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Abstract
In view of qualitative temperature measurement by

scanning thermal microscopy, we introduce a model-based
control law for a new microfabricated probe. The under-
lying model is the time-space two-scale electro-thermal
model presented in [15], since it has the power to represent
transcients of harmonic modulations. The control method
accounts for an estimation of the heat source in the sam-
ple and for the delay in the lock-in filter based observation.
Experiment-based model calibration is a prerequisite and is
discussed in detail.

Keywords. Scanning Thermal Microscopy, Model Pa-
rameter Calibration, Multiscale Model, Temperature Con-
trol, Control with Delay in Observation, Lock-in Amplifier,
Source Estimation

1. Introduction
The Scanning Thermal Microscopy (SThM) is a kind

of scanning probe microscopy for mapping thermal trans-
port and temperature on surfaces. During the last twenty
years, systems combining an AFM cantilever with a ther-
moresistive three dimensional tip have been developed
[16, 6, 17, 14]. Here, we refer especially to this developed
by Gotszalk and his coworkers in [18, 9, 8]. Recently, Janus
and his colleagues have proposed a novel design [11] ex-
pecting quantitative temperature measurement in the range
of 1K with a resolution of few tenths of nanometers. Main
novelty of proposed solution is the deflection measurment
technique based on piezoresistive deflection sensing. This
type of detection allows for removing laser spot that, ac-
cording to authors previous works, causes unwanted heat
at tip’s area [10]. Moreover, this type of probe can be eas-
ier integrated with nanomanipulator arm or in small AFM
head.

The motivation of this technological development is to
build a tool capable of analyzing temperature distribution
in modern nanodevices, nanostructures or nanocompos-
ites (sub-40nm transistors, SETs, biochemical interfaces,
graphene structures etc.). Moreover, the combination of the
concepts of AFM cantilever and thermoresistive probe is a
solution for mixed measurements e.g. thermal and electri-
cal probing.

The device is built by microfabrication techniques [11,
10]. The cantilever is made with silicon (Si) body covered
by a layer of silicon dioxide (SiO2) that serves as an electri-
cal insulator to the electrical conducting tracks which main
body is in aluminum (Al) and which tip is in platinum (Pt),

a piezoresistive material. The conducting layer consists of
four legs ending to the tip. The outer two legs are used
to insert a controlled current and the inner two to measure
the corresponding tip voltage drop yielding a four-wire re-
sistance measurement method. For passive mesurements
the inserted current is set low to avoid significant heating
while for active measurements the current tip heating is
performed.

Fig. 1: Scheme of the control loop including a four point
probe, a heating current source, a lock-in amplifier for volt-
age measurement and a regulator.

Figure 1 represent the setup used in the active mode
working condition. In the active mode, the tip is heated
by a modulated harmonic current source at a frequency
ω, ranging from 1 to 10KHz, through the Joule effect and
the thermoresistive tip temperature is evaluated thanks to
voltage measurement yielding an evaluation of tip resis-
tance change. For noise cancellation and for separation
of harmonics, the voltage is passed through possibly sev-
eral lock-in filter yielding voltage harmonics at nω for var-
ious choices of n. The harmonic current should be reg-
ulated in order to keep a constant tip temperature during
experiments with alternance of tip-sample contact and non-
contact phases. A PID regulator is in use but yields unsuf-
ficient performances. To overcome this limitation, we de-
velop a model-based control law based on the Lyapunov
method. The underlying model is the time-space two-scale
electro-thermal model presented in [15] for the same SThM
probe that allows for fast and precise computation of all
modulated harmonic components near the tip as well as
in the whole probe. To be efficient, the control law has
also to account for an estimation of the heat source in the
sample and for the delay in the lock-in filter based obser-
vation. Moreover, in this approach the experiment-based



model calibration is a prerequisite and will be discussed in
detail.

The control approach has been derived in the frame-
work of partial differential equations also refered as infinite
dimensional systems, however here we present its finite di-
mensional counterpart i.e. expressed in matrix form. The
infinite dimensional case will be published separately. The
presented approach relies on a linearization around an op-
erating point of the model, on the concept of Luenberger
state observer, and the convergence relies to the Lyapunov
method. For the observer, we combine the approaches of
[1] to deal with delay in observations and of [3] and [22] to
account for heat source identification.

The rest of the paper starts with a setup description in
Section 2.. Section 3. presents our method of probe param-
eter calibration. The two-scale model is stated in Section
4., it serves as the model used for the control law detailed
in Section 5..

