
Computer–Aided Multiscale Model Derivation for MEMS Arrays∗

B. Yang1,2, W. Belkhir3, R. N. Dhara2, M. Lenczner2 and A. Giorgetti3
1Department of Applied Mathematics,Northwestern Polytechnical University

710129 Xi’an Shaanxi, China
2FEMTO-ST, Département Temps-Fréquence, University of Franche-Comté,

26 chemin de l’Epitaphe, 25030 Besançon Cedex, France
3LIFC, University of Franche-Comté,

16 route de Gray, 25030 Besançon Cedex, France
Email: bin.yang@femto-st.fr, michel.lenczner@utbm.fr, rajnarayan.dhara@femto-st.fr,

walid.belkhir@lifc.univ-fcomte.fr, alain.giorgetti@univ-fcomte.fr

Abstract
We are currently developing software dedicated to mul-

tiscale and multiphysics modeling of arrays of micro and
nanosystems. Unlike traditional software that is based on
models built once and for all, here this is the software
that constructs models. It is based on the mathematical
Two-Scale Transform, a technique for asymptotic methods,
together with formal specification and verification tech-
niques in computer science, combining formal transforma-
tions and term rewriting and type theory. We aim at taking
into account a wide range of geometries combining thin
structures, periodic structures with the possibility of multi-
ple nested scales and any combination of these features. In
this paper we present the principle of our methods and our
first results.

1. Introduction

Fig. 1: An array of micro-levers for parallel AFM applica-
tions. A courtesy of A. Meister from CSEM Switzerland.

Simulation software available on the market does not take
into account large arrays of micro and nanosystems such
as that shown in Figure 1. From the point of view of ge-
ometric features, the software we develop aims at filling
this gap. In fact, it will aid to design multiphysics systems
with high contrast in equation coefficients and complex ge-
ometries including thin structures, periodic structures with

∗This work is partially supported by the European Territorial Cooper-
ation Programme INTERREG IV A France-Switzerland 2007-2013.

possibly many nested scales, and combinations of these.
The produced simulations should be light enough to be in-
serted into parameter identification and optimization loops.
The software is based on multiscale models, especially on
models obtained by asymptotic methods. An asymptotic
model is derived from a system of partial differential equa-
tions (PDEs) when taking into account that at least one pa-
rameter is very small, as for a thin structure (small thick-
ness) or for a periodic structure (small ratio of cell size to
global size). The resulting model, another system of PDEs,
is obtained by taking the mathematical limit of the nomi-
nal model, in some energy sense, when the small parame-
ters are going to zero. This approach provides a reasonably
good approximation and has the advantage to be rigorous
and systematic which are factors of reliability. The result-
ing PDEs can be implemented in simulation software as for
instance a finite element based simulator, and simulations
turn to be fast as needed. We quote that the literature in
this field is vast and that a large number of techniques have
been developed for a large variety of geometric features
and of physical phenomena. However, none of them have
been implemented in a systematical approach to render it
available to engineers as a design tool. In fact, each pub-
lished paper focus on a special case regarding geometry or
physics, and very few works are considering a general pic-
ture. In our software, we treat the problem of systematic
implementation of asymptotic methods in the software by
implementing the construction of models rather than the
models themselves. This approach would cover many sit-
uations from a small number of bricks. It combines two
types of tools, namely the mathematical Two-scale Trans-
form originally introduced in [1, 2, 3] (also referred as
the Unfolding Method) to model asymptotic periodic struc-
tures together with formal specification techniques in com-
puter science, combining term rewriting, λ-calculus and
types [4, 5, 6, 7, 8]. The software is written in the sym-
bolic computation language MapleTM. Regarding the Two-
Scale Transform technique, we have extended its domain
of application to cover in the same time homogenization
of periodic media, see for instance [9], and methods for
asymptotic analysis for thin domains, see [10]. Compared
to other techniques, ours requires more modular calcula-
tions and avoids any non-constructive proof.

