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Abstract
In this paper, our attention is focused on a two-

scale model based algorithm for deflection estimation
of array of Atomic force microscopes (AFM) in quasi-
static regime by interferometry. In a previous work, an
algorithm based on three measurements by cantilever was
introduced to compute their displacements in quasi-static
regime. Here, we propose an improvement so that two
measurements only are required. This is based on a
published two-scale model of such array. Numerical
simulation results of topographic scan by an array of
AFMs on a sample surface are reported. The simulations
are carried out with a model calibrated from a device
which design optimization is also discussed here.

1. Introduction

Atomic force microscope (AFM) have been proven to
be a very versatile tool for biotechnology and nanotech-
nology, since its invention in 1986 by Binnig et al. [1].
Cantilever displacement measurement plays a major role
in AFM functioning. Various methods are possible, such
as piezoresistivity, capacitive sensing and interferometry.
Each of them has its own advantages and drawbacks.
In this paper, we focus on a phase computation algo-
rithm of interferometry measurement for arrays of AFMs.
The paper [10] reports use of interferometry for parallel
readout of a cantilever array. A technique extending the
measurement range of interferometric cantilever arrays is
presented in [4]. The simultaneous readout of multiple
microcantilever arrays has been applied in various appli-
cations see [8].

In a previous work, we have reported an interferom-
etry method for measuring displacement of cantilevers
in quasi-static regime [6] where three measurements are
necessary in each cantilever. A high speed camera is used
to analyze the fringes. In view of real time applications,
images are quickly processed and then a fast estimation
method, based on a least square method, is used to deter-
mine the displacements of each cantilever. The algorithm
achieves the wanted precision with fewer operations than
a previous version based on a spline method [3]. However,

it is limited to arrays with uncoupled cantilevers. In this
paper, we further improve the algorithm by reducing
the number of measurements to two per cantilever. The
method is based on a use of two-scale model which has
been verified in [5]. A robust optimization design based
on the same model are also reported.

2. Two-scale Model of Arrays of AFMs

The two-scale model governing elastic deflections in a
one-dimensional array of AFMs, see Figure 4, introduced
in [5], is restated in a way [7] appropriate to its implemen-
tation by the finite element method. The base and the can-
tilevers are modeled by the Euler-Bernoulli beam equation
in the first component x1 of the macroscopic variable and
in the second component y2 of the microscopic variable
respectively.

Figure 1. A one-dimensional view of (a) an Array and (b) a Cell.

The displacement can be decomposed on the orthogonal
base of eigenmodes ψk,

u(t, .) = ∑
k

Uk(t)ψk, (1)

with modal coefficients Uk. Each eigenmode is the product
ψ = φBφC of a base (or macroscopic) eigenmode x1 7→
φB(x1) by a cantilever (or microscopic) eigenmode. The
comparison of the model results to those of a direct finite
element simulation shows a relatively good approximation
of the eigenvalues associated to the transverse modes.



However, the comparison of solutions of the model in
static or dynamic regime are not entirely satisfactory, see
Figure 2 where computations are carried out with ten base
modes φB and three cantilever modes φC which turns to
be enough in this case. Same point forces of 20µN are
applied at each probe tip in vertical direction.
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Figure 2. Static displacement comparison between direct FEM model
and the two-scale model using the modal decomposition.

In addition, the approximation (1) is getting worse when
the number of base modes increases. To circumvent this
problem, in [6] we introduced the extension u of the dis-
placement in the base as a function defined in cantilevers
but independent of y2. So, u is defined in the whole two-
scale domain and we can define the difference ũ = u−u,
also defined in the whole domain. In the base, it is obvious
that ũ = 0. We reformulate the motion equations for one-
dimensional arrays of AFMs, satisfied by the couple (u, ũ),


mB∂2

tt ū+RB∂4
x1···x1

ū+ ℓ0
CRC(∂3

y2y2y2
ũ)| junction

= f B in the base,
mC∂2

tt ũ+mC∂2
tt ū+RC∂4

y2...y2
ũ

= FC in cantilevers,

(2)

where mC, RC and FC are the linear mass density, the
linear stiffness coefficient, and the load per unit length
for cantilevers, and mB, RB, f B and ℓ0

C are the effective
linear mass, homogenized stiffness tensor, effective load
per unit surface for base, and the cantilever width in the
reference cell. In practice, we work on a model reduced
at the microscopic scale through a modal decomposition
on cantilever modes {ϕk(y2)}k=1..nC ,

ũ(t,x1,y2)≈
nC

∑
k=1

ũk(t,x1)ϕk(y2) and

FC(t,x1,y2)≈
nC

∑
k=1

fC
k (t,x1)ϕk(y2).

