boundary conditions differ only on I'l~. The

inc*
names of the boundary conditions refers, therefore, to the condition on I'%}.

e Neumann boundary condition:

¢*=¢% onTE: and D%n=h%onlY, for nonmetallized faces,
¢*=¢% onT%- and (D%n)=h®on T, for metallized faces, (27)

with ||<p;‘n||"}{1(m:) + ||h“”i,(r;,nt) <C, for every a > 0,
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where h® and ¢4, are given functions. If the faces are metallized, h® and ¢, are constant
on each inclusion.
e Dirichlet boundary condition:

©* =% +apon T  and % = % —ap® on e

mnc inc’

. (28)
with [l + 1VA9E] g2y + 198l Ly S €, for every a >0,

where 2, and ¢ are given functions. If the faces are metallized, then %, and ¢% are
constant on each inclusion.

e Mixed boundary conditions: if the upper and lower faces of each inclusion are linked by an
electric circuit of admittance G@, and if the faces are metallized, then the current which

flows out from the upper face of each inclusion is Ip; = ——%(D“.n) M, where % represents

the time derivative. If there is a source h® of current, the equation of the circuit is then

Iy = —%(D“.n)M = G°%%s + h°, where T} = ppr — cpfr,,_. Since this paper does not
inc

treat the evolution problem, we consider a stationary version of this condition

*=¢2 onlf and (D%n)y = G°%Yy, for every M € T for metallized faces,

inc

¢* =¢n on 50 and D%nypet = G%°, for nonmetallized faces, (29)

with ”‘pgﬂn?f‘(l‘ﬂfc) + ”ha||i2(l‘i‘..t) <C, for every a > 0,

where h® and @2, are given functions. If the faces are metallized, h* and %, are constant
on each inclusion.

3.1.4. Multilayered plates

Let us consider multilayered plates. The description of the domain Q% has been done in
Section 2.2. In addition, the restriction of Qf to the layer £ is denoted by Qf, = wiex ]ag, bg[.

The lateral, lower, and upper boundaries of inclusions are I'fy, = UL %, Tine = UYL Th,,
and T¢+ = Ué\’:lFi‘nte, where I'f, ¢, F‘i’nte, and I‘;‘:(':g are their restrictions to the layer £.

The domains wy¢ may be different in each layer. A consequence is that dielectric inclusions are
not necessarily superposed. In particular, some layers may be without inclusion. In this case,
wi¢ is void. The restriction to the layer number £ of each function defined on Qf is indexed by &.
The set Z of inclusions indexes for the layer number £ depends on £. It is, therefore, denoted
by Z¢. The inclusions are indexed by M, where M; € I,.

For every f € L} (I‘;‘nt , {f) M, is the mean value of f in the cell M. (f) is the function defined

on I'%F such that its restriction to the inclusion Mg is equal to (f) -

The equations satisfied by the electrical potential are
Dg; = ceijej (%) and - 8;D¢; =0 in Y, for£6=1,...,N. (30)

On the lateral, upper, and lower faces of the inclusions, the boundary conditions are the same
as in the single layer case. They have to be considered independently for each layer. They are
written as in (26)-(29).

A fourth condition which couples consecutive layers is considered. Since this kind of condition
uses the finite difference approximation of (93€;(¢®))i=1,...,3, it may be useful when an approx-
imate of the derivatives (83€;(¢?))i=1,...,3 is needed for the controller design (for example, for
the design of a plate reflecting or absorbing acoustic waves). For this condition, every wj¢ for
¢ =1,...,N are identical. Upper and lower faces of each inclusion are linked by an electrical
circuit characterized by its admittance G¢, and upper faces of consecutive inclusions (in the
thickness direction) are linked by another electrical circuit of admittance G§. If there is a cur-
rent source in each layer, the Kirchhoff current and voltage laws {see [19]) lead to the boundary
conditions
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©* =2 on 'l for metallized and nonmetallized faces,

inc?
— (D%.n) pre = GiPue

— G (Phtes1 — 20 + Phre—1) + e, foré6=2,...,N—1,
— (D%n) ;= GiPin

— G5 (P2 — Pan1) + b1,
—({D%n)p N = G1PlN

- G5 (-Pyn + Phn-1) + h%, for metallized faces,
—Da'nlrz\tf = G‘ilag (31)
— G5 (P81 — 29¢ + Pe_1) + h¢, foré=2,...,N -1,

~D%.njper =GP}
—G3 (P2 —91) + hiy”
_Da'anntN =GiPn
— G} (-P% +Ph-1) + b%, for nonmetallized faces,

with ||¢%, HHI(F;‘:) + "ha””(f‘&t) < C, foreverya >0,

where % = ome — LPFF?.,Z&’ and h®* and %, are given functions. If the faces are metallized,

h* and @2 are constant on the restriction of 't and 'l to each inclusion. In the following

sections, the models relative to these boundary conditions are derived.

3.2. Neumann Conditions

The scaling on h%, ©%, and ¢§, is

7*(@) =" (z°), forzeqs,
h%(z) = h* (2%),  forz € TincUT},, and (32)
pe(z) = 9% (z%), forz€Th,
Hypotheses (273) and (262) then become
“(‘p"‘“""(P QT H L2(TineUT},) — (33)
In addition, we assume that
@% — omin H'(T5),  h® = hia in L*(Tinc),  and A% — hin L2(TH,).  (34)

‘We denote also by h and ¢, the functions defined in €3, independent of x3 and such that
h = h[l‘;',"c and Pm = ‘pmlrinc
THEOREM 3.1. Under assumptions (25), (262), (273), and (34),
(i) the weak solution @* of (24), (26), and (2712), scaled by formula (32) converges weakly
towards ¢ = @, in H(Qy),
(ii) i’f—a converges weakly in L2(;) towards L3 = (h — c3a€a(¥m))/c33-

PROOF. The variational formulation related to (24), (26), and (27;,2) is
Ui (pm) = {$ € He (O0); ¥ = pron I{},
/ Cij€;j ((pa) e;(P)dz = / h* Y ds, (35)
af facUl e
for every ¥ € ¥54(0), with ¢% € T2, (%) .
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For every ¢ € H}(Q,), the vectors L2(¥) = (L¢(¥))i=1,...3, LO(¥), L™1(¢) are defined by

L) = () ea(¥).  ealw)) =L°0) + 1L,
The scaling (32) applied to the variational formulation (35) leads to ¢® € ¥aq(42,) and
Tad (¢h) = {¥ € Hi(®1); ¥ = o, on T},
[ e iws= [ mvds 13w, Vo e vao)

Cinc

(36)

where

AR

he ds = / he L8 () da.

inc 231

LEMMA 3.1. If o2, € HY ;) satisfies ||¢2 || HrL) S C uniformly in a, then there exists an
extension @* € H} () such that 3* = o2, on 'ty and ||L®(3%)|l(z2(a,)) < C.