In the paper we present each aspect of our method as
well as our first results. It is organized as follows. Sec-

1

tion 2. introduces the mathematical tools used in model
derivation and the example under study. In Section 3. we
detail our design methodology, the architecture of our soft-
ware and its theoretical foundations. Section 4. explains the
model derivation which has been validated by the software
and presents a comparison between the numerical simula-
tions of the starting model and the homogenized one. The
errors estimation is calculated and discussed.

2. The mathematical tools used for model derivation
To date, the program covers only the elliptic second order
PDE,

−
d∑

i,j=1

∂

∂xi
(aij(x)

∂

∂xj
u(x)) = f(x), (1)

posed in a region Ω in Rd consisting of subregions each of
which may have a periodic structure, be thin or combining
these two features. The coefficients aij of the equation may
also be periodic. The boundary conditions can be Dirich-
let conditions u = g on a part Γ1 of the boundary ∂Ω for a
given g, and Neumann conditions

∑d
i,j=1 njaij(x)

∂
∂xj

u =

h on the other part Γ2 of the boundary with outward unit
vector (n1, .., nd) for a given h. This partial differential
equation appears in a number of physical models such as
the stationary diffusion equation, the equation of electro-
statics or a model for elastic beam in torsion. We assume
that all small parameters of the problem are expressed in
terms of a single one denoted by ε.
Example: For the sake of illustration, we present the ex-
ample of thermal equilibrium of the AFM array, shown in
Figure 1, connected to a thin bar and placed in a vacuum,
see Figure 2. The bar thickness is in the same range as
the cell sizes. A heat source is placed in each cantilever
to model the presence of actuations by thermo-elastic cou-
pling. The heat flux at all boundaries is vanishing (h = 0)
except at the bar end and at the left and bottom sides of the
lever array where a temperature is imposed at g = 0◦C.
Modelling is done in two dimensions, so that the matrix a
represents the two-dimensional thermal conductivity and f
the two-dimensional density of thermal source.
Here, we do not detail the mathematical steps of construc-
tion of asymptotic model, but we will just review the math-
ematical objects that are manipulated in order to explain,
in Section 3, how they are treated in terms of formal com-
puting. Several proofs have been published in [11], [12],
[3], [13], and [14]. Here we adapt the proofs of the paper
[13] where an effort has been made to formulate proofs in
a modular form and to avoid any non-computational steps.
The steps in this formal method are rigorously specified
at a high level of generality, that make them independent
of the domain geometry and applicable to other equations.
The model derivation starts from the variational formula-
tion associated to the classical formulation boundary value
problem (1). Find u ∈ V such that

d∑
i,j=1

∫
Ω

aij
∂u

∂xi

∂v

∂xj
dx =

∫
Ω

f v dx (2)

Fig. 2: Geometry and boundary conditions for an array of
cantilevers connected to a beam

Fig. 3: Flowchart representing the Two-Scale Transforma-
tion of the region Ω

for all v ∈ V where V represents the set of admissible
functions

V = {u | u = 0 on Γ1}.

We observe that we have dropped the question of function
regularity that should be taken into account in the set of
admissible functions because this has not yet been taken
into account in the implementation.
The variational formulation requires the definition of re-
gions as Ω and their boundaries as Γ1 and Γ2, of variables
as x = (x1, .., xd), of functions as w(x) and v(x), of set
of functions as V , and then of operations associated with
them. Beyond simple operations such as addition or mul-
tiplication between functions, it is required to define for-
mally the integral over a region and the sum over a set of
indices. Once these mathematical objects have been de-
fined, we also introduces properties as Green’s formula, the
natural extension of the integration by part formula,∫

Ω

∂w

∂xi
v dx = −

∫
Ω

w
∂v

∂xi
dx+

∫
∂Ω

w v ni dx,

that may be used during the proof.
On the other hand, the model derivation relates to the Two-
Scale Transform whose principle is shown in Figure 3.