2. Setup Description
The novel type of nano-sensor described in this paper,

cf. Fig. 2 (a), is equipped with a sharp, conductive tip,
cf. Fig. 2 (a) and (b), an integrated deflection sensor, and
an actuation system. A modification of a double sided sili-
con micro-machining process developed for manufacturing
of piezo-resistive AFM micro-probes has been adapted to
fabricate SThM sensors [7].

Fig. 2: New probe design (a) global view of the optimized
design according to optimization rules in [21] (b) 3D tip
before FIB milling (c) tip after FIB milling

The SthM/ECM probes on the market are based on
bulky and complicated optical deflection sensors [13].
Therefore, their application in small SEM chambers is
difficult. The proposed nano-probes are integrated with
piezoresistive deflection detection, which will significantly
improve the system versatility and will enable new appli-
cations also in narrow environments as vacuum chambers.

The new SThM nano-probes are designed to operate in
two modes. They can be used as a passive thermo-sensing
element or as an active heat flux meter. In the latter case,
a larger AC current in the range of 1-10 kHz is passed

through the resistive tip probe leading to heat dissipation
and a heat flow through the tip sample contact into the
sample as shown in Fig. 1. The power that is required to
maintain a constant temperature depends (among others)
on the local thermal conductivity of the sample. During
active measurements temperature of the tip is increased by
20-30 K above room temperature. According to the ap-
plications, developed SThM nanoprobe will enable surface
contact measurements at load force ranging from 10 nN up
to 1µN. The load force will be detected with the resolu-
tion of 10 pN in the bandwidth of 100 Hz. The low load
forces as well as sub-nanometer vertical spatial resolution
will be needed in investigations of graphene and molecular
samples, whereas the high force will be applied in investi-
gations of high-k insulators.

Going more in details, the body of the probe is made
of silicon (Si) covered by an electric insulator layer in sili-
con dioxide (SiO2), and then by a platinum (Pt) conductor
layer. The latter consists of four legs ending to the tip. In
active measurement mode, the two middle legs conduct a
controlled heating current with the aim to keep the thermo-
resistive tip at a constant temperature. The two outer legs
are for sensing the tip temperature. The heating current
is harmonic at a frequency ω with amplitude modulation
and the tip temperature is evaluated from lock-in ampli-
fications which reference signals are multiples of ω. An
extensive study of this SThM probe, taking into account
the full electro-thermo-mechanical behavior in the static
regime, has been carried out and reported in [21]. Detailed
sensitivity analysis and optimization were investigated.

3. Parameter calibration
The physical parameters taken into account in the

thermo-electrical effects considered in this paper are the
electrical conductivity, the thermal conductivity, the tem-
perature coefficient of resistance, the density and the spe-
cific heat denoted by σ0, k, TCR, ρ and c.

We distinguish between parameters well established
from the bibliography of those to be calibrated. The ma-
terial parameters of thin layers can deviate from known lit-
erature bulk values. In small dimensions the surface and
edge effects cannot be neglected compared to the volume
effects and aditionally the structure of the layer will depend
on the manufacturing processing parameters. We consider
that the density and the specific heat are neither thickness
nor process dependent, so we adopt their bulk values. In the
opposite, the electrical conductivity, the thermal conductiv-
ity, the temperature coefficient of resistance are assumed to
depend strongly on the fabrication process and of the layer
thickness, so they must be determined in each particular
case . For the sake of illustration of the layer thickness de-
pendency of these parameters, the resistivity 1/σ0 of a 50
nm thick sputter deposited platinum is found to be equal
to 3.0e-7 Ω.m in [12] that may be compared to a resistivity
of 1e-7 Ω.m for bulk. Thanks to the Wiedemann-Franz law
[4, 19], the thermal conductivity k can be deduced from the
electrical conductivity through the formula k/σ0 = L× T
with T the absolute temperature and L = 2.44e-8 Ω/K2

the Lorentz number. But, for thin films, according to [5],
the Wiedemann-Franz law relating the ratio k/σ0 to tem-
perature still holds but for a Lorentz number depending on
the layer thickness and material. According to [20, 12], for



a 50 nm thin platinum layer fabricated by electron beam-
physical vapor deposition L = 5e-8 W.Ω/K2 resulting in
k = 70.35W/(m.K) at 300K. From [12] the temperature
coefficient of resistance (TCR) of platinum is 2.0e-3 K−1

for a 50 nm thin platinum layer compared to 3.9e-3 K−1

for bulk.
Calibration of physical parameters may be made ac-

cording to several procedures. One approach is to mea-
sure the characteristics of materials with dedicated experi-
ments. At each change of materials or manufacturing pro-
cess or layer thicknesses these experiences need to be re-
done. An alternative is to perform the calibration of a par-
ticular probe by combining experimental measurements on
the probe with model simulation results. For this, we de-
sign a family of experiments which results contain suffi-
cient information on the parameters and then the model
parameters are adjusted to coincide with the experimental
measurements using an optimization procedure.