Proor. Consider the function $® = ¢f, constant in the thickness of the plate. Then L§($*) =0
and L&(@*) = L&(p2,), for & = 1,2. Thus, HLG((ﬁa)“(Lz(QI))a < 2”(p?"'“H1(P|+nc)' ||

Let us state % = ¢* — $*. Then @* € ¥,4(0) is the solution of
[ ests @ ziwyde - [ els @) 12w as
1 1

+ h*pds + 15 (L3(¥)), V¥ € Waq(0).

Tinc

State ¢ = %%, using (25), (33), (35) and Lemma 3.1, then

IL® @* W2y <€ and L (¢*)l 12y < C-
(L2() (

It follows that for each i = 1,...,3, there exists an extracted subsequence of LZ%(®) which
converges weakly towards a limit L; in L?(2;). From the Poincaré inequality, up to the extraction
of another subsequence, the function $* and ¢® converges weakly in H*(2;). The limit of ©® is
denoted by ¢, then Ly = eq(p). But when a — 0, e3(¢®) — 0, then ez(¢) = 0, ¢ = vm, and
L, = ea(9m). This proves Part (i).

The space (L%(£2;))? is decomposed on the form ((Lq)a=12, L3), where L; € L?(Q;). Let us
define the subspaces of (L?(2;))3:

~1={(0,Ls); L3 € L* ()} . (37)
The following lemma is trivial.
LEMMA 3.2.

(i) The space {L = L~1(¢); ¢ € ¥,q(0)} is dense in L~1.
(i) L = (Li)i=1,...3 € L7 4+ ((€x(¢m))a=1,2,0).

Consider C, the permitivity matrix stored on a format compatible with the above decomposition

of (L2(S1))3: o -
= [ \Cablap=12 \Cadla=12)
¢ ( (c3a)q=1,2 €33 )

After multiplication by a and 1, successively, we take the limit of (35) when a vanishes. This
leads to

/ 'L~ (y) CLdzx =/ hy ds Y1 € Taq(0),
o ihe (38)

/ 'LO(y) CLdx = / hiat ¥ ds, for every 9 € ¥,4(0) such that L™!(y) = 0.
Q1
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In the second equation, the fact that ¢ € ¥,4(0) and L~1(¢)) = 0 leads to % = 0. Thus, only the
first equation plays a role in the model. For 1 € ¥,4(0), wll‘.* = f_1 , 83 dzx3, using Lemma 3.1,
it follows that the first equation of (38) is equivalent to

/Q1 tLCLdz = I, (f,g) , for every L = (0,0, f,;;) €L, (39)

where )
Iy <L3) =/F¢mh/_1L3dx3ds= nth?,d:c.

From the Lax-Milgram lemma and Lemma 3.2 (ii), this variational problem has a unique solution
L € L '&((e,(¢m))a=1,2,0). This formulation is equivalent to C3;L; = h. In conclusion using
Part (i),

h — czata(Pm)

@Y=y, and Ly=—"—"-""""Iinw.
C33
This completes the plate model. 1
3.3. Dirichlet Conditions
Let us scale the boundary conditions,

ho(z) = h%(z%), for z € Dinc, (@0)

Pr(x) =t (z*) and @(z) = o2 (z%), for every = € wy.
Hypotheses (282) and (263) then become

~a (]2 2 ~al|?
[[2A ”L’(ch) + ”\/E‘Pc ”;p/z(p;;c) + ||%I|Hl(p;‘c) +(|p* L2(Fyne) <C. (41)

In addition, we assume that
R L (T, @2 — omin H'(T;.), and h® — hyy in L2 (Cine) - (42)

THEOREM 3.2. Under assumptions (25), (262), (28;), and (42),
(i) the solution §* of (24), (261), and (28,) scaled by formula (40) converges weakly towards

¢ = ¢m in H'(SY),
(ii) J—‘ﬁ— converges weakly in L?(Q;) towards g..

First, let us prove the following lemma.

LEMMA 3.3. Let 2%, and 2% be two functions defined on w1 such that
”‘pm”Hl(wl) + ”\/_‘pc”HUZ(w!) < C (43)
then there exists 3* € H(%,) such that
@ =g +apt onTH,, ¢ =95 —api onTi,, and ||L®($%)|12¢q,) < C- (44)

REMARK. If the faces are metallized, since $® is constant on each inclusion, L*($%) = 0.

PROOF. Define 3* by ¢°(x1,z2,Z3) = @& (21, Z2) + @2(21, T2, £3), where @3(z1, Z2,23) = @o(24,
z9, (z3/@)), @ being defined on NF by

~A@.=0in N, V@.n=00onTh. G =aptonlit, and @ = —ap? on L.
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The solution ¢, of the above problem is the unique solution of the minimization problem,
infy fQ‘{ |Vy|? dz, where v € HY(Q¢), ¥ = ap? on T2 and ¥ = —ap? on ['®7. Then, by

inc’

definition, [|@c2, ooy = [V@e|? or equivalently |V@.|? = 2a||p2||%, /3(wy)- APPlication
of the scaling then leads to |L*(@c)ll7 12, < Ca||<pg||§ﬂ,g(wl). Thus, [L*(@%) 17120,y <
C(a“‘Pz”iﬂN(wl) + H(p?n“%ﬂ(wl))' 1

PrOOF OF THEOREM 3.2. The variational formulation of (24), (26,), and (28;) scaled by for-
mula (40) is

Wad (05, 02) = {1[) € Hcl(Ql); P = % + ap? on F$C and ¥ = ¢, — ap? on I‘;]C} ,
¢" € Wog (P, ¥2) » (45)
[ esesteewide= [ hwds, Vi€ Ba(0,0)
0

a
r‘lnc

Define 7% by 7* = ¢® — $*. Then §* € ¥.4(0) satisfies

/Q ci; LG (B°) Li(¥) dz = _/n ci; L (¢%) L7 (¢) dx + h® ds, for every ¢ € ,q4(0).
1 1

Tinc

Choosing 9 = %, using (25),(412) leads to || L$(%°)||2(n,) < C, and thus to | L (0%)||L2¢q,) < C,
fori =1,...,3. Hence, there exists a subsequence of L®(¢*) which converges weakly towards L €
(L?(£21))3. As in the case of Neumann conditions, the function ¢® converges weakly towards ¢m
in H'(€;). This is Point (i).

Define the operators M, N by

1
ML) = % / Ldzs, for every L € (Ll(Ql))3 and N =1Id — M. (46)
-1
LEMMA 3.4. The space {L = L™} (¢); ¢ € ¥,4(0,0)} is dense in N'(L™!).