In this approximation, equations (2) yields,
mB∂2

ttu+RB∂4
x1···x1

u+ ℓ0
CRC(∂3

y2y2y2
ũ)| junction

= f B in base,

mC∂2
tt ũk +mC∂2

tt ūϕ̄k +RC λC
k

(L0
C)

4 ũk

= f C
k for each k,

(3)

where ϕ̄k =
∫ L0

C
0 ϕk dy2, ϕk(y2) = φk(

y2
L0

C
) and L0

C is the
cantilever length in the reference cell. The eigenelements
(λk,φk)k∈N are solutions to the eigenvalue problem, posed
in (0,1),

φ′′′′k = λC
k φk in (0,1)

φk(0) = φ′k(0) = 0, at 0(
−φ′′′k
φ′′k

)
= λkQ

(
φk
φ′k

)
at 1.

(4)

where Q = N
(

J0 J1
J1 J2

)
N with N =

(
1 0
0 1/L0

C

)
and

Ji =
∫

YR
(y2 − L0

C)
i dy, i = {0,1,2}. The term Q is a

contribution corresponding to the rigid AFM’s tip. Then,
ū the displacement in base is solved using a classical
finite element method coupled with a ordinary differential
equation solver for the modal coefficients ũk.

3. Measurement of Displacement in Arrays of AFMs
In this section, we detail our global phase computation

algorithm of interferometry measurement for array of
AFMs in quasi-static regime. Section 3-A describes the
experimental set-up at CSEM, and Section 3-B presents
the global phase computation algorithm.

A. The Experimental Set-up

An illustrative picture of the experimental set-up [3],
developed by CSEM, is shown in Figure 3. In contrast to

Figure 3. AFM experimental setup.

other optical based systems using a laser beam deflection
scheme, which is sensitive to the angular displacement
of the cantilever, interferometry is sensitive to the optical



path difference induced by the vertical displacement of
the cantilever. The interferometric system is based on
a Linnik interferometer [9]. A laser diode is first split
into a reference beam and a sample beam that reaching
the cantilever array. The complete system including a
cantilever array and the optical system can be moved
thanks to a translation and rotational hexapod stage with
six degrees of freedom. Thus, the cantilever array is
centered in the optical system which can be adjusted
accurately. The beam illuminates the array by a micro-
scope objective and the light reflects on the cantilevers.
Likewise the reference beam reflects on a movable mirror.
A CMOS camera chip records the reference and sample
beams which are recombined in the beam splitter and
the interferogram. Then, cantilever motion in the vertical
direction produces lateral movements in the fringes of the
interferogram. They are detected with the CMOS camera
which images are analyzed by a LabView program to
recover the cantilever deflections.

B. Cantilever Displacement Estimation

We consider an array made with uncoupled rows of
AFM cantilevers, see Figure 4.

Figure 4. A one-dimensional view of array of AFMs.

In [3], as shown in Figure 5, the cantilever is covered
by interferometric fringes. They distort when cantilevers
are deflected. For each cantilever, the displacement is
derived from phase shift of the light intensity. A phase
shift corresponds to the lateral shift of the intensity profile
along a segment of pixels induced by the cantilever
bending. Three segments of pixels, parallel to its width,
are used. The first one is located just above the AFM tip
(tip profile), it provides the phase shift modulo 2π. The
second one is close to the base junction (base profile) and
is used to determine the exact multiple of 2π through an
operation called unwrapping where it is assumed that the
displacements along the two measurement segments are
linearly dependent. The third one is on the base (reference
profile) and provides a reference for cancelling the effect
of base motion.

Each profile is expressed in a normalized interval
(0,M − 1) where M is the number of pixels of the
profile. The gray-level light intensity is under the form
aξ+b+Acos(2π f ξ+θ) where ξ∈ (0,M−1), f and θ are
the frequency and the phase of the interferometric signal,
and the affine function aξ+ b corresponds to cantilever
surface tilt with respect to the light source. The linear

Figure 5. Intensity profiles in cantilevers: (a) above the tip; (b) close
to base-cantilever junction.

term aξ+ b is estimated thanks to a linear least-square
method. So, in the following, we consider only the cosine
part,

I(ξ) = Acos(2π f ξ+θ). (5)

The phase computation is done either using a spline
method or a least square method detailed in [2]. For a
given phase θ, we denote by θ∗ ∈ [0,2π) its value modulo
2π i.e.

