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Abstract
In this paper, we present new tools and results devel-

oped for Arrays of Microsystems and especially for Atomic
Force Microscope (AFM) array design. For modeling, we
developed a two-scale model of cantilever arrays in elas-
todynamics. A robust optimization toolbox is interfaced
to aid for design before the microfabrication process. A
model based algorithm of static state estimation using mea-
surement of mechanical displacements by interferometry is
stated. Quantization of interferometry data processing is
analyzed for FPGA implementation. A robust H∞ filter-
ing problem of the coupled cantilevers is solved for time-
invariant system with random noise effects. Our solu-
tion allows semi-decentralized computing based on func-
tional calculus that can be implemented by networks of dis-
tributed electronic circuits as shown in a previous paper.

1. Introduction
Since its invention [1], Atomic Force Microscopes

(AFM) have became very powerful tools for specimen
imaging and nanomanipulation. But these devices suffer
from relatively low speed of operation, and from low relia-
bility of their measures. So, modeling and model-based op-
timization or filtering constitute a relevant issue to improve
their performances. Now, a number of research laboratories
are developing large arrays of AFMs, as this represented in
Fig. 1, that achieve a same task in parallel, and improve
operation speed. One of the design problems encountered
in such systems comes from global effects namely from
deformation of the common base mainly in static regime,
and from cross-talk between cantilevers in dynamic regime.
For model-based optimization or filtering, the full device
must be represented by a single model. To prevent pro-
hibitive computation time, in a previous work, we intro-
duced a two-scale model yielding fast simulations. Now,
we present our results related to parameter optimization,
and to H∞ filtering problem for real-time control of AFMs,
both being based on our two-scale model.

Our simplified two-scale model has been introduced in
[2], and its derivation is detailed in a submitted paper. It
is rigorously justified thanks to an adaptation of the two-
scale approximation method introduced in [3], and to fur-
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Fig. 1: (a) optical image of a 4 ×17 probe array with
SiN cantilevers anchored on parallel-beam base. The dark
square at the end of each cantilever corresponds to the pyra-
midalshaped tip. (b) SEM images of a probe arrays with
SiN cantilevers anchored on a gridlike base.

ther results in [4]. Its main advantage is that it requires
little computing effort, and that it is reasonably precise for
large arrays. A first investigation for real-time vibration
control of a one-dimensional cantilever array has been car-
ried out in the Linear Quadratic Regulation (LQR) frame-
work. In view of real-time control applications, we have
derived a Semi-Decentralized Approximation of the con-
troller based on functional calculus, and formulated its re-
alization through a Periodic Network of Resistors, see [5].
This approximation method has been carefully validated.

In this paper we focus on the filtering problem or state
estimation. In the past decade, a number of linear filter-
ing techniques have been developed for finite or infinite-
dimensional systems. In this paper, we formulate a model-
based H∞ filtering problem for an AFM array in a classi-
cal way but applied to an infinite dimensional system. The
objective is to estimate the displacement in base though ob-
serving the displacement in cantilevers. We formulate the
theoretical framework of functional calculus for computing
the estimator in a semi-decentralized manner as in [5]. The
numerical results are drawn from this formulation but ob-
tained more directly using a modal decomposition instead
of using the full framework of semi-decentralized approxi-
mation.

Regarding sensing, in some AFM arrays, the deflection
of cantilever was measured by piezoresistive sensor inte-
grated in the cantilever. In the paper [6], a cantilever arrays
equipped with piezoresistive sensors have been demon-



strated in liquid environment. However, this approach suf-
fers from the complexity of the microfabrication process of
implementing the sensor in the cantilever. Additionally, the
signal to noise ratio of piezoresistive arrays is limited due to
the sensor noise. An interferometric readout method with
imaging optics is provided in [7]. This approach does not
suffer from optical cross-talk since the laser light reflected
from one point on the cantilever is collected by only one
pixel of the detector, and this independently of the direc-
tion the laser beam is reflected from the point. However,
interferometry data processing requires heavy computation
which represents a barrier to rapid operation. In order to
FPGA implementation we study their quantization.

This paper is organized as follows. We state the sim-
ple two-scale model and its reformulation in Section 2..
Section 3. contains the robust parameter optimization. The
measurement by interferometry is introduced in Section 4.
and is followed by a quantization analysis of its algorithm.
Section 5. is dedicated to the static state estimation and an
H∞ filtering problem is formulated in Section 6.. Numer-
ical results for the H∞ filtering problem are reported in
Section 6.3.