The proof is straightforward.
LEMMA 3.5. The limit L € N(L™!) + ((ea(¥m))a=1,2, Pc)-
PIROOF. Because f_ll Lidzs = limg—o f_ll (1/a)83¢* dzs = limg_,02¢% = 2¢,, this means that
f_l(L3 — @c)dzs = 0, then L—((ea(®m))a=1,2,¢c) € N(L71). 1

Passing to the limit in (45) and applying Lemma 3.4, the variational formulation satisfied
by L is

/ ‘LCLdz =0, for every L = (O,Eg) eL™L 47)
1951

From the Lax-Milgram lemma, this variational problem has a unique solution. This formulation is
equivalent to 83(casLa + c3a€a(Pm)) = 0 in ;. Then Lj is independent of z3. From Lemma 3.5,
L3 = .. This proves Point (ii). [

3.4. Mixed Conditions
The scaling on the data is {32) and
G = aG*®, (48)
where G is a positive constant independent of a.

THEOREM 3.3. Under assumptions (25), (262), (293), and (34),

(i) the weak solution @* of (24), (29.,2), and (26,) scaled by formulae (32),(48) converges
weakly towards ¢ = pm in H' (), R
(ii) 3—{?— converges weakly in L2(Q;) towards L3 = (c33 + 2G) " (h — canea(pm))-
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PROOF. The variational formulation in 2} verified by % € W2;(p%) solution of (24), (291,2),
and (26,) is

Pade (pm) = {¥ € H} (); ¥ = om on i },
/ cijej (p*)ei(y)dz® + [ GPypds = h® 4 ds + h® 4 ds,
at

wh I"‘ Ire

inc inc

for every ¢ € ¥2,(0).

Consider the extension ¢® € H!(9;) of the boundary condition 2, defined in Lemma 3.1, the
decomposition of the solution in the form ¢® = ¢* + P and the operator M defined in (46).
After application of the scaling (32),(48), the variational formulation satisfied by @ € W,4(0) is

Taa(0) = {y € H{(Q); ¥y =0o0nT; },

[ esls @) Lo+ [ 26 M3 @) L39) da (49)
(231 192
= [ revdsr iz s - /Q e L8 () LE@W) dz, Vb € Uaa(0),

where I (L§(%)) is defined in (36). Choose ¢ = p°, then
| e @) m @) e+ [ 2em @) ds
= [ wrasrins@) - [ els @)L @) da.
inc 1

We deduce that [|M(L§(T*)llL2(q,) + IL(@*)li(z2(q,))s < C. Then, there exists an extracted
subsequence of L*(¢®) which converges weakly to some L € (L%(£2;))3. For the same reason that
in Section 3.2, ¢® converges to ¢ weakly in H'(Q;), Lo = ea(m), and the electrical field L3
is independent of z3. L € L™! & ((eq(¢m))a=1,2,0). The derivation of the model is similar to
that in the case of Neumann boundary conditions. From Lemma 3.2(i), the resulting variational
formulation is

/ *LCLdzx + / 2G Ly M(L3)ds =1, (Ea) ,  forevery L e L7, (50)
Ql nl

where l,(L3) is defined in (39). We used the fact that M(L§(¢%)) = M(LE(@*)) + M(LE(F*))
and M(L§(%*)) = 0. From the Lax-Milgram lemma, this variational problem has a unique
solution. The equation (50) leads to C3;L; + 2GM(L3) = h. Thus,

L3 = (caz + 2G) ! (h — caqalipm)) in w;. (51)
This is Point (ii). 1

3.5. Multilayered Plates

Since the models for multilayered plates are derived in the same way as those of single layer
plates, only the cases of Neumann conditions and conditions coupling the layers are detailed.
Models relative to other conditions may be derived by a similar method. The space L~! is
defined in (37). The operators M and N are defined by their restriction on each layer Qy; :
Mia, (L) = M¢(L) = (1/b¢ — ag) [,* Ldzs and Njg, (L) = N¢(L) = L — M¢(L), for any
L € (L*()).
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3.5.1. Neumann boundary conditions

The scaling is,

Ag(x) = g(za)’ for z € Fi.;cf U FincE, (52)
Prre(T) = P (), for z € T e for every £ =1,...,N.
The scaled data satisfy
~ 2 -2
a a oa _
€l L2y ell e + H(pm«E"Hl(r;,cE) <C, for every £ =1,...,N,
k¢ — he in L? (P?;ce) . h§ = hgar in L? (Tincg) , (53)

(ﬁfné—wpmginHl(F‘ ), for every € = 1,...,N.

inc§
THEOREM 3.4. Under assumptions (53) and (54),
(i) the solution $* of (30) and (26) with Neumann boundary conditions on Tg/", scaled by
formula (52) converges weakly towards ¢ = pm in H I(Ué‘;lﬂlg), and

(ii) &?mm converges weakly in L?(Q¢) towards La¢ = (he — C3ag€a(me))/case-

PROOF. @¢ being the extension of ¢, defined in each layer as in Lemma 3.1, letting P} =
©f — §¢, thenp® € U,4(0) is the solution of the variational formulation

Taalpm) = {¥ € HE (UNer1¢) 5 ¥ = Pl on Tinee |
N N
S [ ety @ L= =Y. [ euls (50 Lt do (54
e=1 19373 £=1 ng

N N
1
+Z/F hgwds+22/r+ gpds, Vi€ Vau(0).
g=1"linct £=1

Inc§

For every ¢ € H}(Ué‘;lﬂlg), the vector L2(y) is defined in Ug__lﬂlg by Le(¢) = (er(¥),
ea(¥), (1/a)es(®)) = LO(¥) + (1/a)L1(¥). The choice ¥y = P* in (54) implies that
L@ z2 oy, mmen® < C, and therefore, that [L*(¢?)ll(z2ui 02 < C. Then, for each
i = 1,...,3, there exists a subsequence (LZ(¢%))qa>0 weakly converging towards a limit L;
in L?(€4). As in Section 3.2, the sequence ¢ converges in H'(U}L,§i¢) towards ¢, and
L € L' @ ((ea(m))a=1,2,0). The model related to a single layer plate is thus valid for each
layer

h¢ — c3agea(Pme)

€33¢

3.5.2. Boundary conditions coupling the layers

Ye = Pme¢ and Lz = in wie, for every £ =1,...,N. (55) 1

The scaling of the admittances is

G, = aG$ and Ga = oG, (56)
G, and @2 being positive constants. Define two N x N matrices,
[ T1 (@2 + él) —~Gara 0 0 . . 0
—521‘1 Tg (6'2 + @1) -—521”3 0 . . 0
A= 0 ~Garg . .o . . . (57
. I L ~Barn
0 0 0 00 ~Grna (Gt G)

where ¢ = b¢ — a¢ and I the identity matrix.
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THEOREM 3.5. Under assumptions (53) and (25),
(i) the weak solution §* of (30), (31), and (26) scaled by formulae (52) and (56) converges
weakly towards o, in H' (UYL Qu¢),
(i) 22 converges weakly in LU 1¢) towards Lae = Z,I;,=1((C3SI + A) VYen(—C3an€a
(emn) + hy) foré=1,...,N.