Our results are obtained with the SIMBAD optimiza-
tion and calibration tool developed in the FEMTO-ST in-
stitute linked with COMSOL through MATLAB. We take
into account the thermal diffusion, the Joule heating and
the thermo-resistance phenomena in three models corre-
sponding to different operating modes: a static model for
constant DC sources, a steady state harmonic model for
sources with constant DC and harmonic components, and a
transient model for sources which DC and modulated har-
monic components.

The simulation is made sufficiently rapid thanks to a
multi-scale model recalled in Section 4. that is valid for
DC heating sources and sufficiently high heating frequen-
cies, namely larger than few kHz. Besides its simulation
speed, it has the advantage of accurately calculate the v1ω

and v3ω components of the electrical potential used for the
measurement. This model can be used for transient phe-
nomena. A simplified version operates faster for stationary
harmonic phenomena. The calibration work uses the multi-
scale model simplified for stationary harmonic sources and
solutions.

Fig. 3: (a) Top view of the probe with the conducting tracks
made of Al, Pt+Al or Pt layers (b) simplified scheme of the
probe as a four ports and five resistances circuit

Experiment #1 three independent resistance measure-
ments at ambient temperature: with four ports, only three
independent voltages can be directly measured, for instance
1-2, 1-3, 1-4 with the notations in Fig. 3 (b). For a suf-
ficiently low current preventing heating, this provides the

Fig. 4: the parameters to be calibrated are marked with
crosses, those known from bibliography are indicated with
”Bib” and those not useful are with a ”⊥”

values of the resistances of three branches at ambient tem-
perature. We assume two symmetry relationsR1 = R4 and
R2 = R3, so the three resistances R1, R2 and R5 can be
determined and then the values of R3 and R4 follow.

Experiment #2 Three independent resistance mea-
surements at a sequence of ambient temperatures with
small DC or harmonic currents: a temperature is imposed
through the boundary conditions at the junction with the
base. The three measurements provide the linear depen-
denceRi(1+TCRi(T−T0)) of the resistances in the tem-
perature where TCRi stands for the global TCR of the ith
resistance. The source of current is a DC source or a har-
monic source with frequency ω and the measured voltage
is the DC voltage or the cos(ωt) and sin(ωt)-components of
the voltage. The source is low to prevent tip heating.

Experiment #3 Harmonic heating current and v1ω and
v3ω measurements: A harmonic current source is imposed
to the ports 1 or 2 to heat the tip. The cos(ωt), sin(ωt),
cos(3ωt) and sin(3ωt) components of the voltage are mea-
sured. All parameters of the tip are involved.

Here, we report a feasibility study carried out with nu-
merical simulations only. Precisely, the experimental data
are substituted by computed values using our models and
arbitrary coefficients. The goal is to show which coeffi-
cient can be recovered before application to experimental
results.

In each case, the study starts with a sensitivity analysis
of the measurement about the unknown parameters. Then,
the coefficients which are the most sensitive for a set of fea-
tures are optimized to minimize the errors between experi-
mental and model results for a part of the experimental re-
sults while the others are used to validate the optimal result.
For the sake of computation time reduction, a metamodel is
established from direct simulations before to be used in the
optimization procedure. Our conclusion is that Experiment
#1 yields a good calibration of the platinum and aluminum
electrical conductivities and that of the Al+Pt composite
layer is with negligible influence on the results. Once these
conductivities are set, Experiment #2 provides a good cali-
bration of the TCR of aluminum and platinum and is insen-
sitive to that of the Al+Pt layer. Finally, when all the previ-
ously calibrated coefficients are set, Experiment #3 allows
to calibrate the thermal coefficients of platinum and alu-
minum but not of the Al+Pt layer still appearing as lowly
influencial.



4. A time-space two-scale model
We state a slight variation of the time-space two-scale

electrothermal model of the probe introduced in [15]. It
constitutes a fundamental key in our approach of probe
temperature control by modulated harmonic sources. Af-
ter recalling the thermoelectric system and the space and
time scales involved in the device behavior, the two-scale
model is stated and new simulation results are provided and
commented.