2. A Two-scale Model for One-Dimensional AFM ar-
rays

2.1 The Direct Model Formulation
We consider a one-dimensional cantilever array com-

prised of an elastic base, and a number of clamped elas-
tic cantilevers with free end equipped with rigid tips, see
Fig. 2. Assuming that the number of cantilevers is suf-
ficiently large, a homogenized model was derived using
a two-scale approximation method. This principle is ex-
ploited in the detailed paper [4] devoted to static regime.
The corresponding model extended to dynamic regime is
introduced in the letter [2]. Both papers were written in
view of AFM application.

Fig. 2: A one-dimensional view of (a) an Array and (b) a
Cell

Our models are formulated from the Euler-Bernoulli
beam model of the whole structure, and we will always
assume that the ratio of cantilever thickness hC to base
thickness hB is small, namely hC

hB
≈ ε∗4/3. The simplified

model is an approximation of the full model in the sense
of small ε∗, the ratio of the cell size ε to array size µ; i.e.
ε∗ = ε/µ. The two-scale approximation of deflection com-
ponent of the vector of mechanical displacement fields is
denoted by u(t, x1, y) where t represents the time variable.
From the asymptotic analysis yielding the two-scale model,
it appears that u is independent of y3 everywhere. More-
over, we consider cantilevers made of an isotropic mate-

rial and neglect variations of y1 7→ u(t, x1, y). So their
motions are governed by a classical Euler-Bernoulli beam
equation in the microscopic space variable y2,

mC∂2
ttu+ rC∂4

y2...y2
u = FC , (1)

with mC their linear mass density, rC their linear stiffness
coefficient, and FC their load per unit length. This model
holds for all x1, and therefore represents motions of an in-
finite number of cantilevers parameterized by x1. For y
varying along the base, y 7→ u(t, x1, y) is constant and
there the displacement u(t, x1) is governed by an equation
posed on a line Γ = {(x1, y2)|x ∈ (0, LB) and y2 = 0}
where LB is the base length in the macroscale x1-direction,

ρB∂2
ttu+RB∂4

x1···x1
u+ ℓCr

C(∂3
y2y2y2

u)|junction = fB .

Here ρB, RB, fB and ℓC are respectively its effective
length mass, its homogenized stiffness tensor, its effective
load per unit surface, and the cantilever width in the ref-
erence cell. The base is assumed to be clamped, so the
boundary conditions are u = ∂x1u = 0 at both ends. The
term rC(∂3

y2y2y2
u)|junction is a distributed load originat-

ing from shear forces exerted by cantilevers at the base at
base-cantilever junctions. Base-cantilever junction condi-
tion states as u|cantilever = u|base and ∂y2u|cantilever = 0.
Other cantilever ends are equipped with a rigid part (the tip
of Atomic Force Microscopes), thus

JR∂2
tt

(
u

∂y2u

)
+ rC

(
−∂3

y2y2y2
u

∂2
y2y2

u

)
=

(
f3

f3(y
tip
2 − LC)

) (2)

at junctions between elastic parts and rigid parts. Here, JR

is a matrix of moments and f3 is a point load at the tip apex
located at y2 = ytip2 in the microscale domain.

2.2 Base/Cantilever Displacement Decomposition
We introduce the extension y 7→ u(., y) of the restric-

tion y 7→ u|base(., y) the displacement in base (which is
in fact independent of y) to the values taken by y in can-
tilevers. So, u is defined in the whole two-scale domain
and we can define its difference with u, ũ = u − u, also
defined in the whole domain. In the base, it is obvious that
ũ = 0 and ∇yu = 0 since u is independent of y. We
formulate the equations satisfied by the couple (u, ũ),

ρB∂2
ttū+RB∂4

x1···x1
ū

+ℓCr
C(∂3

y2y2y2
ũ)|junction = fB , in base

mC∂2
ttũ+mC∂2

ttū
+rC∂4

y2...y2
ũ = FC , in cantilever

(3)