PROOF. After application of the scaling, suppression of the hats on scaled functions and con-
struction of the extension @* of the Dirichlet boundary conditions on [ince as in Section 3.5.1,
the variational formulation is similar to (54) with the additional bilinear form a(L$(%*), L(%))

on the left-hand side, where

N N-1
_ 2 —
a(p,q) = ; /w | TIGMDIM(@) do + ; / CalrenMen®) = reMe)

X (re+1Me+1(g) —TeMe(g)) ds,  for every p, g € L* ().

The same estimate is obtained as for Neumann boundary conditions. In addition, a(L§(%%),

%(@*)) < C. Then, foreachi = 1,...,3, there exists a subsequence (L¢(¢*)), weakly converging
towards a limit L; in L3(£;). As in Section 3.5.1, the sequence ¢® converges in H I(UQLIQIE)
towards ¢y, and L € L™! @ ((ea(¥m))a=1,2,0), which proves (i). Arguing as in Sections 3.2
and 3.4, the variational formulation of the limit problem is

o, LCLdz +a (L3,1~L3) =1, (1~L3) , for every L= (0,0, flg) eL™!, (59)

where

tp (Ls) = /U ‘o hem (Ls) ds.

From the Lax Milgram lemma, this variational problem has a unique solution L = L~! @
((ea(®m))a=1,2,0). Equation (59) is equivalent to

N

3 (033,, + an) Lap + Csaceo (Pme) = hey,  foré=1,...,N, (60)
n=1
which proves (ii). Point (iii) follows from (i) and (ii). ]

4. THE ELASTIC PLATE WITH PIEZOELECTRIC INCLUSIONS

First, let us consider the single layer plate. Now the inclusions located in 2§ are made of piezo- |
electric material and Q3 contains an elastic material. Let us state the equations of piezoelectricity
in statics. The tensor of piezoelectricity (dij)s,j k=1,...,3 satisfies the symmetries

dijk = dixj, for every i,5,k=1,...,3, (61)

and is assumed not to depend on z3. The tensor (dijk)i jk=1,.,3 vanishes in Q. We assume
that Qf is electrically insulated of Q3 (see condition (643)). Then, the electrical field in 2§ neither
affects the electrical field in Qf nor the mechanical field in ©°. For this reason, the equation
governing the electrical potential is not considered in 5. The strong form of the piezoelectricity
equations results of the expression of the stress tensor and of the electrical displacement vector
(see [20))

03 = Rijrsk (U®) + drijex () in Q% and Dy = —dkijsi; (u?) + criei () in QF,  (62)
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of the elastostatic and electrostatic equations
—0jo5; = f{ inQ* and -06;Df =0in Q. (63)

Subsequently, the permitivity tensor c is considered as a tensor defined on 2% but equal to zero
on £2§. In the previous section, we have shown that the source term k¢ on I', . does not contribute
in the plate models. For simplicity of the derivation, it is therefore taken equal to zero. The

boundary conditions are

ogng = gi on I'FU r*t, u*=0onT§ and D*n=0onT¢,. (64)

The boundary conditions on I'f UT%_ are one of (27)-(29). They lead to different models
considered in the following sections.
Let us consider multilayered plates. The equations (62)—(64) have to be written in each layer Qg

and Q‘IIE:
0f; = Rijkiser (u®) + diijer (9%) in Q¢ and  Df = —dgijsi; (u?) + cries (9°) in Qf,
—0j03; = fi' in Q¢ and -0;Df =0in Qf, (65)

a

ogn; =gf onT§ U r’t, u*=0on I'Ge;, and D%n=0onTI,,

for every £ = 1,...,N. The three tensors R, d, and c are independent of z3 in each layer. The
continuity conditions between the layers are
(u‘i‘)rz = (u‘i‘)x‘;rl and (a;‘j.nj)l,gL = (agf’"j)FE+1 , foré=1,..., N —1. (66)

As for dielectric multilayered plates, the layers are electrically insulated, so there are no continuity
conditions relative to the electrical displacement or to the electrical potential. The boundary
condition on T'i,f, UT =, is one of (27)-(29) or (31).

incé
4.1. Neumann Boundary Conditions
For V = (v,v¥) € (H1(0))® x H(Q), define
1 1 1
Ma(v) = ((saﬂ (v))a,g=1_2 3 E (saS (v))a=1,2 ’ a—2 $33 (V) y (ea(d)))a:l,z ) a e3(¢)) » (67)

which provides a decomposition of a subspace of (L%(2))!°. The tensor R composed of the
stiffness tensor, piezoelectricity tensor, and permitivity tensor is built in a format compatible
with (67):

(Raﬁwﬁ)a,g,-,,s:l,z (2Raﬁv3)a,g,—y=1,2 (Raﬁ33)a,p=1,2 (dwnﬁ)a,g,»,=1,2 (d3a6)aa=1,2

(2Ra376)a,1_5=1,2 (4Ra3+3)g y=1,2 (2Ra333)o=12 (204a3)g4=12  (2d308)azi2

R= (33376)1,(5:1’2 (2R3343)., 21,2 R3333 (dv33)yz1 2 d333
(_d076)a,1,6=1,2 (_2d°"73)a,7=1,2 (~da33)g=1,2 (Car)ay=1,2 (cas)a=1,2
(—d3'y6)7,5=1)2 (_2d373)3‘1=1’2 —da33 (C3‘y)—7=1y2 €33

Now, introduce the spaces
M=M'oMloM2
M° = {M = (K,03) € K® x (L? (91))3},
M?!'={M= (KL eK*!xL'},
M2 = {M = (K,03) € K~2 x (L? (Ql))s} , (68)
L° = {M = (07, 1) € (L2 ()" x {((ea($))azy2,0) ; where ¥ € H(R1), 89 = 0},
E={M=(KL)e (L) x (Z? ()"},
K, K° K™!, K~2, and L™! are defined in (9) and (37).
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The spaces K* and L* being trivially identified to subspaces of E, for every such subspace X of E,
we denote by Px the identification operator
P X —-E

X X 'PxX
such that the restriction of Pxx to X is equal to x, and its other components are null. For
example, for L = (0, Ls) € L, PLL = (0, L). For convenience, since no confusion is possible, we
use in fact the abusive notation Pp-1L3 instead of Pp-1(0, L3). The similar abusive notation is
being used for the other subspaces K*, L.

We also use the following notations:

II and T, are the projector from E onto M~! @ M~2 and onto L.},
T = — (IRI) "' IR,
Q=(Id+'T)R(Id+T),
H = (‘ITH, - (1d + 'T) R(IRM) ™) P-ih,

F =2 (H- QP (ea (Pm))amts) »
Qam,s,Fgﬂ are the components on K° of Q and F.
Vi and [, (v) are defined in (7) and (17).