4.1 Governing equations
The heat diffusion in the probe and in the sample is gov-

erned by the heat equation ρc∂tθ+ div q = r in the region
Ωth with unknown θ the difference between the absolute
temperature and the ambient temperature. The coefficient
r is for a radiative source and q is the heat flux defined
from the Fourier law q = −k∇θ. At the probe clamp-
ing part, the relative temperature θ is assumed to vanish
and the tip-sample interaction is modeled by an interfacial
resistance condition q.n = −G[[θ]] between the normal
flux and the temperature jump, where n represents the out-
ward unit normal to the boundary. . The interface condition
between layers is with a continuous temperature and heat
flux. The other boundaries are assumed to be thermally in-
sulated.

In absence of volume source of charges, the current
density J is governed by the conservation of charges
div J = 0 in a region Ωel ⊂ Ωth, and in a conductor
or a semi-conductor it satisfies the Ohm law E = ρelJ
where E = (Ei)i=1,..,3 = −∇ϕ is the electric field, ϕ
the electric potential and ρel the resistivity tensor. These
equations are completed by imposing a controlled AC or
DC current source in the heating branch

∫
Γel

1
J.n ds = jd.

Moreover, a zero current source is imposed in the measure-
ment branch and all the other boundaries are electrically
insulated. The AC heating current is at a frequency ω and
is modulated in amplitude. The volume heat source gener-
ated by a current density in a conductor or a semi-conductor
is given by the Joule’s law r = E.J = ρel(θ)|J|2. The
electrical resistivity of most materials changes with tem-
perature. If the temperature does not vary too much, a lin-
ear approximation is typically used ρel(θ) = ρel0 (1 + αθ)
where α is the temperature coefficient of resistivity (TCR)
of materials, and ρel0 the resistivity at ambient tempera-
ture. The lock-in filter measurements are designed at var-
ious possible frequencies nω for n = 0, 1, 2, 3, ... yield-
ing the measurements vcn = 1

∆t

∫ t
t−∆t

ϕ(σ) cos(nωσ) dσ

and vsn = 1
∆t

∫ t
t−∆t

ϕ(σ) sin(nωσ) dσ integrating over an
integer number of periods. For instance the classical 3ω-
measurement method [2] consists in measuring vc3 and vs3.
It generates a delay in observation, so in view of fast op-
erations, the frequency ω should be chosen relatively high,
but not too much since the amplitude of the 3ω-component
decreases when the frequency increases.

4.2 Time and space scales
In a heat diffusion process, the time and space scales

are related as ρc/T = kth/L2 where T and L are the char-
acteristic time and length scales. The work [15] shows
that this system has two time scales TM and Tm, namely
the time scales of the DC component and of the harmonic
components that we also refer as the macro- and micro-

Fig. 5: The domain Y ε = Y th,ε∪Y el,ε where the high fre-
quency temperature is localized and Ωε = Ωth,ε∪Ωel,ε the
complementary part. The electric conductor is in yellow.

time-scales as usual in multi-scale modeling methods. The
DC-temperature field is spread out in the full probe when
the AC-temperature field is concentrated near the heating
part. So, two space scales LM and Lm correspond to the
two time scales and both these time and space scales are the
foundation of the asymptotic model stated in this section.
We denote by εt = Tm

TM
and εx = Lm

LM
the correspond-

ing time and space scale ratios, they satisfy the relation
εt = ε2

x, and εt is considered as the single small param-
eter of this problem. The macroscopic length scale LM is
equal to the probe length and the microscopic time scale is

Tm = 2π/ω. The two other scales follow: Lm =
√

Tmkth

ρc

and TM =
ρcL2

M

kth
. In total, the small parameter of the

asymptotic problem is εt = 2π/(L2
Mω).

4.3 The two-scale model
For simplicity, we use the notation ε instead of εt. The

time interval [0, T ] is split into subintervals (ti, ti+1) where
ti = i× ε for i = 0, ..., T/ε−1 and the operator T of two-
scale transform maps any function f(t) into the function
T (f)(t, τ) = f(ti + ετ) for any t ∈ (ti, ti+1) and τ ∈
(0, 1) that is actually defined over (t, τ) ∈ (0, T ) × (0, 1)
and so is called a time-two-scale function. Applying this
transformation to a modulated ε-periodic signal captures
both the modulation and the periodic signal with the two
scales. Applying this idea to the thermal and electrical
fields, we obtain the equations of their two-scale transforms
in the high-frequency limit, i.e. when ε vanishes. The solu-
tions of this limit model, after being restated in the physical
time, produces an approximation for ”high” but not infinite
frequencies. In the probe the heater is very small, so we
consider its size in the range of εx and are led to consider
a neighbourhood Y th,ε of the heating source and its com-
plementary Ωth,ε. A similar distinction is made between
Y el,ε and Ωel,ε for the electric conductor, see Fig. 5. For
simplicity, the center of Y th,ε is set as the origin of the co-
ordinates so Y th,ε ⊂ {x ∈ R3 | |x| ≤ λ