2

It consists of a phase of region splitting into several sub-
regions (Ω1 ∪ Ω2 in the example) requiring different treat-
ments. If a subregion is not subject to any simplification
when its processing stops. Otherwise, it is partitioned into
a family of periodic cells, even if it does not undergo a sim-
plification to the periodicity, and is transformed (by a pro-
cess not detailed here) into the product of so-called macro-
scopic and microscopic regions. The latter contains all the
information on the microstructure of the sub-region while
the first is only used to locate the position of the cells so
that in the case of a thin structure its dimension is that of
the neutral axis or plane. Figure 3 illustrates this construc-
tion process on the example where Ω1 is a periodic region
and Ω2 a thin region. Their image pairs are denoted by
(Ω̃1, Y1) and (Ω̃2, Y2) respectively. By composition with
the above operation, a function defined on a sub-region is
transformed into a function defined on the product of its
macroscopic and microscopic regions. This defines the
linear operator T named the Two-Scale Transform. For
demonstration purposes, we defined the adjoint T ∗ of T .
Since T is a linear operator which transforms a function de-
fined on a subdomain Ω1 into a product Ω̃1×Y1, conversely
its adjoint for the L2-inner product is defined from Ω̃1×Y1

to Ω1 by the equality∫
Ω1

T ∗w v dx =

∫
Ω̃1×Y1

w Tv dxdy

for w and v respectively defined in Ω̃1 × Y1 and Ω1. To
derive the approximate model, we require the concept of
approximation of a function v by another function w in the
sense of the small parameter ε, that we denote by v = w+
O(ε), together with the algebraic rules on O(ε). Finally,
the linearity of some operators is used repeatedly.

3. Software architecture
This section presents our software design methodology

and its theoretical foundations. The software will imple-
ment the sequence of modelling steps depicted in Figure 4.
It will be named MEMSALab, for “MEMS Arrays Labora-
tory”. The software will transform a nominal multiphysic
model, composed of a geometry and PDEs, into a multi-
scale (MS) asymptotic model approximating the initial one.
This transformation depends on specifications about peri-
odic and thin parts of the model, which are formulated by
the designer.

The software will be composed of modules. The mod-
ules composing the software kernel are represented in the
grey part of Figure 4. The Data Structure Constructor is in
charge of importing the nominal model from a finite ele-
ment analysis and simulation software package of physics
and engineering applications, e.g. COMSOL. Conversely,
a Geometry & Equation Generator will export the derivated
multiscale model towards COMSOL after being adapted so
that the simulation with COMSOL can be done effectively.
Finally the results of this simulation will be brought back
to the physical domain by means of a Inverse MS Trans-
form module. The modelling step named Multiscale Data
Structure Constructor is essentially devoted to the exten-
sion of the internal data structure with additional multi-
scale data. Its input is a symbolic representation of the

geometry produced by the Data Structure Constructor from
the numerical data from COMSOL. Data structures are de-
tailed in Section 3.1. The purpose of the module named
Multiscale (MS) Model Constructor is to automatically con-
struct the asymptotic multiscale model from the multiscale
data structures. Yet this purpose is not completely ful-
filled since it requires a unification of multiscale methods.
However two parts of this module are already built and
tested, namely a symbolic transformation package and a
type-checker. Sections 3.2 and 3.3 respectively detail these
two basic blocks and their theoretical foundations.

3.1 Data structures
The multiscale data structures are designed and imple-

mented to be complete, flexible and able to describe com-
plex geometries, but without redundancies. Four kinds of
data structures with increasing complexity have been de-
fined.