THEOREM 4.1. Under assumptions (1), (2), (6), (25), (27s), (61), and (3413),
(i) the solution (u®,@*) of (62)—(64), and (27) scaled by formulae (5) and (32) converges
weakly towards (u,¢m) in HY(Q)3 x HY(Q;), where u = (T — z301u3, Uz — T30us,
ug) € Vi, is the unique solution of

2Qap~s 0 S5 (T
/w(sa,g (¥) 8251)3) < . ) (626 (u)) dx =1, (v)+/ $ap (V) Fup dx, (69)

2
§ Qasys 543 w1
for every v = (U1 — £301v3, T2 — 230203, v3) € Vi,
(ii) 5"%1@ converges weakly in L*(Q) towards L3 such that Pp-1(L3) = II;(T(M® + Pro(eq
(‘Pm))a:l,z) + (HRH)—IPL“h)7 where M® = (((Saﬂ(u))a,ﬂ=l,2,0, 0,0, 0)'
PROOF. V2 and W2 (p2) are defined in (14) and (35). The variational formulation of (62)-(64)
and (27) is
ad (Pl) = Vaa X Yaq (¢m) »
/ (Rijrisir (u®) + drijer (0%)) 81 (V) + (—dii;j8i5 (u®) + criei (9°%)) ex () dx
Qa
= fividz + / givids + h%pds,
Qe rgurax A
Y (v,¥) € Wgu(0),  with (u%¢%) € Wi (oh)-

(Recall that the tensors d and c vanish in 3.)
Scaling the solution with (5) and (32), removing the hats on the scaled functions, Vo4 and

¥,4(p%) being defined in (15) and (36), @ being the extension of 2%, defined in Lemma 3.1,
letting §* = % — @, and U® = (0, %) to which this is equivalent, U’ = (u,3°%) € Woq(0) is
the solution of
Wad (#m) = Vad X Yad (Pm)
/ M (V)RM® (T7) dz = 15(v) + 15 (L§(¥)) - / Me(V)RME (0°) da,  (70)
o) o
for every V = (v,9) € W,a(0),
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where I (v) and I3 (L§(1)) are defined in (15) and (36). From (1), (2), (25), and (61), one easily
verifies that there exists C > 0 such that

'M.RM > C|M||2,  for every M € R such that M, = Mj. (71)

Then, letting V. = U" in (70) implies that "Ma(ﬁa)"(LQ(Q))1X(L2(QI))3 < C and |M*®
(UM L2@)y7x 22y < C. Thus, there exists an extracted subsequence of M*(U%) which
converges weakly in (L2(Q))7 x (L3(Q4))® towards a limit M = ((Kag)ag=12, (Ka3)a=1.2, K33,
(La)a=1,2:L3). Application of Korn and Poincaré inequalities leads to the weak convergence
of U towards a limit U = (u, ) in H1(Q)? x H'(Q;). Define the operators M%(V), M~1(V),
and M~2(V) on V = (v, %) € W,4(0) by

M°(V)=(K%(v),03), M YV)=(K}v),L7 ), and M 3(V)=(K %(v),03),(72)

where operators K% K™, K~2 are defined in Section 2.2, L~! is defined in Section 3.2 and
03 = (0,0,0). Multiplication of (70) by a?, a, and 1 successively implies

/ 'M-2(V)RM dz = 0, YV = (v, 1) € Waa(0),
9]
/ M V)RMdz = L, (L31($)), VYV = (v,%) € Waq(0) N Ker (M2), (73)
Q
j 'MO(VYRM dz = L, (v), VYV = (v,9) € Wag(0) N Ker (M™%) N Ker (M™1),
Q

where l,(v) and l,(Lg 1(4)) are defined in (17) and (39). Now, Lemmas 2.1 and 3.2 yield the
following.
LEMMA 4.1. The spaces M~2, M~1, and M? being defined by (68),
(i) the spaces (M~2(V); V € W,q(0)}, (M~1(V); V € W,o4(0) and M~2(V) = 0} are dense,
respectively, in M~2 and M™!, and
(ii) {M®(V); V = (v,9) € W,q(0) and M~%(V) = M~Y(V) = 0} = M°. In particular, for
every M® € MO, there exists V = (v,0) € W,4(0) such that M~2(V) = M~}(V) = 0 and
MO = MO(V).

Lemma 4.1 and (73) imply that
L ‘M~2RMdz =0, for every M™% e M2,
L ‘M- IRMdz = ly (Lg) , for every M~ e M1,
/n TMORM dz = 1, (v), for every M°® € M,
where v is the vector associated with M?. Since M = M~2 & M~! @ M?, this is equivalent to
/Q MRMdz = l,(Es) + Lu(v),  for every M & M. (74)
LEMMA 4.2. The limit M of M®*(U*) belongs to M + Ppo(ea(¥m))a=1,2 and is the unique sol-

ution of (74).

PrOOF. The fact that M € M + Pro(ea{¥m))a=1,2 is shown as K € K in Lemma 2.2 and
L € L7! + Pro{ea{®m))a=1,2 in Section 3.2. Existence and uniqueness of (74) follow from the
Lax-Milgram lemma on the Hilbert space M and of the ellipticity (71) of R. '}
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REMARK. From Lemma 4.2, the limit M = (K, L) satisfies Ly = €a(¢m), Kap = sap(u), and
u is a Love Kirchhoff field: u, = %, — 239,u3.

Now, we simplify as much as possible equation (74). The choice M € M~1@M~2 in (74) leads to
NRM = Pp-1h. Writing M = IIM+M®+Pyo((ea(¥m))a=1,2), where M® € M®, then [IRII M =
Pr-1h — IR(M® + Pro((ea(¥m))a=1,2)) or equivalently IIM = T (M® + Ppo((€a(¥m))a=1,2)) +
(ORII)~'Pp-1h. This gives the expression of M with respect to MO:

M=(1d+T) (M +Pro (Cea (cpm))a=1,2)) + (IIRIT) = Pp-1 A, (75)

Choose M on the form M = (Id + '!‘)1\./10, where M?° € M® in (74). Replacing M by its
expression with respect to M® and Py-1Lz by IL;M = II;(IIM) = II, (Id + T)Mo leads to

/ ‘MO (1d + *T) R (1 +T) (M® + Pos ((eal¢m)as 2) ) + (AR Pp-sh) do
Q
=1, (v) + /ﬂ Y (Pp-1h) I3 TMydz, (76)

or equivalently,

/Q tMOQMP dz = / tMPO (H - QPpo (ea(%n))a:l,z) dz + L (v), (77)

121

for every M € M®, where v is the vector of Vi, associated with M?. Since
M? = Pyo (5ag (V) — 23025v3)a,6=12 and M = Pyo (5,45 (T) — :1:3635113)%6:1’2 ,  (78)
this completes the proof of Point (i). Point (ii) follows directly from (77) and (78). (]

4.2. Dirichlet Boundary Conditions
We use the same notations as in the preceding section excepted that here M~! is defined by
M?'={M=(K,L) eK'xN(L1)}. (79)

This changes the meaning of the preceding definitions of M, II, and IT;. In addition, we need the
operators

1
M(M)=—;—/1Mdz'3, forevery MeM and N =Idy—-M,

IT; = I - T1, the projector from E onto M2 & (K~ x {03}),
Ty = —(IRI) IR and Taq = — (IpRI,) " IR, (80)
Qv = (Id+Ty)R(Id+Tx) and Qp ='(Id+ Tur)R(Id+ Tum),
F=-2'Qum (PM(L-l)‘Pc + Pro (ea(¢m))a=1,2) )
QMoapysy @Napyss Fap are the components on K° of Qum, Q N F,
and the definitions (7) and (17) of Vi1 and I, (v).