√
ε} for a given

λ. Finally, for the sake of coherency the assumption of thin
heating part led us to assume that the conducting layer is
also scalable by

√
ε. The time-space multi-scale model re-

sults from putting these assumptions all together and find-
ing the asymptotic behaviour of the model when ε vanishes.
It is made with four equations expressed in the domains
Ωth,0, Ωel,0, Y th,0 = Y th,ε/εx and Y el,0 = Y el,ε/εx,
with the fields ϕ0,Ω, θ0,Ω, ϕ1,Y and θ1,Y defined in Ωel,0,
Ωth,0, Y el,0, Y th,0 respectively, and with the coefficients
m0 = ρc

ρSicSi , k
0 = TMk

ρSicSiL2
M
, r0 = TMr

ρSicSi , G0 = εxTMG
ρSicSiLM

,



b0 =
V 2

0 TM

ρSicSiL2
Mρel0

, κ0 =
ρel,Pt

0

ρel0
, j0

d =
LMρel,Pt

0 jd√
εxV 0 and

ω0 = ωε with V 0 a scaling of the electrical potential. The
electrical potential ϕ0,Ω is constant in the thickness of the
layer and is solution to

−div(
κ0

1 + αθ0,Ω
∇ϕ0,Ω) = 0 (1)

in Ωel,0, with the controlled current source∫
Γcur,0

κ0

1+αθ0,Ω∇ϕ0,Ω.n ds(x) = j0
d the two-scale

transform of jd, and the same other homogeneous
boundary conditions as ϕ. The temperature field θ0,Ω is
independent of τ , so it corresponds to the DC-component
solution of the heat equation

m0 ∂θ
0,Ω

∂t
− div(k0∇θ0,Ω)

=

∫ 1

0
b0|∇ϕ0,Ω|2 + r0 dτ

1 + αθ0,Ω

(2)

in Ωth,0 which source term is the effective heating, i.e. its
average in the fast time variable. It satisfies the same in-
terface condition as θ and is continuous through the tip-
sample interface. The latter is an artefact of the asymptotic
approach, that might be corrected with a higher order tem
for a better precision. The field θ1,Y is solution of a heat
equation at the small scale with a source term including
only harmonic components,

m0 ∂θ
1,Y

∂τ
− divy(k0∇yθ1,Y ) (3)

=
b0|∇ϕ0,Y |2 + r0 −

∫ 1

0
b0|∇ϕ0,Y |2 + r0 dτ

1 + αθ0,Y

in Y th,0. It satisfies the transmission conditions
k0∇yθ1,Y .ny = G0[[θ1,Y ]] at the tip-sample inter-
face together with the continuity of the heat flux, and the
thermal insulation boundary condition at the other bound-
aries, except at the boundary created by the localization
procedure where a vanishing temperature condition holds.
Finally, the equation of ϕ1,Y of the electrical potential is
fed by oscillations produced by the product of those in
ϕ0,Y and θ1,Y ,

−divy(κ0 ∇yϕ1,Y

1 + αθ0,Y
) (4)

= −α divy(κ0 θ
1,Y∇yϕ0,Y

(1 + αθ0,Y )2
)

in Y el,0, when its other boundary conditions are of the
same kind as those of ϕ0,Y but homogeneous. Then, the
approximation in the physical time-space of the temper-
ature and the electric potential fields are obtained by in-
verse scalings θ ≈ θ0,Ω(t, t/ε, x) +εθ1,Y (t, t/ε, x/

√
ε)

and ϕ ≈ ϕ0,Ω(t, t/ε, x, x3/
√
ε) +εϕ1,Y (t, t/ε, x/

√
ε).

The lock-in filter measurements of the voltage on a time
interval ∆t, multiple of ε, is restated as a discrete measure-
ment using the two-scale transform,

v(t) ≈ 1

∆t

∫ t

t−∆t

∫ 1

0

(ϕ0,Ω + εϕ1,Y )(s, τ)w(τ) dτdσ

where w(τ) holds for φnc (τ) = cos(nω0τ) or φns (τ) =
sin(nω0τ).

