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Abstract boundary conditions. We assume that the number of cells

Actuation, sensoring and control in arrays of MEMS reis large in all thed directions. Mathematically, it is easier
quire spatially distributed periodic electronic circuiSor to formalize the problem by considering that the whole cir-
very large sized arrays, sag00 x 1000 MEMS or cells, on  cuit occupies a unit squate = (0, 1) and that the period
the same chip, simulation requirements for electronics afengths, in all directions, are equal to an identical smail p
far away from standard algorithm capabilities. One of theameter (Fig. 1).
authors has shown in a theoretical paper [2], that a homog-
enization modeling method, previously developed for comy, e=1/4
posite materials, can be extended to arrays of electromic ci 1
cuits, at least in the linear static case.

When it is applied to a set of periodic network equa-
tions, the simplified resulting model turns to be a system o
few partial differential equations. Its properties areeirh 3e
ited on the one hand from the periodic cell composition,
and on the other hand from electric conditions imposed
at the boundaries. Its numerical solution, a vector of few
mean voltages, is weakly dependent of the array size. Ac- | 2¢
tual voltages, at all nodes of the whole periodic circuig ar
computed through a fast post-processing procedure. \Wg
present the implementation of the model.

1. Introduction

A tremendous progress in collective micro—fabrication
processes has made possible the massive integration of Mi-
cro Electro Mechanical Systems (MEMS) on a single sub- 0
strate. At present, there is a need to developp an efficient
tool in terms of CPU time to simulate a very large array.
This paper focuses on the simulation of spatially periodic
circuits. The periodic unit cell is limited to linear andtita
components but its number can be very large. The theory
presented here allows one to simulate an array of electronic
circuits which are far away from the possibility of a regular

circuit simulator like Spice. Our approch is based on the We limit ourselves to the study of circuits whose cell

so—called two scale transform [2]. is linear and static. Precisely, the components of a cell are

This paper presents a method that reformulates the elefﬁﬁited to the Spice elemen® V, | , E, F, G, H. All ports

trical network equations in terms of partial dlf'ferentla_lof any multiport components, F, G, H must belong to a

equations (PDE). T_he numerical resolution of this PDE 'Same cell. The expanded cell is arbitrarily defined in a unit
straighforward and independent of the number of cells. So—eII Y = (—1/2 +1/2)d (see Fig. 2). We map any dis-

ving PDE and postprocessing its solution leads to an a ; .
9 POSth 9 rete node: onto the continuous coordinatg, . . ., y4).

proximation of all voltages and currents. Theoretically i .
more the number of cells is large, more the model is acThe vectory(n) € R is the _coordmate vector of a nqde
For example, the coordinates of the nodes in Fig. 2

curate. The method is illustrated on a basic circuit to alloW: . !
hand calculations, which are mostly matrix multiplicason arey (.1’ -+, 6),In partlcul%':\r, the coordinates of the node
Nevertheless, if the reader really wants to try the exampl&, = 3 is the vector(1/2,0)" .

the authors strongly advise him to use rather a computer

Fig. 1: Circuit example.

algebra software. y(1,...,6)
2. Linear Static Periodic Circuits = ( _%)/2 8 162 102 ? 5 11/44 )
We consider the class of periodic circuits dnspace /2 -1/2 -1/

dimensions. An example of such circuit in two space di-

mensions is shown in Fig. 1. The circuit cell is detailled The maps of voltages and currents from the whole cir-
on Fig .2. \oltage or current sources, whose value maguit (global network) to the cell circuit (local network)ear
be zero, can be placed on the boundary to realize specitiefined as follows. First, we denote by



Here ¥ is the set of admissible potentials for the circuit
problem, that is to say:

U= {1/1 e R such thatyz = 0 (5)

for all ground nodesz } .

Since the matricest € RI¢l x RI¢l, R € RI¢l x RI¢l and

the vectoru, € RI¢l are exclusively deduced from the
branch equations of the circuit, they can be expressed in
terms of two reduced matriced/ < RIZ! x RIZl and

R € RIEl x RIZl and a reduced vectar, € RIZl, The
reduced matrices and vector are simply derived from the
constitutive equations of the unit cell, which are in the ex-

Fig. 2: Expanded cell of the circuit. ample,
—v1+ry = 0,
—vg+r1ip = 0,
£ = the branch set of the whole circuit, —vs4ris = 0
N = the node set of the whole circuit, S ’
E = the branch set of the cell circuit, —vatrig = 0,
N = the node set of the cell circuit, 5 = .

can also be expressed in terms of a reduced matrix noted
e The global indexZ references all the branches of theby A7 (with a little abuse of notation). Notice that we
whole circuit. cannot find a reduced matrix for the incidence matrix it-