THEOREM 4.2, Under assumptions (1), (2), (6), (25), (26), (282), (42), and (61),
(i) the solutions (u%, %) of (62)-(64), and (28) scaled by formulae (5) and (40) converges
weakly towards (u,y.,) in H'(Q)3 x HY(Q,;), where u = (u;—z301u3, U2 — z302us,
ug) € Vi is the unique solution of

2Q Mapys 0 =
[ (sas ), B2 12) 2 (% (")) do
w 0 § QN afvé 6’75 us

=l (v)+ / 8qp (V) Fup dz,
w1
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forAevery v = (U) — z301v3, Vs — x30v3,v3) € Vi1,
(ii) Q:%e_ converges weakly in L%(Q;) towards L3 such that Pp-1(L3) = Pp-1(pc) — z3
H]L-l TN'Pn(o(agﬁuﬂa,ﬂ:l'g.

ProOOF. After scaling and suppression of the hats on scaled functions, if ¢ is given by the
Lemma 3.3, * = ¢* — %, U% = (0,¢%), then U* = (u*,p?) € Wada(0) is solution of the
variational formulation on the scaled domain

Wad (‘Pgm (p‘cl) = Vad X ‘I’ad (‘pfrlnv (p‘cl) )
/ tMe(V)RM® (ﬁ“) dz = 1(v) — / M9 (V)RM® (ﬁa) dz, (81)
Q o
for every V = (v,9¢) € Woq4(0),

where V,q and W,q(p%,¢%) are defined in (14) and (45). Choose V = U" in (81). Tak-
ing into account assumptions (1), (2), (6), (25), (26), (28;), and (61) and Lemma 3.3, then
IM*(U%) || (2(0))7x(L2()* < C. Then, M*(U*?) has the same properties of convergence as in
the case of Neumann conditions. The variational formulation satisfied by U?® = (u%, %) € W,g
(- e) is

/Q ‘M*(V)RM®* (U?) dz = 12(v), for every V = (v, 1) € W,o4(0). (82)
Multiplying successively by a2, a, or 1 and passing in the limit in (82) leads to
/Q ‘M~%(V)RMdz =0, for every V € W,q(0),
/Q ‘M~Y(V)RMdz =0, for every V € Waq(0) N Ker (M%), (83)
/Q "'MY(V)RK dzx = l,(v), for every V = (v,1)) € W,a(0) N Ker (M~2) N Ker (M)

Similarly to Lemma 4.1, using Lemma 3.4, we have the following lemma.
LEMMA 4.3. The spaces M~2, M~!, and MC being defined by (68) and (79), the conclusions of
Lemma 4.1 hold.

Using Lemma 4.3 and M = M° @ M~! @ M2, (83) is equivalent to

/ MRMdgz = L, (v), for every M € M, (84)
Q

where v is the vector associated with M® = Pyo(M). From Theorem 3.2(i), Lo = en{®m)
and arguing as in the proof of Theorem 3.2(ii), M(PL-1L3) = PpL-1¢.. From Lemma 2.2(i),
K € K. Writing then Py L3 = M(Pp-1L3) + N(Pp-1L3), where N(P.-1L3) € N(L™!), then
M € M + Pro(ea(®m))a=1,2 + Prgr-1)¥c. Then, the Lax Milgram lemma ensures the existence
and uniqueness of M solution of (84). Now, choose M € M(M~! @ M~2) in (84). Using the fact
that R does not depend on z3 and decomposing M = M(M) + N (M) yields

/M’Rde = / MRM(M)dz =0,
9] Q

where f_llN (M) dzs = 0 has been used. Hence, II;RM(M) = 0. Similarly, (84) implies that
RN (M) =0. Writing M = IIM + M° + Pro(ea(¥m))a=1,2 + Prw-1)¥c, where M? € MO,
then

N(IIM) = — (IIRI) "' IRV (M?) and

1 0 (85)
M (IIM) = — (II,RIL,) " ;R (M (M®) + Ppg-1)e + Pro (ea(cpm))a=1,2) .
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Thus,
N(M) = (Id + Ty) N (MP) and

M(M) = (Id + Tr) (M (Mo) + 'PM(L—I)SOc + Pro (ea(‘/’m))a=1,2) .

For M® € M°, choose M € M such that N'(M) = (Id + To)N(M°) and M(M) = (Id +
T pm)M(MP). Then, (84) yields

[ () (319) (% 9) ()

= 1,(v) - /Q M (M%) Qu (Paa (L72) @e + Pro (eal@m))amsz) dz,  (87)

(86)

for every M? € M°, where v is the vector associated with M?, since

(M (1\710) N (1\710)) = Pko (Saﬁ "), ““’Sagﬂ”3)a,g=1,2 and

88)
(M (Mo) N (MO)) = Pgo (316 (®), ‘1:3336”3)«,,5:1,2 : (

This ends the proof of (i). Point (ii) follows directly from (i} and (85)—(88) the model. ]

4.3. The Mixed Boundary Conditions
The definitions and notations of Section 4.2 are used except the definition of M~! is replaced

by (68) and the definitions of Tar, T, and (Fag)e,s=1,2 are replaced by

= (IRIO)™'HR and T = (IIRM + 2I1,GTI;) IR,
F=2 (H - QumPro (ea(‘PTn))a—l 2) ’
H= (tTM (Id-‘-tTM) (R + 2H1GH1) (HRH + 2H1GH1) ) Pr-1h,

F,p are the components of F on K°.