4.4 Simulation results
Our implementation is in the case of a small temper-

ature, so that (1 + αθ0) ≈ 1 − αθ0, and we keep only
the first significant terms of the Fourier series θ0(t, x) ≈
c0(t, x), θ1(t, τ , x/

√
ε) = c2(t, x)φ2

c(τ) + s2(t, x)φ2
s(τ),

ϕ0(t, x) ≈ a1(t, x)φ1
c(τ)+b1(t, x)φ1

s(τ) and ϕ1(t, τ , x) ≈
a3(t, x)φ1

c(τ)+b3(t, x)φ1
s(τ), so that only the related func-

tions cn, sn, an and bn need to be computed. Thus, the
computation time is independent of the current source fre-
quency.

The two-scale model simulations have been compared
with a direct simulation in [15]. For a 1kHz frequency
source, the ratio between their computation time is in the
range of 15 − 20 and increases with the frequency. The
error between the two simulation results is generally in the
range of few percents on the DC-temperature θ0 and the
harmonic part θ1 if the accuracy of the direct simulation is
sufficient. It is worthwhile to mention that in the direct sim-
ulation we did not yet obtained a visible electrical field ϕ1

preventing the simulation of the 3ω-measurement method.
Two-scale model simulation results for the higher fre-

quency current source, namely ω = 10 kHz are reported
in Fig. 6, 7, 8 and 9. The current sources jd are com-
binations a DC-source jdc = 4 mA, of an AC-source
jac = 4 mA × sin(ωt) and of a smoothed Heaviside
step function Hσ(t − t∗) centered at t∗ = 10−3s and
with smoothing parameter σ = 10−4 for a sharp step
and σ = 10−3 for a smooth step. Precisely, the source
jd = (1 + Hσ(t − t∗)) × jdc + jac is refered as with DC
source variations and jd = jdc + (1 + Hσ(t − t∗)) × jac
as with AC source variation. The smoothing parameter σ
is the time duration of the transition. In all figures, the blue
curve corresponds to a smooth source variation, and the red
curve to a sharp source variation.

Fig. 6: Response of the tip temperature to a mixed AC-
DC current source with abrupt or smooth variations in AC
source variations

The expected effects are well recovered. Indeed, Fig. 6
and 7 show that the AC-source contributes to the tempera-
ture oscillation amplitude and the DC-source contributes to
the average value of the temperature. The response of the
temperature to the source variation is instantaneous.

Fig. 8 and 9 show that the 3ω-voltage is only sensitive
to the AC-source variations. This is a trivial phenomena



Fig. 7: Response of the tip temperature to a mixed AC-
DC current source with abrupt or smooth variations in DC
source variations

Fig. 8: Response of the amplitude of the 3ω-voltage com-
ponent at the tip to a mixed AC-DC current source with
abrupt or smooth variations of AC source

since the 3ω-voltage is a product of the tip electric resis-
tance and the AC-source.

5. Regulation of the tip temperature
We consider a probe tip heated by a modulated har-

monic current source such that its scaled two-scale tran-
form j0

d(t, τ) ≈ u(t) cos(ω0τ) where the modulation u
is the control to be determined so that the time-quadratic
mean of the tip temperature reaches an objective value
T ∗. The case ω = 0 corresponding to a DC current
source is covered by our approach. The heat source is as-
sumed to be unknown, but depending on an unmodulated
harmonic source, so its two-scale transform has the form
r0(t, τ) ≈ s× cos(`ωt/ε) for a positive integer ` and with
an unknown constant s to be estimated during the regula-
tion phase. We start by presenting a general method for
reconstructing the state of the system. Then, it is shown in
Sections 5.2 and 5.3 how it may be applied for tip temper-
ature control when the source is DC or harmonic.

5.1 A Luenberger observer
As detailed in Sections 5.2 and 5.3, for each kind of

heating current corresponds a particular part of the two-
scale model to be used. After decomposition over a fam-
ily of harmonics and discretization by a Finite Element
Method, it has the form of a nonlinear algebro-differential

Fig. 9: Response of the amplitude of the 3ω-voltage com-
ponent at the tip to a mixed AC-DC current source with
abrupt or smooth variations of DC source

equation,
dx1

dt
= F1(x1,x2, s)

and 0 = F2(x1,x2, u) for t > 0,

v =

∫ t

t−∆t

Cx2(σ) dσ for t ≥ ∆t,

(5)

with the initial condition x1 = z at t = 0, where x =
(x1,x2), s, u, v, z stand for the state, the unknown heat
source, the control modulation, the observation and the ini-
tial state. Then, for constant reference sources s0 and u0,
we define x0 = (x0