.. self. We introduce the local (complete) incidence matrix
e The multi-integen: = (u1, .., pq) € {1,..,m}¢ enu- IN| |E| ( plete)
. al A e RV x RIEI
merates all the cell)s’; in the circuit(.

e The local indexj € {1,.|E|} enumerates all the +1 if branchy leaves node,
branches of the unit celf. Aij —1 if branchj enters node,
0  if branchy does not touch node

Each branch voltage or current can then be referenced by

the indexZ or the couple(w, 7). This is a one—to—one The solution of the simplified model introduced in this pa-
correspondence denoted By~ (u,7). Using this cor- per realizes an approximation of the solution of (1-4) for
respondence, for each vectare R!¢l one may define a small values ot (¢ << 1). Itis derived as a limit of the
unique tensot/,,; with (u,j) € {1,..,m}? x {1,..,|E|} latter when the cells lengthdiminishes towards zero.

by Uyj = uz for (u, j) ~ 7. 4. Direct Two—scale TransformTs

3. Circuit Equations The general idea of the two-scale transform rests on
The electrical state of a circuit can be charaterized [19athering the voltages (or currents) denotedilnf a same
by the vectorgy, v, i) where, branchj of all cells. Indeed, the voltages (or currents) are

defined by a functiom; (=), which depends on the param-
etere and whose limit whem — 0 will be calculated.

e RN = the nodal voltages (or electric potentials), Letus first denote bei (z) the characteristic fungtion
v e Rl = the branch voltages, of the cellY,? equal tol whenz € Y7 and0 otherwise.
i c RIEI = the branch currents. As an exemple, the characteristic functiep;, of the cell

u = (3,2) is represented in Fig. 3.

We can formulate the circuit equations under the form  1he two—scaleo trar|1b§|form of the vectoru € RF|
(1-4) whereu, € RI€| represents voltage and current©€!0ng to the seP”(Q)I"1 of vectorsY ’—piecewise con-
sources merged in single vector completed by some zerg&ant of functions defined by (6) wheté,; = uz with
Eg. (1) is the Kirchhoff’s Voltage Law. Eq. (2) represents(“J) ~ 1,
the constitutive equations and Eqs. (3, 4) correspond to the
Tellegen theorem, uj(z) = Z xve (2)U- (6)

ne{l,..,m}d
v o= ATy, (1) .
Ri+ Mv @) For example,v;(z) is the voltageV,,; of the branch re-
T ferred by the local indey of the cellx whena belongs.

Pw =0, (3) By construction, the function — v;(z) is constant on all

forallw = ATy withey € 0. (4) cells. Figure 4 illustrates this concept by representirgy th

Us,



and defined by

[u,v] = e%u.v, (7
|E|

(u,v) = Z/Quj(a?)vj(x)dac. (8)

For allu € L?(Q)/?l andve RI€l, the adjointT;u is de-
fined through the equality

[Tru,v] = (u,Tgv). 9)

The calculation off;, from (9) is given in Appendix and

Fig. 3: Caracteristic Functiogy, . leads to

(Thu)z = E_d/ uj(x)de. (10)

Moreover, Appendix proves that:Tr = I onRI€l and
TET; = Ir onP(Q)IF]. As Ty is one—to—one frorR/¢!
to PO(Q)!#!] these two identities show thag; is its inverse

;' = Tf. (11)

g 6. Behavior of “Spread” Analog Circuits

A circuit spread out over a large region may have some
pathes linking oposite sides. In view of deriving a par-
tial differential equation for the electric potential, ws-a
sume that voltages are increments of the oedsong such
pathes. Flowing currents result of numerougz( additive
sources coming from crossed cell contributions. Since they
may converge whea vanishes the crossing current must
be of magnitudéd, and sources of the order of

Fig. 4: One component;(x) of a two—scale transform.

components/,(z). It indicates that the voltage; (x) of A branch which does not belongs to any crossing path
the branch j=2 (cf. Fig. 2) of the cefli1, u2) = (1,4) is  is necessarily part of a path to the ground, so its voltage
equal to 2V. magnitude isl. We choose its magnitude current be of the

The two-scale transforffi; of u is the linear mam —  ordere as it may be a crossing path source. This assump-
i fromRI€I to P(Q)IF! ¢ L2(Q)/P]. The model is derived tion is not restrictive since we can choose an appropriate
from the limit whens — 0 of all vectors involved in the scaling law for its component.
circuit equations. The actual circuit voltages and cusent  The periodicity of the circuit implies that each node
are finally computed by inverting the two—scale transforniocated on the boundary of the cell has its counterpart
with the physical value of. Next Section is devoted the on the opposite side. We assume that each such couple is
construction ofl; ' linked by at least a crossing path. We introduce the set
Ec C E constituted of all the branches of at least one
path linking each couplé:, n"). Of course, a link between
5. Inverse Two—scale Transfornmil’; ! (n,n”) which includes a ground node is not considered as a
The calculation of the inverse two—scale transfarnt ~ Path. The complementary sBt— Ec is denoted byiyc
is done by computing the adjoift; and then proving two (10N-Crossing pathes). In the case where many crossing
identities properties beetween these transforms. pathes are linking: and»’, the designer is free to decide
Let us recall that the norm of a vector in a general vecVhich are included i\ and which are not, with regard to
tor space is a generalization of the idea of the length of ti€ above discussion about current and voltage magnitudes.
vector. The inner product has been defined in the hope of 1he subseEc is partitioned in itsn. connected com-