θ = θ∗+2nπ and n = [
θ

2π
], (6)

where [α] represents the integer part of α. The relation
between the phase and the displacement is θ = 2π f c(b−
2u) where b, c are constants related to the tilt of the
beam splitter and are determined in a calibration phase.
Moreover, the constant b corresponds to a constant phase
shift that is ignored in the following, so we use only the
proportionality relation

θ =−mu. (7)

As u is decomposed into u + ũ, the phase θ is also
decomposed as θ = θ+ θ̃. The base and tip profiles are
taken at positions y2 = y2,1 and y2,2 and all corresponding
notations are indexed by 1 and 2, as for instance θ1
and θ2. In the setup [3], the reference profile is used to
determine θ. The displacements of the base are assumed
to be sufficiently small so that θ∗ = θ. The base profile
is sufficiently close from the base so that θ1 = θ∗1 also.
And, the linear relation between ũ1 and ũ2, or θ̃1 and θ̃2,
is used to determine the integer n2. In total, u, ũ1 and ũ2
are determine from three measurements and the tip force
can be deduced.

In the following, we introduce an alternate method to
avoid the reference measurement, based on the two-scale
model.

For an array of N cantilevers, we refer the ith cantilever
with the subscript i ∈ {1, ...,N}, and we use the relation
(7) applied to each of them,{

θ1,i = θ∗1,i =−m(ūi + ũ1,i),
θ2,i =−m(ūi + ũ2,i).



The above equation written in vector form is{
Θ1 = Θ∗1 =−m(Ū +Ũ1),
Θ2 =−m(Ū +Ũ2).

(8)

The two-scale model is discretized, and the N-dimensional
vectors Ū , Ũ1 and Ũ2 represent the displacements in the
base and in cantilevers at y2 = y2,1 and y2,2 respectively at
the coordinates x1 of the cantilever centers. Neglecting all
external forces excepted the tip forces f tip = ( f tip

i )i=1,..,N
and considering the system in the quasi-static regime,
there exists three N×N stiffness matrices K̄, K̃1 and K̃2
such that

Ū = [K̄]−1 f tip, K̃1Ũ1 = f tip and K̃2Ũ2 = f tip. (9)

Eliminating f tip in the two last relations using the first
one, {

Ū = [K̄]−1K̃1Ũ1,
Ũ2 = [K̃2]

−1K̃1Ũ1.
(10)

By (8) and (10), we derive the relation between the phases
of two profile lines,

Θ2 = KΘ1 (11)

where the matrix K =([K̄]−1+[K̃2]
−1)K̃1([K̄]−1K̃1+Id)−1

and Id being the identity matrix. Using this relation
and the fact that Θ1 = Θ∗1 we deduce n2 in the phase
decomposition (6) and Θ2,

n2 = [
KΘ∗1
2π

] and Θ2 = Θ∗2 +2n2π. (12)

Thus, combining the relations (8), (9) and (12) we can
establish that

Θ∗1 = D1 f tip or Θ∗2 +2n2π = D2 f tip

with D1 = −m([K̄]−1 + [K̃1]
−1) and D2 = −m([K̄]−1 +

[K̃2]
−1). In conclusion, we estimate the tip forces from

(9) and we deduce Ū the base displacement and U2
the total tip displacement, all being expressed with the
measurements Θ∗1 and Θ∗2,

f tip = D−1
1 Θ∗1 or f tip = D−1

2 (Θ∗2 +2n2π), (13)

Ū = [K̄]−1 f tip, U2 =−
1
m
(Θ∗2 +2n2π) with (12). (14)

In practice, the formula (12) may produce inaccurate phase
of tip profile by a perturbation of 2π. The source of the
error comes from the integer part calculation due to its
discontinuity. We state Algorithm 1 that eliminates the
error, where ε is in the range of the error.

Algorithm 1: Phase correction algorithm.