The simplest ones are formal expressions in the host
language Maple. These formal expressions are composed
of symbols representing mathematical operations (such as
sum, product, . . .) or operators (such as partial derivation
or integration) that are applied in a hierarchical way on
similar expressions and on atomic symbols, such as region
and (mathematical) variable names. For instance, Eq. (2)
is represented by a single Maple expression with = as top
symbol. Most of these symbols are usefully predefined in
Maple, but we adapt some of them and define new symbols
(e.g. the two-scale operators). For instance, the Maple-
defined symbol int for integration is not general enough
to be used. We introduce a distinct integration symbol
Integral for integration over a region and encode its se-
mantics by equalities (data structures of the fourth kind, see
below for details).

The second kind of data structures describes geomet-
rical regions and their boundaries, mathematical functions
and admissible functional spaces. They are stored in Maple
arrays. Functional spaces are also formalized in the multi-
scale data structures and can be used and modified by the
Multiscale Model Constructor.

Data structures of the third level are formal equalities
(pairs of Maple expressions) encoding equational asser-
tions such as boundary hypotheses. The fourth level of data
structures represents the algebraic properties of the new op-
erators (two-scale operators, integration over a region, etc)
as systems of oriented equalities, a.k.a. rewriting strategies,
as detailed in Section 3.2.

3.2 Symbolic transformation package
Most of the transformations performed by multiscale

methods are based on quasi-systematic derivations of
equalities. The classical way to automate these derivations
is to consider mathematical expressions as symbolic ones,
called terms, and to give a computational meaning to math-
ematical equations. The idea is to orient the equality x = y
into a rewrite rule x → y which states that every occur-
rence of an instance of x can be replaced with the corre-
sponding instance of y. Consequently equational deriva-
tions are reduced to a series of term rewritings.

Algebraic computation and term rewriting are two re-
search domains with strong similarities. Both are sep-

3

Fig. 4: Flowshart of the modelling steps

arately well-studied but there are only few works about
the combination of algebraic computation and term rewrit-
ing [4, 15, 16, 6].

Term rewriting provides a theoretical and computa-
tional framework which is very useful to express, study and
analyze a wide range of complex dynamic systems [17, 18].
It is characterized by the repeated transformation of a data
object such as a word, term or graph. Transformations
are combinations of rules specifying how to transform an
object into another one when it follows a specific pattern.
Rule application can be restricted by additional conditions
and rules can be combined by specifying strategies con-
trolling the order and the way rules are repeatedly applied.
Term rewriting is used in formal semantics to describe the
meaning of programming languages and more generally in
computer science to describe program transformations and
to perform automated reasoning. It is central in systems
where the notion of rule is explicit such as expert systems,
algebraic specifications, etc.

The computer algebra system MapleTM is widely used
in the symbolic computation community and we have re-
tained it for a prototypal implementation of the algorith-
mic aspects of multiscale methods. Maple is a suitable lan-
guage for combining function-based and rule-based sym-
bolic transformations. Unfortunately, its rewriting func-
tion does not provide the user with control on how and
where rules must be applied. We have implemented a
Maple package, named symbtrans, extending Maple
with rewriting-based programming where rules, strategies
and usual Maple functions can be freely combined. The
reader is invited to see [6] for details. Let us briefly explain
the theoretical foundations of this package.

The transformation language provided by the
symbtrans package is deliberately an adaptation
for Maple of popular strategy languages such as ρ-log
[5] or TOM [19]. The common theoretical basis for all
these works is the ρ-cube [7], an extension of the λ-cube
where rewriting rules extend function abstractions, with
the same hierarchy of type systems. The current version
of our transformation language corresponds to the untyped
version of the ρ-cube, called the ρ-calculus.

Among other advantages our transformation language
smoothly integrates with standard Maple functions. Con-
sequently, the Maple programmer learns it quickly and is
free to mix function- and rule-based programming styles.
Moreover all the features of her development environment
(such as refactoring, code completion, dependency analy-
ses, etc) are preserved for free.