extending the concept of angles between vectors. The ind®nentstc = U2, Ec,. In the following, the main result
product and the norm iR/€! andL2(Q)|E| are denoted in ON the circuit equations will be derived for the connected

the following table, components of¢ and not forE itself.

7. Cell Equations (Problem Micro )
The model formulation is decomposed in four parts.

u,v € RI¢I u,v € L2(Q)F] Theorem 1, formulates the linear relation between mean
Inner product| [u,v] (u,v) electric potentialsp?, along crossing pathes and the other
Norm v = [v,v]'2 | J|ul| = (u,u)"/? fields as branch currents and voltages. This relation is




strictly local in each cell. In the next Section, the linear.?(Q; RINI), ¢ € L2(Q)IPI andv® € L?(Q)F! are solu-
relation is simply rewritten introducing linear operatorstion algebraic cell circuit equations at eache (2,

They are used in Theorem 2 for coefficients of the boundary

value problem orp?,. Finally, actual voltages and currents
are computed thanks to the inverse two-scale transform.

The previous assumptions about voltage and curre
magnitudes is formulated using the scaling matriggss.
andS, applied to the two-scale transforms,

i S, (12)
ve = 5,V, (13)
with the |E| x | E| scaling matrices defined as
S’u = EillEC +IENC’ (15)
Se Ig, +e gy, (16)
Sy = IL.S.+1IL,S,. (17)

Here the|E| x |E| matriceslg, andig,, are the vector
sub—spaceR! ! generated by non vanishing valuesBa
andENc.

. . (5] if €; S EC7

(UEc)jk = { 0  otherwise (18)
_ 5j if €; S ENC’7

(Ueyc)ik = { 0 otherwise (19)

v = IgcATob + Ieye AT oRe, (23)

R°+ M%% = ) — M°(rVpl 4 Ieyo ATI'0L), (24)
nt iTw = 0, (25)
foralw = Ig, Aleé +IENo ATw]O\fC (26)
with (&, %) € U™
The vecton? is expressed by
v = v+ TVL 4 gy ATIO0L. (27)

We assume that the solution is unique. This assumption
is generally satisfied once the global circuit equationsshas
unigue solution.

The admissible nodal voltage set being

{(We. ve) € R x LA RN (28)
such that)t, = 0 and% = 0 at ground nodes

=

The seﬁRilf;’l is defined as,

RIVI

per

= {¢ € RV such thaw; = ¢; (29)
for all couple(n;, n;/) of opposite nodes

The|E| x d x n. tensorr is defined by (30). We recall that
y(n) € R is the coordinate vector of a node

Moreover, each branch equation in (2) is homogeneous to a

current or to a voltage, this leads to a partitiorzbihto two
subsets. TheE| x |E| matriceslI, andIl, (for currents
and voltages respectively) are defined as the projectors
these two subsets.

The reduced matrice®/ andR of M andR are scaled
in a consistent manner,

ME
RE

S,MS;t,
= S,RS; %

(20)
(21)

The scaled reduced matricdg® and R° are assumed to
converge towards some limi/® and R® whene — 0. If
the norms|[i¥]|, ||v¢||, ||#°|| and ||| are bounded then
(Te, ve, @, u8) is weakly converging whea — 0 towards
a limit (i% 0%, 0, u?) in L2(Q) [3].

The vector of electric potentiap®(x) is a constant

wocp(x) in each connected component of cell crossing”

pathes. So, we split it according & = %02 + o,
10 being defined at (31), anqzl(}\,_c(x) being the electric
potentials at nodes not in crossing pathes. The sums ho

on all connected components. In the model we refer to tﬁg

vector o = (p¢,)p=1...n.- Electric potential variations
within connected components of crossing pathes are rec
ered thanks to the correctey, which yields the corrected
electric potential field
vo=¢° +epg (22)
Theorem 1 [2]
For giveny?. € W, UH defined in (43), and:? €

L2(Q)!Zl there existpl, € L2(Q:RIY)) such thatpl,, €

Z yk(nj)Ajl for e € Ecp,
jn;ENcyp

0

Tikp (30)

on otherwise

Throughout this paper, we use the tensor product notation,
(0 = Z Z TikpOkp,
kE p

where the summation is on the two last indices of
The|N| x n. matrix I° is defined by

0 _
ij_{

Ny is the set of nodes involved in the branchegJgf,.