1,x
0
2) as the solution to the stationnary

equation, and a perturbation (x1,x2) ≈ (x1−x0
1,x2−x0

2)
solution to the linearized system about (x0

1,x
0
2),

dx1

dt
= A11x1 + A12x2 + Ds,

0 = A21x1 + A22x2 + Bu for t > 0,

v =

∫ t

t−∆t

Cx2(σ, τ) dσ for t ≥ ∆t,

(6)

with the sources s = s − s0, u = u − u0 and the initial
condition x1 = z = z − x0

1. In the following, A22 is al-
ways assumed to be invertible. Since it is known that for
an arbitrary small η > 0, v = ξ(t, 0) +O(η) where ξ(t, z)

is the solution of
∂ξ

∂t
− η

∂2ξ

∂z2
− ∂ξ

∂z
= Cx2 for t > 0

and z ∈ (0,∆t) with boundary conditions η
∂ξ

∂z
(t, 0) = 0,

ξ(t,∆t) = 0 and homogeneous initial condition, we in-
troduce a Luenberger observer (x̂1, x̂2,ŝ, ξ̂) of (x1,x2,s)
solution for t > 0 of

dx̂1

dt
= A11x̂1 + A12x̂2 + ĝ

0 = A21x̂1 + A22x̂2 + Bu,
dŝ

dt
= −λγT1 ΞT

z=0ṽ,

∂ξ̂

∂t
− η ∂

2ξ̂

∂z2
− ∂ξ̂

∂z
= Cx̂2 + Ξzĝ,

η
∂ξ̂

∂z
(t, 0) = 0, ξ̂(t,∆t) = 0

and v̂ = ξ̂(t, 0),

(7)



with homgeneous initial conditions in x̂1, ŝ and ξ̂. Here,

ĝ = Dŝ + ΞT
z=0(v̂ − v) + γ1

dŝ

dt
, Ξz = −FΛz ,

F = CA−1
22 A21, Λz is solution to the boundary value

problem

−η ∂
2Λz

∂z2
− ∂Λz

∂z
+ EΛz = −I (8)

for z ∈ (0,∆t) with the boundary conditions Λz=∆t =

η
∂Λz=0

∂z
= 0, the matrix E = A11 − A12A

−1
22 A21 and

γ = (γ1,γ2) the solution to{
0 = A11γ1 + A12γ2 + ΞT

z=0Ξz=0γ1 + D,
0 = A21γ1 + A22γ2.

If the matrix E+ΞT
z=0Ξz=0 is stable, then for any control u

the Luenberger observer is convergent in the sense that the
difference between the estimation x̂ and x vanishes when t
goes to infinity.

Remark 1 A similar approach is applicable when the
first differential equation of the nonlinear system (5) is
replaced by the algebraic equation 0 = F1(x1,x2, s).
The first equation of the linearized system is replaced by
0 = A11x1 + A12x2 + Ds and the Luenberger observer
ŝ(t) of s is solution of the system

dŝ

dt
= −λΞ(0)(v̂ − v),

∂ξ̂

∂t
− η ∂

2ξ̂

∂z2
− ∂ξ̂

∂z
= Cx̂2 − λΞ(z)Ξ(0)(v̂ − v),

for t > 0 and z ∈ (0,∆t), where v̂(t) = ξ̂(t, 0), ξ̂ sat-
isfies the same initial and boundary conditions as above,
and Ξ(z) = Cp2(∆t − z) + O(η) where (p1,p2) is
solution of the system A11p1 + A12p2 + D = 0 and
A21p1 + A22p2 = 0.

5.2 Measurement of a DC temperature
In case of a DC heat source s in a sample and choosing

a DC control current, the lock-in measurement is done at
ω = 0 meaning doing an average over a time length ∆t.
Therefore, only the DC component θ0 of the temperature
is useful together with the electrical potential ϕ0 which is
a DC voltage in this case. For simplicity, we remove the
superscript 0, so for instance the voltage measurement is
v =

∫ t
t−∆t

ϕ(σ) dσ. For a reference steady state (θ0, ϕ0)
corresponding to a heat source s0 and a constant control u0,
we introduce a perturbation (θ, ϕ) solution to the linearized
problem about (θ0, ϕ0){