Each mathematical tool introduced in Section 2.,
namely the integral and PDE calculus, the algebraic rules
on O(ε) and the algebraic properties of the two-scale oper-
ators, is expressed in the software by means of the notion of
strategy. Roughly speaking, a strategy is a combination of
rewriting rules. It expresses the way the rules are applied.
Thanks to the notion of strategy the formal proof is close to
the mathematical one in terms of size and nature of steps.

3.3 Type-checker
This section shows the interest of a typing discipline

for the formalization of multiscale methods. In computer
science type systems complete grammatical descriptions of
programming languages with additional contextual condi-
tions of well-formedness. For example, the fact that a math-
ematical expression under an integration sign has to be in-
tegrable is a contextual information that is better detected

4

by well-formedness rules than by grammatical rules. The
set of rules that relate the type of a mathematical expression
with the one of its sub-expressions is called a type system.
The reader is invited to see [8] for more information on
type theory.

We propose a first type system which basically corre-
sponds to the Basic Extended Simple Type Theory [20]. In
this system region names (Ω, Ω1, Ω2, Ω̃1, Ω̃2, Y1 and Y2 in
the example) are considered as type constants, i.e. atomic
type names. The other type constants are ∗ for Booleans
and R for real numbers. The notation e : A asserts that e is
an expression of type A. The type A → B denotes the set
of functions whose domain is A and co-domain is B. More-
over, any Cartesian product of region names also forms a
type. For instance, the functions w defined on Ω̃1 × Y1

in Section 2. are expressions of type Ω̃1 × Y1 → R. It is
denoted by w : Ω̃1 × Y1 → R.

For any region Ω, any variable x such than x : Ω and
any expression e such that e : A or e : A → B, where
A is a Cartesian product composed of other regions than Ω,
the expression

∫
Ω
e u dx (where u is any expression) can be

rewritten as e
∫
Ω
u dx and the expression ∂e/∂x as 0. Such

simplification rules of major importance are made possible
thanks to the typing information. The type checking pro-
cess requires that the user declares the type of all the math-
ematical objects used in the proof (via the data structures
described in Section 3.1). These objects are the constants,
variables, functions, O(ε) terms, etc. For all the possible
software inputs the types of the standard mathematical op-
erators such as derivation and integration are predefined in
the type system.

For each region Ω we can define the type of the Two-
Scale Transform TΩ of functions defined on Ω as (Ω →
R) → (((ν(Ω)×µ(Ω)) → R) where ν(Ω) (resp. µ(Ω)) de-
notes the macroscopic (resp. microscopic) region of Ω. But
it is more generic and compact to consider a single Two-
Scale Transform T : (α → R) → (((ν(α)× µ(α)) → R),
where α is a type variable [20]. In the present case, this
variable can only be replaced by any region name and this
replacement produces an instance of this polymorphic op-
erator. Its polymorphic adjoint is T ∗ : (((ν(α)× µ(α)) →
R) → (α → R).

For multiscale methods, regularity conditions and split-
ting operations could additionnally be checked by a richer
type system. Regularity conditions for a mathematical
function (i.e. derivability and integrability) are usually de-
scribed by its membership to an adequate functional space.
Splitting operations introduce subregions and unions of re-
gions. In the present type system regions are considered as
types, but simple type theories neither support subtyping
nor type union. Two more complex type theories could be
good candidates for an extension, namely dependent type
theory [8, Section 6] and subtyping theories. We are cur-
rently working on these extensions.

4. Validation
When applying our software to Eq. (2), we specify that

the Two-Scale Transforms to be used are T 1 and T 2 cor-
responding to Fig. 3. The two-scale model provided by

the software includes the microscopic equation posed in the
Y1 cell with the coefficient a1 = T 1a, the function space
W 1 = {v defined in Y1 | v is Y1-periodic} and the varia-
tional formulation: Find w1

i ∈ W 1 such that

2∑
k,ℓ=1

∫
Y1

a1kℓ
∂w1

i

∂yk

∂v

∂yℓ
dy = −

2∑
k,ℓ=1

∫
Y1

a1kℓδik
∂v

∂yℓ
dy (3)