THEOREM 4.3. Under assumptions (1), (2), (6), (25), (262), (293), (34), and (61), if G is positive,
then
(i) the solution (u%, @*) of (62)—(64) and (26,2) scaled by formulae (5), (32), and (48) con-
verges weakly towards (u, ¢p,) in H1(2)3 x H'(;) where u = (%) — £38,u3, Tz — z302u3,
u3) € Vi is the unique solution of the equation

2QMaﬁ76 0 s (ﬁ)
a8 (9), 8 o) d
/w (sa (%), D2 pv3) ( 0 %QN0575> ( 82, ) T
=1, (v)+/ 348 (V) Fmapdz, (89)

for every v = (v — £301v3,V2 — 230,03, v3) € VkiL;
(i) —3-‘2- converges weakly in L?(Q;) towards L3 such that Pp-1(L3) = II;i(Tpm(Pxo(s+s
(%)), 6=1,2+Pro(€a(#m))am1,2)+ (TRI-+2M1, GIL )Py -1 h) 231 TaPco (075u3)~,6=1,2-

PROOF. After scaling and suppression of the hats on scaled functions, if (* is given by Lemma 3.1,
and 7% = % — 3°, state U® = (0,3*) and o = (u®,@*). The spaces V,q and ¥,q being defined
in (15) and (36), ﬁa = (u%,@?%) € Woq(0) is the solution of the variational formulation on the
scaled domain
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Wad (05,) = Vad X ¥ad (#7) »
1
tnga a [TT% i
/Q M (V)RM® (T°) do + = |

+0 (V) + I (L5(¥)),  forevery V = (v,9) € Waq(0),

CPpdz = — /Q EM?(V)RM® (U) dz

where If(v) and [3(L§(¢)) are defined in (15) and (36). Choose V = U"; as for Neumann con-
ditions, it implies that IIMG(_ITG)”(L?(Q))7X(L2(Ql))3 < C, thus HMQ(Ua)ll(Lz(Q)yx(Lz(Ql))a < C.
The same convergences of M®(U?) as in the Neumann boundary conditions hold. The variational
formulation for U?% = (u®, %) € Waq(p2,) is

/Q (tMa (VYRM? (U®) + 2GL§ ()M (Lg)) dx
=LV +ILLW),  forevery V = (v,1) € Waa(0). (90)

Multiplying (90) by a?, a, and 1 successively, and passing to the limit yields

/Q *M™2(V)RMdz =0, for every V = (v, %) € W,q(0),
/Q (‘M‘I(V)RM + 2GE3M(L3)) dz =1,(Ls),  for every V € W,q(0) N Ker (M~2),
/ PMOY(VYRK dzx = Ly(v) (91)
for every V = (v(,lw) € Waa N Ker (M™2) N Ker (M™1).

As for the case of Neumann boundary conditions, (91) is equivalent to
/ (MRM + 2GIZ3M(L3)) dz =1y (v) + 1, (M (E3)) ., for every M € M. (92)
Q

Because G is supposed to be a positive constant, the Lax-Milgram lemma applies to (92). As in
the case of Neumann boundary conditions, M € M+Pio(eq(¢m))a=1,2- Choose M € M~ M2,
and decompose M = N (M) + M(M), then

/Q N (tM) RN(M) + M (‘1\71) (R + 2T, G ) M(M) dz = 1, (v) + 1, (M (1:3)) . (93)

Arguing as in Theorem 4.2, (93) implies that IRGM(M) = Pp-1h and IIRN (M) = 0 where
Rog =R+ 21, GI1;4. Writing M = IIM + M+ 'PLo(ea(cpm))asz with M° € MO, N(HM) =
—(IRIN) ™ MIRN (M?) and M(IIM) = —(TIRGIL)~H(TTR(M(M®)+Pro(ea(¥m))a=1,2) ~ Pr-1h).

Then
N(M) = (Id + Ty) N (M?) and

MM) = (1d + Tp) (M (M) + Pro (eal@rm)amr o) + R P,

For every M® € MC, we define M € M by N'(M) = (Id + Tx)N (MO) and M(M) = (Id +
T p)M(M?). Hence, from (92),

f () () (% g) (o )
=1+ [ M (W) (~QuiPrs (o (prm)amna) (%5)

+ (*Tam - (1d+'Tp) Ra (MRGM) ™) Pp-1hda,
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for every M € MC where v is the vector associated with M®. Using (88) this proves (i). Point (ii)
follows as in Theorem 4.2. ]

REMARK. In the above analysis, the operator IIR¢II is invertible. In the context of evolu-
tion problems, G is an integro-differential operator in time, then ITR¢II is not invertible. The
elimination of M(L3) is not possible.

Subsequently, the model is derived without eliminating M(L3z). The assumptions on the posi-
tivity of G and invertibility of ITRII + II; GII; are not released in order to preserve the a priori
estimates and the convergence properties. For evolution problems, these preliminary results may
be obtained by specific methods.

We use the same notations as in the preceding model, except that

Ty = — (IR 'R and Ta = —(IRIL) R,
Qum=Id+Tm)R(Id+Tr) and Qun ='(Id+Tx)R(Id+ Ty),
F= 2QMPLO (ea(ﬂam))a:l,z ) (96)
L?(w) if faces are not metallized,
L= {E3 € L%(w;); E3 is constant on each inclusion} ,
if faces are metallized,

F,p are the components of F on K°.

11 12
The matrices Qa¢ and F are decomposed by blocs, Qaq = (gﬁ gg ) and F = (g: ) correspond-
ing to the bloc decomposition of K® & L~!; ﬁ‘,t‘ b6 and Qnapys are the components of Q4

and Qu on K°.

THEOREM 4.4. Under the same assumptions as in Theorem 4.3, the vector (u, L3) = (U, —z30,u3,
Ty — z302us, u3, L3) € Vk 1 x L is the solution of

ZQ}\}iaﬁ'w 2Q}3{aﬁ S5 ('ﬁ)
~ 21 22
/ (Saﬁ §7)] ,L3,6§ﬁ’03) 2QM’76 205 +4G 0 ( Ly ) dz
w

2 025u
Z sU3

=/w1 2hLs+ (saﬂ(V),Za) (FI‘}ﬂ) dz + 1, (v),

for every v = (51 — x301v3,72 — x362'v3,1)3,z3) € Vg x L.

PROOF. We start from (93). Taking M € M such that N(M) € N(M~2 @ M~!) and M(M) €
M(II;M), then N(IIM) = —(ORI)“N(MP®) and M(II;M) = —(RIDp)~! (M(M+

Pr-1Lg) + Pro(ea($?))a=1,2)- Then
NM) = (Id+Tnx)N (M°)  and
98
MM)=(Id+Tm) M (Mo + Pp-1Lz + Ppo (ea(‘Pm))a=1,2) ) (98)

We choose Min an analogous way N(M) = (Id + Ta)N(M®) and M(M) = (Id + Tn)
M(M° + Pp-1L3). Then

R emet s () (S5 Q) (O o
= /Q M (MO + Pr1Ls) QuePro (ea(@m))amt g 4o+ b (v) +1p (M (Ls)) . (99)

Letting M(L3) = E3 and M(L3) = E; leads to the theorem. 1



Models of Elastic Plates 103
4.4. Multilayered Plates

The preceding notations, statements, and proofs have been conceived in order to be easily
generalized for multilayered plates. Under a few precisions concerning notations, the proofs are
close to the single layer case. These precisions are stated above. For the sake of brevity, we
state the plate models for each boundary condition on I U T}, without giving any proof and
convergence statement.