ρC∂tθ = Aθθ +Dθϕ+ s in Ωth,
Aϕϕ+Dϕθ = 0 in Ωel,

with a current source u and the heat source s = s − s0,
where for shortness the precise expression of the linear op-
erators Aθ, Dθ, Aϕ and Dϕ are not detailed here. The
discretization of θ and ϕ being denoted by x1 and x2, the
discretized system has the structure of (6) allowing the use
of the Luenberger observer. Finally, we choose the control

u = u0 + u0 +
1

β
(x̂1 − x0

1)TA12A
−1
22 B

where (x0
1,x

0
2, u

0) is the solution of 0 = A11x
0
1 + A12x

0
2 + Dŝ,

0 = A22x
0
2 + Bu0,

P(x0
1 + x0

1) = T ∗,

where the third equation is the discretization of the temper-
ature objective to be reached.

5.3 Measurement of an harmonic temperature
In case of an harmonic heat source s cos(2ω0τ), a mod-

ulated harmonic control u(t) cos(ω0τ) and a 3ω-lock-in
measurement, we use Equations (1,3,4) of the two-scale
model. Since the temperature θ0 is independent of the fast
time variable τ and α is in the range of 10−3 or less, for
moderate temperature and a moderate precision require-
ment, we use the approximation

1 + αθ0 ≈ 1

without significant lost precision and get,

−div(κ0∇ϕ0) = 0 in Ωel,0

m0 ∂θ
1

∂τ
− divy(k0∇yθ1) =

b0(|∇ϕ0|2 −
∫ 1

0
|∇ϕ0|2 dτ)

+s cos(2ω0τ) in Y th,0

−divy(κ0∇yϕ1) =
−α divy(κ0θ1∇yϕ0) in Y el,0

(9)

with the control u cos(ω0τ) feeding ϕ0. The 3ω-
observation reads,

v(t) =
1

∆t

∫ t

t−∆t

∫ 1

0

εϕ1(σ, τ) cos(3ω0τ) dτdσ. (10)

Two approaches are presented, one is doing a direct com-
putation of s from an observation v. It generates an instan-
taneous discontinuous regulation. The other is a smoother
control involving the Luenberger observer of s.

A direct approach For a given source modulation s,
we state the control u so that a quadratic mean of the tem-
perature θ1 reaches an objective T ∗2ω to the tip:

∫ 1

0
|θ1
|tip|2

dτ = (T ∗2ω)2. We use the decomposition ϕ0 = Φ0 × u
where Φ0 is solution to −div(κ0∇Φ0) = 0 in Ωel,0 with
current source cos(ω0τ). Thus θ1 = Θ1

u × u2 + Θ1
s × s

wherem0 ∂Θ1
u

∂τ −divy(k0∇yΘ1
u) = b0(|∇Φ0|2−

∫ 1

0
|∇Φ0|2

dτ) and m0 ∂Θ1
s

∂τ − divy(k0∇yΘ1
s) = cos(2ω0τ). The ob-

jective equation reads∫ 1

0

|θ1
|tip|2 dτ =

∫ 1

0

|Θ1
u|tip×u

2+Θ1
s|tip×s|

2 dτ = (T ∗2ω)2,

so u is solution to a × u4 + 2b × u2 + c = 0 with
a =

∫ 1

0
|Θ1
u|tip|

2 dτ , b(s) =
∫ 1

0
|Θ1
u|tipΘ

1
s|tip|

2 dτ × s

and c(s) =
∫ 1

0
|Θ1
s|tip|

2 dτ ×s2− (T ∗2ω)2. Finally, we keep
only the solution

u = (
−b(s) +

√
b2(s)− ac(s)
a

)1/2 (11)

under the condition that the objective T ∗2ω is sufficiently
large compared to s so that c(s) < 0.



An observer approach We decompose the control and
the sample temperature amplitudes as u = u0 + u and
s = s0 +s where u and s are small perturbations and intro-
duce the state perturbation (ϕ0, θ

1
, ϕ1) ≈ (ϕ0 − ϕ0

0, θ
1 −

θ1
0, ϕ

1−ϕ1
0), about a reference solution (ϕ0

0, θ
1
0, ϕ

1
0) of the

nonlinear problem (9). After linearization of the equation,
decomposition of ϕ0, θ

1
and ϕ1 over the 1ω0, 2ω0 and

3ω0 components respectively, and discretization thanks to
a FEM, it results a linear system on the form (6) where
x1 and x2 are the discretization of θ

1
and (ϕ0, ϕ1). Thus

Remark 1 applies and the control expression (11) is used
where s is replaced by s0 + ŝ and u by u0 +u which allows
the determination of u.
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