for all v ∈ W 1. It also includes a problem posed in the
microscopic cell of the thin part Y2 even if the latter has not
the periodicity feature. This problem is written in a similar
manner not detailed here and leads to the definition of a2
and w2

i . It follows the definition of homogenized thermal
diffusion coefficient and density of heat source per unit area
in the first macroscopic part Ω̃1,

aHij =

2∑
k,ℓ=1

1

|Y1|

∫
Y1

a1kℓ(δik +
∂w1

i

∂yk
)(δjℓ +

∂w1
j

∂yℓ
) dy

and fH =
1

|Y1|

∫
Y1

T 1f dy.

Similar formula yields aH and fH in Ω̃2 the second macro-
scopic part. The two-scale model also includes the macro-
scopic problem posed on Ω̃1 ∪ Ω̃2 the macroscopic region
with V 0 = {v defined in Ω̃1∪Ω̃2 | v = 0 on Γ1∩(Ω̃1∪Ω̃2)}
the macroscopic admissible function space and the varia-
tional formulation: Find u0 ∈ V 0 such that

2∑
i,j=1

∫
Ω̃1

aHij
∂u0

∂x̃1
i

∂u0

∂x̃1
j

dx̃1 +

∫
Ω̃2

aH11
∂u0

∂x̃2
1

∂u0

∂x̃2
1

dx̃2
1 (4)

=

∫
Ω̃1

fHv0 dx̃1 +

∫
Ω̃2

fHv0 dx̃2
1

for all v ∈ V 0. The final approximation in the physical
region Ω is

u ≈ B1(u0 + ε
2∑

i=1

(yi + w1
i)
∂u0

∂x̃1
i

) in Ω1, (5)

where w1
i = w1

i − 1
|Y1|

∫
Y1

w1
i dy and B1 is the approximate

inverse two-scale transform defined for any Y1-periodic
function v(x̃1, y) by (B1v)(x) = v(x̃1, x−ε/2

ε). A similar
approximation is built in Ω2.

(a) (b)

Fig. 5: Results for u0 by FEM simulations for (a) the nom-
inal model (b) the two-Scale model

Now we compare the results obtained with the nomi-
nal model and the simplified model, see Fig. 5. To obtain

5

sufficient accuracy of calculations with the software COM-
SOL we used meshes with 459,840 elements to model the
complete problem, of 7664 elements for both microscopic
problems and with 305 elements for the macroscopic prob-
lem. The relative quadratic error(∫

Ω
|u− u0|2dx

)1/2(∫
Ω
|u0|2dx

)1/2
between u, the model nominal solution, and u0, this of
the homogenized model, is 6.85%. The computing time
on a laptop for the three problems are respectively 3.734s,
0.046s and 0.015s, giving a ratio of computation time of
the nominal model and simplified model of 0.029.

5. Conclusion
We presented the basic principles of a new software

dedicated to the generation of multiscale models for ap-
plications to MEMS arrays and their illustration on an ex-
ample. The symbolic transformation package and the type-
checker have been successfully applied together to a couple
of models. In particular, the asymptotic model (4) from the
running example has been produced from model (2) with
the assistance of these tools. We underline that there are
a number of interests with our approach. Clearly, the fi-
nal model is “correct-by-construction”, human errors are
avoided, and the model derivation effort is dramatically
reduced. In the point of view of a MEMS designer, this
software will generate simplified analytical and numerical
models corresponding to a design and to a set of requested
simplifications. Since the computation will be fast enough,
he will test a variety of simplifications and retain the one
satisfying the best tradeoff between simulation time and
precision.

References
1. M. Lenczner. Homogénéisation d’un circuit

électrique. C. R. Acad. Sci. Paris Sér. II b,
324(9):537–542, 1997.

2. J. Casado-Dı́az. Two-scale convergence for nonlin-
ear Dirichlet problems in perforated domains. Proc.
Roy. Soc. Edinburgh Sect. A, 130(2):249–276, 2000.