The models are derived from the equations (65),(98), and one of the four boundary condi-
tions (27)-(29), or (31). The definitions of the M* are those of (68) (or (79),(80) in the case of
Dirichlet conditions) except that L is defined by

L2 = {M= (0. L) € (* @)’

X {((La)a=1,2 ’0) i Lajaye = €a(te), where 1 € H'(Q¢), O3y = 0} .

4.4.1. Neumann boundary conditions

When Neumann condition (27) is applied on ' UL},
ug) € Vi is the unique solution of

11 12 51
[ Gan @ o) (e 25 (72
w

the limit u = (T; —x30,u3, Ty — r30u3,

aBys afyé v6U3
s
1)+ [ (50 @), ) ( FIB> ax, (100)

for every v = (71 — £301v3,T2 — 2309v3,v3) € Vi, where

II is the projector from E onto M~! @ M2,
T = — (IRN) "' IR,
Q= (Id+'T)R(Id+T),
H= (T ~(d+'T)R (rmn)‘l) P1h,

FO = / 11 (H - QPwo (ealém))acis) drs,

1
F1=/ ~z3 (H — QPpro (ea(m))ae dzs,
[ (-2 (H- QPeo (calom)lamia) ) dos
Qt Q% _ /1 Q -=:Q)
Q* Q% s\ —23Q  3Q ¥
ftys and F4 s are the components of Q?# and F* on K°.

REMARKS.

(i) This model is in the same form as an elastic multilayered thin plate model. The electrical
field is not an unknown of the problem. The stiffness tensor (Q®%), g<1 2 is affected
by the piezoelectricity and permitivity coefficients. The forces (F9, F!) result from the
mechanical forces and from the electrical sources as well.

(ii) In practice, this sort of boundary condition seems difficult to realize. In general, the
following Dirichlet boundary condition is preferred.
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4.4.2. Dirichlet boundary conditions

When Dirichlet condition (28) is applied to I';t_UT;, the limit u = (%; — 238, u3, Tz — z382us,
uz) € Vi is the unique solution of

N QU Qi _
_ Bv6 apys Sy6 ()
> [ (o), 2hs) 3 )(5%) @
5:1'/‘; Qilgeqa Qfg—yo 035us
N Flg
S «,
~L0)+3 [ (sas (), SEpv0) (F% ) dz, (101)
g=17w14 af
for every v = (7) — 2301v3, T2 — £302v3,v3) € Vi, where
13 of —bF ¢
(Que lee) N (be — ag) Q3 D) Qv
216 226 | = )
Q™ Q af — b Qf b — of Q4+ L= ag)® Qf
2 M 3 M 12 N
Fl (bf - a’f)
2

for every £ =1,...,N.

QZ‘E‘?Y s and F(ff, are the components of Q**¢ and F#¢ on K°. The tensors Q% and Q5 are the
restriction of the tensors Qaq and Qs to the layer number £ defined by

be
1 Mdzrz and Ng,(M)=M - Mq, (M), for any M € E,

Miac (M) = be — ag Jo,

M, is the projector from E onto L™},
I1; the projector from E onto M~? @ (K™* x {0s}),
Ty = —(IIRI)'IIR and Ta = - ([IRI) 'R,
Qv ="(Id+Tx)R(Id+Tx) and Qu ='(Id+ Tam)R(Id+Txr).

REMARKS.
(i) This model is the more classical one (see [1,2]). In general, @n, is taken equal to zero.
The forces Ffw and Fi, are only affected by @.¢, the tension between the upper and lower
inclusion faces. Electronic devices based on operational amplifiers permit us to impose a

such condition.
(ii) For the open loop control problem, the Dirichlet boundary condition is the more natural
one. For the design of closed loop control with numerically computed feedback, this

condition is also the more usual one.

4.4.3. Mixed boundary conditions

When mixed condition (29) is applied to I‘i",'lcul";lc, the limit (u, L3) = (@1 —z301us, Go—x302u3,
ug, L3) € Vi x L is the unique solution of

11¢ 11¢ 12¢
N Qaﬁw& Qaﬂ3 Qaﬁ'y6 Sy6 (ﬁ)
Z / (saﬁ (%), Lae, 3251!3) Q;-lyfs Q3* +G¢ Qéii L, dz
£=1vwe 21 21 22 2
Qaﬂs'w Qaﬂg Qmﬂe'y& 8,7611:3

F5

N _ _ af
=lu(v)+ Z (be —ag)h Lae + (sag (¥) Lag, 3(215’1)3) F31€ dz, (102)

g=17w18 2¢

Fop
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for every v = (71 — 23013,y — 13023, v3, L3) € Vi, x L, where

Pl (bf - aE) ¢
(5ot ) = | a—2 | QPs o omelucsas
: ¢ af - b
(ng Q% ) ( (be — ag)Qly 5 QS\A (103)
21¢ 2t | =
Q™ Q o =8 o bi-af o (bg—a)® .
—7 W Ty Qut T @

G* = (b ~ a¢)?G.

Q5\4 and va being the restriction of the tensors Q¢ and Qu to the layer number ¢ defined
by (96).

QIIBE & Ql}aea Qwag 5 21¢ 21¢ 22¢ ¢

(G G8) (G) o o) ma oy s v
3y 3v6

are the components of Q''¢, Q'%, Q?!¢, Q?%, and F#¢ on K?; F;¢ is the component of F*¢ on

L-L

REMARKS.

(i) In this model, the electrical tensions L3¢ are unknown. In addition to the electrical sources,
the effect of the electrical circuit results from the admittance G.

(ii) This model is well suited for the design of dynamic feedback (see [21]). The control
variable is L3.

(iii) General electrical circuits include also active components based on operational amplifiers.
They do not have an admittance (see {19], for example). Then, the electrical circuits
considered in this model lead to a particular model of coupling between piezoelectric plate
and an electrical circuit.

4.4.4. Boundary conditions coupling the layers

When mixed condition coupling the layers (31) is applied to ['t U

nc nc?’
(T1 — z301ug, Uy — T302us, us, L3) € Vi1 x L is the unique solution of

the limit (u,l3) =

11¢ 11€ 12¢
Qaﬁ% Qaﬂfi Qaﬂ'y6 546 (T)

N
S [ (son @ Tacs02m) | Q35 Q¢ Qi || s | ao
=1 vYWw¢ 2
¢ Q?xlﬁ{'v& Qilﬁgs Qi25§15 6761‘3
N N N 5
+ 3 reAenLagLay =)+ Y [ (b¢ —ag)hLs (104)
=1 n=1 g=17w1€
1£
+(sag (7), La, 6(2,31)3) Fsle dzx,
FX%
of

for every v = (T — £30,v3,T — 230903, V3, is) € Vi x £, where the notations are defined in
Section 4.4.3 and A is defined in (58).
REMARK. The same remarks as for mixed boundary conditions hold. The introduction of a

coupling between the layers shows that it may be possible (using more general electronical circuits)
to design a dynamic feedback using the finite difference approximation of 93L3.
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