(31)

1 if n; € Ncp,

0 otherwise (32)

Reformulation of the Problem Micro
Theorem 2 shows thatl, is the solution of a partial dif-
ferential equation, so ongg?, is known,i® andv® can be
computed too by theorem 1. The equations (23—-26) being
ear, there exists some matricés, H, and a third order
nsorP,, such that®, ©%;~ andv that can be expressed as
function of o2, its gradientV 2, and the vector souree,

ov-
i¥ = Lol + PVl 4 Hul, (33)
SD(J)VC = Ew@% =+ Psov@% + Hsouga (34)
v o= Lol + PVl + Hyul. (35)

The computation of the vectef is then unchanged,

’ (36)

v

v+ TV(,DOC + ]ENCATIOQD%.



9. Homogenized Circuit Equations (Problem Macro)
In this Section, we state the equation satisfiedBy

Theorem 2 [2]
The vectorgo% € UH js the solution of the:. partial

This method has been coded in its generality in a CAS
(Computer Algebra Software). The program parses the
Spice file describing the cell circuit, and generates as its
output the partial differential equation @f.. This equa-
tion is then solved numerically by a FEM, and the actual

differential equations, so—called homogenized equafiongoltages and currents are directly deduced.

with its boundary conditions,

AT PV + Lipl) = —ATHu, (37)
©&, = 0on Lo, (38)
(PiVOL + Lip2)n, = 0onT —Tg,. (39)

Iy, is the part of the boundary of 2 where thep?”
connected component is grounded. The operatbiis de-
fined by

AR = 9. + T Al (40)

whered,«i = 7*Vi with Tokl = Tlkp and the use of no-

tation (31). The derivativ@cpoc and the normah.. are
defined by

0,0% = TVY, (41)
d

(nT)lp - Z TikpMk, (42)
k=1

V being the gradien,,, )x—1..¢ andn = (ny)x=1..4 being
the outward normal vector to the bounddref Q2. Remark
that the coefficientst”” and the derivative¥ . depends on
node coordinates inherited from the expression (30y. of
Finally, the admissible set of macroscopic potential is

o = [y e L?(Q)" such thab,y € L*(Q)F
andyy(x) = 00onTg}. (43)

In the example (cf. Fig. 1)}% has only one component
(n. = 1) and is solution of the partial differential equation

5290%1 8290001

= —2
0z3 ox3 s
90001 = 0on F071
Vegn. = 0onT —Tg;.

10. Computation of Actual Voltages and Currents
Once the solutiow?, i%) of the two-scale transform are

A lot of work has still to be done: Proving the indepen-
dance of the coefficients of the partial differential eqoiati
with regard to the node coordinates; Simplify the demon-
stration of theorem 1 (about 10 pages long); Continue to
validate the method and explore its performance in terms
of accuracy and computational cost.

Appendices
Basic properties of some integrals on cells

/ de’ = &
Y
/ Xve(@)da' = &%,
Vi
Derivation of the expression ofT;;
(TEVau)
= /(TEV).u(x)d:L'
Q

||

= ;/yj(TEv)j(x).uj(az)dx

|E|
= Z Zg_d/ Xve (z)uj(z)dzVy,;
pe{l,..,m}yd j=1 Y
|E|
= g Z Zg_d/ wj(x)dxV,;
pe{l,..,m}yd j=1 Y
[TEu,v]
= eYTru)T v
|E|
= Y Y (TEuwwVy
pe{l,..,m}rd j=1
= (Tpu)u;

= E_d/ uj(z)dz
Yii

available, actual voltages and currents may be recovered } |
through the inverse two-scale transform (10) and inverderoof that Ty Ty = I onR

scaling (15-17),

Letu € RI¢l andZ ~ (i, j),

v o~ TylS o, (44) (TETew)z = Tp( Y Uyxvg (@)
i~ TSN (45) AelL,om}e
_ —d ,
11. Conclusion - c /y N 122 dXYf (#)dzU;
The concept of two—scale transform has been detailed y # Aell.m}
and illustrated in this paper. An homogenization method = e Uy

for periodic linear circuit based on this transform has been = uz
explained. We tried to present it in the most suitable way
in view of implementation.



Proof that Tg T}, = Iz on PO(Q)I 7]
Letu € PO(Q; RIZN),

(TeThu);(x)
= (Tele [ uy(e)da)sle)

= Z Z e*d/ Xy (2)da'Uyjxve (x)
Yz

pE{L,..;m}a Ae{1,..,m}d

I
(]

SunUxjxvg (%)
nef{l,..,m}d Xe{l,..,m}?

= Z Unjxv ()

pe{l,..,m}d

= uj(z)
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