In practice we will work on a model reduced at the mi-
croscopic scale through modal decompositions on can-
tilever modes {ϕk(y2)}k=1..N in L2(0, LC), where the
parameter LC represent the cantilever length in the mi-

croscale domain, ũ(t, x1, y2) ≈
N∑

k=1

ũk(t, x1)ϕk(y2) and



FC(t, x1, y2) ≈
N∑

k=1

fC
k (t, x1)ϕk(y2). In this approxima-

tion, equations (3) yields,
ρB∂2

ttu+RB∂4
x1···x1

u
+ℓCr

C(∂3
y2y2y2

ũ)|junction = fB in base,
mC∂2

ttũk +mC∂2
ttūϕk

+rC
λC
k

(LC)4 ũk = fC
k for each k,

(4)

where ϕ̄k =
∫ LC

0
ϕk dy2 and ϕk(y2) = φk(y2/LC). The

eigenelements (λk,φk)k∈N are solutions to the eigenvalue
problem, posed in (0, 1),

φ′′′′
k = λC

k φk in (0, 1)
φk(0) = φ′

k(0) = 0, at 0(
−φ′′′

k
φ′′
k

)
= λkQ

(
φk

φ′
k

)
at 1.

where Q = N

(
J0 J1
J1 J2

)
N with N =

(
1 0
0 1/LC

)
and Ji =

∫
YR

(y2 − LC)
i dy, i = {0, 1, 2}.

3. The Robust Parameter Optimization Toolbox
The parameters of the array, such as the length, spring

constant and deflection angle of the cantilevers, footprint
of the array, must satisfy requirements for good operation.
Thanks to a recent development design decision making
tools, we can perform sensitivity, multi-objective optimiza-
tion, as well as uncertainty quantification and robustness
analysis. The objective of these tools is to support the an-
alyst in specifying an AFM array design which meets the
performance requirements in the presence of uncertainty
due to both manufacturing tolerances and lack of knowl-
edge in the modeling process. In this paper, we illustrate
a design optimization problem for a one-dimensional array
of cantilevers, see Fig. 3. The array is designed to make

Fig. 3: One-dimensional Cantilever arrays with tips

F Gap the gap between two cantilevers and F Gapcell
the ratio of the void part to the area of each cell as large
as possible, the static displacement at tip apexes at base
F Base as small as possible. The static cantilever deflec-
tion angle should be smaller than three degrees. The pa-
rameters F Gap and F Gapcell must be more than half
of the cantilever width and 0.4 respectively. In Fig. 4,
we present the evolution of the objectives and constraints
based on the mono-objective analysis. It is shown that the
objectives are minimized and all the constraints are nega-
tive. Fig. 5 shows the Pareto plot for the two objective
functions F Gap and F Gapcell based on Monte-Carlo
sampling. A best design is achieved , the compromise of
the two objectives has to be considered.

Fig. 4: Evolution plot of the objectives and constraints

Fig. 5: Multi-objective analysis with Monte-Carlo sam-
pling

4. Measurement by Interferometry
The setup of the measurement scheme is an interfero-

metric system. It is sensitive to the optical path difference
induced by the vertical displacements of cantilevers, see
Fig. 6.

Fig. 6: Experimental set-up (sketch and picture) of the in-
strument for parallel AFM using two-dimensional probe ar-
rays.

In each cantilever, we neglect the variations of displace-
ments u with respect to x1. We write the intensity of a
fringe pattern written in the two-scale frame,

I(t, x1, y2) = A cos (2πfx1 + θ(t, y2))with θ =
2π

λ̄
(b−u).

It is measured in a band perpendicular to the cantilever axis
and parameterized by y2 ∈ (α, β) as represented in Fig.
7. The parameters f and θ are two unknowns represent-
ing the spatial carrier frequency and the phase modulation



Fig. 7: Fringes and profile intensity of the cantilever

of fringes, A is the modulation amplitude, λ̄ is the wave-
length and b is related to the constant path difference be-
tween the two interfering waves. An algorithm was de-
veloped to determine both the spatial frequency f and the
phase modulation θ which yields an approximation of the
average displacement along the measurement zone

Y =
1

|β − α|

∫ β

α

u(x1, y2) dy2 (5)

which is used hereafter in the static state estimation and
filtering problems.