1 Θ1← phase of the base profile
2 Θ2← First tip-profile phase estimated by (12)
3 Θ′2← Second tip-profile phase estimated by (11)
4 δΘ2 = Θ′2−Θ2

5 Θ2 = Θ2 +2π∗ round(Θ2
2π )

4. Robust Design Optimization for Arrays of AFMs

Parameters of an array, such as the cantilever length,
width and thickness, spring constant and deflection angle
of the cantilevers for a given force, footprint of the array
and lateral pitch between two adjacent cantilever, must
satisfy initial requirements for good operation. Thanks
to SIMBAD a decision making tool for development
design, which we introduced in [6], we perform various
optimization analyzes for the design of AFM probe arrays.
The applications of this robust optimization tool are shown
for one-dimensional arrays of AFM design. Two dimen-
sional arrays with unconnected rows are made by aligning
several one-dimensional arrays. We consider designing six
types of array of AFMs on a single wafer. The 6 types
of arrays correspond to 3 different cantilever spring con-
stants, and to two different cantilever pitch conditions. For
some applications, the pitch between cantilevers cannot
be freely chosen. The three spring constants correspond
to 0.03, 0.3 and 3 N/m, and the two pitch conditions
define the lateral and longitudinal cantilever pitches as a
multiple of 10, respectively 100 µm. After definition of the
boundary conditions, such as minimal and maximal values
of the parameters to be optimized and material properties,
SIMBAD computes the optimal design of the probe arrays.

Table 1 summarizes the results of the optimization
computation. A microfabrication run to produce cantilever

Table 1. Designs of probe arrays defined using the design decision
making tool SIMBAD. The values in italic correspond to the initial

conditions, and the values in bold to the optimized design parameters.

Array design 1 2 3 4 5 6
Pitch condition [µm] 10 10 10 100 100 100

Spring constant [N/m] 0.03 0.3 3 0.03 0.3 3
No. lever in x-direction 16 16 11 10 10 10
No. lever in y-direction 2 4 5 2 3 5

Pitch in x-direction [µm] 60 60 90 100 100 100
Pitch in y-direction [µm] 500 250 200 500 300 200
Length of cantilever [µm] 300 150 100 300 150 100
With of cantilever [µm] 40 40 56 40 40 56

Optimized spring constant 0.033 0.33 2.7 0.033 0.33 2.7

arrays with the optimized design was launched. An ex-
ample of a computed optimized design and of a produced
cantilever array are shown in Figure 6.

5. Numerical Simulations

We illustrate the algorithm by a sample surface topo-
graphic scan simulation for an array of AFMs in quasi-
static regime. We consider an 10-cantilevers array with
base dimensions LB×ℓB×hB = 500µm×16.7µm×10µm,
and those of cantilevers LC × ℓC × hC = 25µm× 10µm×
1.25µm. The other model parameters are the bending
coefficient RB = 1.09×10−5N/m, RC = 2.13×10−4N/m
and the masses per unit length mB = 0.0233kg/m, mC =
0.00291kg/m, and the light wavelength is λ = 0.633µm.
The number of pixels in all measurement segments is
taken as 20. The position of the base profile line is defined



(a)

Figure 6. Example of an optimized design geometry. The larger
cantilevers with larger and higher tip situated in the corner of the probe
array are used to land and adjust the probe array onto the sample surface.

as y2,1 =
L0

C
10 . The topography of the samples is defined

with bumps that are regularly distributed both in x1- and
y2-directions, see Figure 7.

Figure 7. AFM arrays and samples.

The scan procedure is following:
1) The AFM arrays is a low position to put tips in

contact with the sample surface.
2) The scanner moves in the negative y2-direction and

the deflection at tips are measured by interferometry
in each scan step.

3) At the end of the line, the scanner moves back to
the initial y2-position, then increase the x1-position
to the next line.

4) Repeat step 2 and 3 until the required number of
lines is obtained.

5) Save data.
All these steps together with the method for estima-

tion of cantilever deflection have been implemented in
a simulation. The sample is an array of 10× 10 bumps.
Their dimensions are LS×ℓS×hS = 10µm×20µm×0.1µm.
Twenty scan lines distant from 2µm are recorded in the
x1-direction with 128 scan points each distant from 1µm.
The estimated three-dimensional topography with Formula
(12) is presented in Figure 8.

It shows peaks due to the integer part calculation in
Formula (12). The use of Algorithm (1) eliminates them

Figure 8. Estimated sample topography with Formula (12).

as seen in Figure 9.

Figure 9. Estimated sample topography after phase correction.

6. Conclusion

In this paper, we have presented an effective global
phase computation algorithm of interferometry for deflec-
tion measurement in an array of cantilevers in quasi-static
regime. It improves a method using three measurements
in each cantilever by avoiding one of them. It has been
tested in a full simulation including a cantilever array, a
scanner and an analyzed surface. We have also reported
results of design optimization for an array of AFMs. It
opens the way for future works on model calibration, other
design problems, such as for dynamical problem, and for
control synthesis. Applications are also envisionned as for
instance topographic scans for different samples and force
spectroscopy.
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