3. D. Cioranescu, A. Damlamian, and G. Griso. Pe-
riodic unfolding and homogenization. C. R. Math.
Acad. Sci. Paris, 335(1):99–104, 2002.

4. H. Cirstea and C. Kirchner. The rewriting calcu-
lus — Part I and II. Logic Journal of the Interest
Group in Pure and Applied Logics, 9(3):427–498,
May 2001.

5. M. Marin and F. Piroi. Rule-based programming
with mathematica. In In Sixth Mathematica Sympo-
sium (IMS 2004), pages 1–6, 2004.

6. W. Belkhir, A. Giorgetti, and M. Lenczner.
Rewriting and symbolic transformations for multi-
scale methods. December 2010. Submitted,
http://arxiv.org/abs/1101.3218v1.

7. H. Cirstea, C. Kirchner, and L. Liquori. The rho
cube. In F. Honsell and M. Miculan, editors, FoS-

SaCS, volume 2030 of Lecture Notes in Computer
Science, pages 168–183. Springer, 2001.

8. H. Geuvers. Introduction to type theory. In A. Bove,
L. Barbosa, A. Pardo, and J. Pinto, editors, Lan-
guage Engineering and Rigorous Software Develop-
ment, volume 5520 of Lecture Notes in Computer
Science, pages 1–56. Springer, 2009.

9. A. Bensoussan, J-L. Lions, and G. Papanicolaou.
Asymptotic analysis for periodic structures, vol-
ume 5 of Studies in Mathematics and its Applica-
tions. North-Holland Publishing Co., Amsterdam,
1978.

10. P. G. Ciarlet. Mathematical elasticity. Vol. I, vol-
ume 20 of Studies in Mathematics and its Applica-
tions. North-Holland Publishing Co., Amsterdam,
1988.

11. M. Lenczner and G. Senouci-Bereksi. Homoge-
nization of electrical networks including voltage-to-
voltage amplifiers. Math. Models Methods Appl.
Sci., 9(6):899–932, 1999.

12. J. Casado-Dı́az. Two-scale convergence for nonlin-
ear Dirichlet problems in perforated domains. Proc.
Roy. Soc. Edinburgh Sect. A, 130(2):249–276, 2000.

13. M. Lenczner and R. C. Smith. A two-scale
model for an array of afm’s cantilever in the static
case. Mathematical and Computer Modelling, 46(5-
6):776–805, 2007.

14. D. Cioranescu, A. Damlamian, and G. Griso.
The periodic unfolding method in homogeniza-
tion. SIAM Journal on Mathematical Analysis,
40(4):1585–1620, 2008.

15. S. Fèvre and D. Wang. Combining algebraic
computing and term-rewriting for geometry theo-
rem proving. In Proceedings of the International
Conference on Artificial Intelligence and Symbolic
Computation, pages 145–156, London, UK, 1998.
Springer-Verlag.

16. R. Bündgen. Combining computer algebra and rule
based reasoning. In Integrating Symbolic Math-
ematical Computation and Arti Intelligence. Pro-
ceedings of AISMC-2, volume 958 of LNCS, pages
209–223. Springer, 1995.

17. P. Baldan, C. Bertolissi, H. Cirstea, and C. Kirch-
ner. A rewriting calculus for cyclic higher-order
term graphs. Mathematical Structures in Computer
Science, 2006.

18. H. Cirstea, G. Faure, and C. Kirchner. A rho-
calculus of explicit constraint application. The jour-
nal of Higher-Order and Symbolic Computation,
2005.

19. E. Balland, P. Brauner, R. Kopetz, PE. Moreau, and
A. Reilles. Tom: Piggybacking Rewriting on Java.
In RTA, pages 36–47, 2007.

20. W. M. Farmer. A basic extended simple type theory.
SQRL report 14, McMaster University, 2003.

6