The algorithm, determining the spatial frequency f (or
period T = 1

f ) and the phase θ, is intended to be imple-
mented on a quite small FPGA, where computations will
be achieved out using integers only. Initially, the algorithm
was written using high level functions. All steps have been
rewritten and simplified in order to minimize costly oper-
ations as divisions, and to use integer numbers instead of
floating point numbers (quantization). This was achieved
by multiplying each number by a same power of 2 (ref-
ered as the scaling factor) and then by truncation. We
compare the two algorithms. Figure 8 shows experiment
results helping in determining the scaling factor insuring
the best compromise between not being too small that de-
creases the precision and not too large which yields imple-
mentation problems in particular for multiplications. They
were carried out for three pairs of periods and phases (rad)
( 1f , θ) ∈ {(4.5, 1), (3.5, 0.1), (3, 0.2)}. The curves rep-
resents the percentage errors for phase with respect to the
power of the scaling factor. The error is constant for scaling
factors above 26. Figure 9 represents the percentage errors
between the phases provided by the algorithm using float-
ing point numbers and the one using integer numbers based
on a 28 scaling factor. Experiments are reported for three
periods 1

f ∈ {6, 4.5, 3} and for phases varying between 0

and π
2 .

5. Static State Estimation
We provide the mean to estimate base displacements

from interferometric measurements in cantilevers using our
two-scale model in the static operating regime. The latter
is derived by eliminating the time terms from the elasto-
dynamics model, presented in Section 2.. We assume that
there is no body load i.e. FC = 0 which yields the analyti-
cal solution

ũ(x1, y2) =
y22
6rC

(
3ytip2 − y2

)
f3

where ytip2 is the tip position. We require two measures
along two parallel lines y2 = y0,12 and y2 = y0,22 corre-
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sponding to two phases θ1 and θ2 to build their difference
δθ = θ2− θ1. We observe that u(x1, y

0,2
2 )−u(x1, y

0,1
2 ) =

ũ(x1, y
0,2
2 )− ũ(x1, y

0,1
2 ) = − λ̄δθ

2π which yields an expres-
sion of the tip force f3 = − λ̄δθ

2π(K(y0,2
2 )−K(y0,1

2 ))
. From

this force we can determine the base displacement from the
elasto-static equation.

6. Robust Filtering
6.1 Filtering Problem Statement

For the filtering problem in AFM array application we
take into account unknown noise associated to interfer-
ometry measurements as well as other noise sources as
air or liquid environment, thermal effect, electromagnetic
noise. To deal with these uncertainties, we uses an H∞
theory which is based on the worst case approach. We
set UN = (u, (ũk)k=1,..,N , ∂tu, (∂tũk)k=1,..,N )T the

state variable, AN =


0 0 I 0
0 0 0 I

−Ax1 −AN
x1y 0 0

Ax1 ϕ̄k −AN
y 0 0


the state operator, with Ax1 = RB

ρB ∂4
x1···x1

,

AN
x1y = ℓCrC

ρB (∂3
y2y2y2

ϕk(0))k=1,..,N and AN
y =(

− ℓCrC

ρB ∂3
y2y2y2

ϕk(0)ϕ̄k + rC

mC(LC)4
λC
k

)
k=1,..,N

,

BN =

(
0 0 I 0
0 0 0 I

)T

the perturbation operator.

The perturbations in the state system being denoted by
wN

1 ∈ W1 = L2(Γ)× L2(Γ)N , the state equation is

∂tU
N = ANUN +BNwN

1 for t ∈ R+ and UN (0) = UN
0 .



Here AN is the infinitesimal generator of a continuous
semigroup on the separable Hilbert space H = H2

0 (Γ)×
L2(Γ)N× L2(Γ)× L2(Γ)N with dense domain D(AN ) =
H4(Γ) ∩H2

0 (Γ)× L2(Γ)N ×H2
0 (Γ)× L2(Γ)N . The per-

turbations operator BN ∈ L(W1,H).
The observation comes from interferometry measure-

ment as in (5) but take into account an additional unknown
noise w2. Then, using the modal decomposition with re-
spect to y2, the noise disturbed measurement turns to be
given by

Y N = CNUN +DNwN
2 ∈ Y = L2(Γ)

the space of measurements, with the observation oper-

ator CN =
(
I 1

β−α

(∫ β

α
ϕk dy2

)
k=1,..N

0 0
)

∈
L(H,Y), wN

2 ∈ W2, and the weight operator for the mea-
surement noise DN = I ∈ L(W2,Y). We assume that
(AN ,BN ) is stabilizable and that (CN ,AN ) is detectable.
The output operator is L : H −→ Z , and the partial state
to be estimated is

ZN = LUN .

Here, we estimate the displacement at base, so L =(
I 0 0 0

)
and Z = H2

0 (Γ). We define the estima-
tion ẐN of ZN and the worst-case performance measures
as

J = sup
(UN

0 ,W1×W2)

||ZN − ẐN ||2Z
||wN

1 ||2W1
+ ||wN

2 ||2W2

.

The filtering problem is stated as: Given γ > 0, find a
filter Y N −→ ZN , such that J < γ2. This problem has a
solution if and only there exists a unique self-adjoint non-
negative solution P to the operational Riccati equation,

(ANP + PAN∗ − PCN∗CNP
+ 1

γ2PL∗LP + BNBN∗)z = 0,
(6)

for all z ∈ D(AN∗). The adjoint AN∗ of the unbounded
operator AN∗ is defined from D(AN∗) ⊂ H to H by the
equality (AN∗z, z′)H = (z,ANz′)H for all z ∈ D(AN∗)
and z′ ∈ D(AN ). The adjoint BN∗ ∈ L(H,W1) of
the bounded operator BN is defined by (BN∗z, w)W1 =
(z,BNw)H, the adjoint CN∗ ∈ L(Y,H) being defined
similarly. The filter Y N 7→ ẐN is given as follows

∂tÛ
N = AN ÛN +K(Y N − CN ÛN ), ÛN (0) = 0,(7)

ẐN = LÛN for t ∈ R+,

where the filter gain is K = PCN∗.

6.2 Functional Calculus Based Approximation
This subsection is devoted to apply the approximation

method introduced in [8] and [9]. We denote by Λ, the
mapping: Λ : f −→ v, where v is the unique solu-
tion of ∂4

x1···x1
v = f in Γ with the boundary conditions

v = ∂x1v = 0 for x1 = {0, LB}. The spectrum σ (Λ) is
discrete and made up of positive real eigenvalues λk. They
are solutions to the eigenvalue problem Λϕk = λkϕk with
||ϕk||L2(Γ) = 1. In the sequel, Iσ = (σmin, σmax) refers to
an open interval that includes the complete spectrum. For a

given real valued function g, continuous on Iσ, g(Λ) is the
linear self-adjoint operator on the space X = L2(Γ) de-

fined by g(Λ)z =
∞∑
k=1

g(λk)zkϕk, where zk =
∫
Γ
zϕk dx.

We introduce the factorization of the filter gain K un-
der the form of a product of a matrix of functions of
Λ. To do so, we introduce the change of variable op-

erators ΦH =


Λ

1
2 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 ∈ L
(
X 2N+2,H

)
,

ΦW = I ∈ L
(
XN+1,W1

)
, ΦZ = Λ

1
2 ∈ L (X ,Z) ,

and ΦY = I ∈ L (X ,Y), from which we introduce
the matrices of functions of Λ, a (Λ) = Φ−1

H ANΦH ,
b (Λ) = Φ−1

H BNΦW , c (Λ) = Φ−1
Y CNΦH and ℓ (Λ) =

Φ−1
Z LΦH , simple to implement on a semi-decentralized

architecture. A straightforward calculation yield a (λ) =
0 0 λ−1/2 0
0 0 0 I

−ax1 −aNx1y 0 0
ax1 ϕ̄k −aNy 0 0

, b (λ) =

 0 0
0 0
I 0
0 I

,

c (λ) =
(

λ1/2 1
β−α

(∫ β

α
ϕk dy2

)
k=1..N

0 0
)

and

ℓ (λ) =
(
I 0 0 0

)
where ax1 = RB

ρB λ−1/2

aNx1y = ℓCrC

ρB (∂3
y2y2y2

ϕk(0))k=1,..,N and aNy =

(− ℓCrC

ρB ∂3
y2y2y2

ϕk(0)ϕ̄k + rC

mC(LC)4
λC
k )k=1,..,N ,. En-

dowing H, W1, Y and Z with the inner prod-
ucts (z, z′)H =

(
Φ−1

H z,Φ−1
H z′

)
X 2N+2 , (w,w′)W1

=(
Φ−1

W w,Φ−1
W w′)

XN+1 , (y, y′)Y =
(
Φ−1

Y y,Φ−1
Y y′

)
X and

(ℓ, ℓ′)Z = (Φ−1
Z ℓ,Φ−1

Z ℓ′)X , we find the subsequent factor-
ization of the filter gain K in (7) which plays a central role
in the approximation. The approximation of the functions
of Λ is detailed in [5].

Proposition 1 The filter gain K admits the factorization
K = ΦH p cT ΦY , where p(λ) is the unique symmetric
non-negative matrix solving the algebraic Riccati equation

ap+ paT − p(cT c− 1

γ2
ℓT ℓ)p+ bbT = 0.

Remark 1 We indicate how the isomorphisms ΦH , ΦY ,
ΦW and ΦZ have been chosen. The choice of
ΦH comes directly from the expression of the inner
product (z, z′)H =

(
Φ−1

H z,Φ−1
H z′

)
X 2N+2 and from

(z1, z
′
1)H2

0 (Γ)
=

(
(∆2)

1
2 z, (∆2)

1
2 z′

)
L2(Γ)

. The choice of

ΦZ is similar. For ΦY , we start from CN = ΦY c (Λ)Φ
−1
H

and from the relation (y, y′)Y =
(
Φ−1

Y y,Φ−1
Y y′

)
X which

implies that 1 = (ΦY )1,1c1,1(Λ)Λ
− 1

2 . The expression of
ΦY follows. Choosing ΦW is straightforward.

6.3 An Illustrative Example
We present the numerical results of the H∞ filter-

ing problem for a silicon array comprised of 10 elas-
tic cantilevers. The base dimensions are LB × lB ×
hB = 500µm × 16.7µm × 10µm, and those of can-
tilevers are LC × lC × hC = 25µm × 10µm × 1.25µm.



The other model parameters are the bending coefficient
RB = 1.09 × 10−5N/m, RC = 2.13 × 10−4N/m and
the masses per unit length ρB = 0.0233kg/m, ρC =
0.00291kg/m. We set the initial condition UN (0) =(
10−6 10−6 10−6 0 0 0

)T
and γ = 1.2. The

computation is based on a modal decomposition of Λ with
10 modes together with 2 cantilever modes. In this exam-
ple, the displacement are measured in the interval (α, β) =
(36, 40)µm. The simulation have been carried out in the
time interval [0, 1µs] with a time step 0.1ns. The compar-
ison between the displacement and the estimated displace-
ment in base is presented in Fig. 10 (a) and the estimation
error is described in in Fig. 10 (b).
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Fig. 10: (a) Comparison between true and estimated out-
puts (b) Absolute error between true and estimated outputs

7. Conclusions
In this paper, we have studied the problem of state es-

timation in an array of AFMs based on a two-scale model.
The measurement of displacements is done by an interfer-
ometric readout method. Positive quantization results re-
lated to the algorithm of interferometry have been reported,
they allow to consider its FPGA implementation in view of
real-time measurements. The full solution of the state es-
timation in the base has been provided for static operating
regime. For dynamic operating regime, we have stated the
mathematical framework of functional calculus dedicated
to semi-decentralized computation of the solution of a ro-
bust H∞ filtering problem and shown encouraging prelimi-
nary results. Finally, an application of our toolbox of robust
optimization has been madeto illustrate the functionality it
provides to a designer to achieve design objectives satisfy-
ing design requirements.

References
1. G. Binnig, C.F. Quate, and C. Gerber. Atomic force

microscope. Physical Review Letters, 56(9):930 – 3,

1986.

2. M. Lenczner. A multiscale model for atomic force
microscope array mechanical behavior. Applied
Physics Letters, 90:091908, 2007.

3. M. Lenczner. Homogeneisation d’un circuit elec-
trique. C. R. Acad. Sci. Paris, Serie II b, t.
324(9):537–542, 1997.

4. M. Lenczner and R. C. Smith. A two-scale model
for atomic force microscopes arrays in static operat-
ing regime. Mathematical and Computer Modelling,
46:776–805, 2007.

5. H. Hui, Y. Yakoubi, M. Lenczner, and N. Ratier. Con-
trol of a cantilever array by periodic networks of re-
sistances. Thermal, Mechanical and Multi-Physics
Simulation, and Experiments in Microelectronics and
Microsystems (EuroSimE), 2010 11th International
Conference on 26-28 April 2010, Bordeaux France.

6. Polesel-Maris J, Aeschimann L, Meister A, Ischer
R, Bernard E, Akiyama T, Giazzon M, Niedermann
P, Staufer U, Pugin R, de Rooij NF, Vettiger P, and
Heinzelmann H. Piezoresistive cantilever array for
life sciences applications. J. Phys: Conf, Ser 61:955–
959, 2007.
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