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Abstract tools allowing the software implementation and on the
This paper reports recent advances in the developther hand we derive and implement asymptotic models to
ment of a symbolic asymptotic modeling software packaganticipate the introduction of related modeling concepts i
MEMSALab which will be used for automatic generationthe software library. This paper is written in this spirtt, i
of asymptotic models for arrays of micro and nanosystemeeports on an asymptotic model of a Micro-Mirror Array
First, an asymptotic model for the stationary heat equatiadfMA) and reports our last advances in the development
in a Micro-Mirror Array developed for astrophysics is pre-of the kernel oflVEMSALab.
sented together with some key elements of its derivation. The MMA, see Figure 2, presented in [1], is dedicated
This illustrates the mathematical operations that nee@to Ibo applications in astrophysics. It is used for instance as a
implemented in MEMSALab. The principle of operationfield selector for multi-object spectroscopy (MOS) since it
of this software is to construct models incrementally st thallows individual selection of objects by preventing over-
model features can be included step by step. This idea cdapping of spectra and remove spoiling sources and back-
ceptualized under the namby extension-combinatidis  ground emission. The full modeling of the MMA should
presented for the first time after having recalled the géneraover mechanical, electrical and thermal effects, however
functioning principles. A friendly user language recentlythis paper focuses on the heat diffusion only. Evidently, a
introduced is also shortly discussed. direct simulation of the heat equation in such MMA by a
Keywords. Homogenization, micro-mirror array, sym- Finite Element Method (FEM) turns out to be impractical,
bolic computation, computer-aided derivation of asympsince the MMA has a complex geometry and a large num-

totic models berin cells. So, we apply the multi-scale modeling method,
. based on the framework of periodic homogenization as in
1. Introduction [2], that applies to model arrays of micro-systems with pos-

Many systems encountered in micro or nanosibly large variations of temperature in a cell and between
technologies are governed by differential or partiaheighboring cells. The resulting model is implemented in
differential equations (PDEs) that are too complex to b€OMSOL, that can be run in a reasonable time so that to
directly simulated with general software. In a number obe used in other postprocessing tasks as a multi-objective
cases, the complexity is due to a combination of severabtimization procedure.
factors as several space or time scales, large coefficient The technique of model derivation relies on an asymp-
heterogeneity or large aspect ratios. Many methods haustic method taking into account the small ratio between
been developed to overcome these difficulties, and ime sizes of a cell and of the whole array. It is not detailed
particular the asymptotic methods, also called pertuobati since it is relatively long and technical, however we présen
techniques, constitute an active field of research in afome key facts giving an idea of the features playing a role
fields of physics and mathematics for more than a centuriy, the derivation.

Their application is based on a case-by-case approach so Unlike traditional software packages aimed at numer-
they are implemented only in specialized software. Wial simulations by using pre-built models, the purpose
adopt an alternate approach by developing a softwatf MEMSALab is to derive asymptotic models for input
package calleEMSALab (for MEMS Array Lab) whose equations by taking into account their own features e.g.
aim is to derive families of asymptotic models that canhe scalar valued or vector valued solution, different-esti
be directly exploited in simulation software. Potentiallymates on the solutions and sources, thin structures, peri-
it has a broad range of applications, however we focus astlic structures, multiple nested scales etc. The architect
modeling arrays of micro or nano-systems. of MEMBALab is shown in Figure 1. Its expected func-

Our approach of the software development is two-foldioning can be schematized as follows. Firstly, &M
On one hand we develop computer science concepts and



Input Inkerinen: FEM aoftvonee/ NEMSALD mirror touches its stopper beam and its landing pads. After
pull-in, the micro-mirror is fixed at a precise tilt angle,edu
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Fig. 1: TheMEMSALab software envisioned architecture. " S 01 .

Fig. 2: A top-view of the Micro-Mirror Array micro-mirror
softwareMEMSAL ab interfacetranslates a system of PDEsof size: 100 x 200 square micrometers)
from a FEM software package to the grammar used in the
kernel of MEMSALab. Secondly, the multi-scale model
(MSM) is automatically derived and the result is saved. Fi-
nally, the VEMSALab/FEM Software interfacetranslates
back the resulting model to the format of the FEM software
package and its simulation is launched. The advances in the
development of this tool have been reportedin [3, 4, 5]. Af-
ter recalling the main ideas behilMEMSALab, this paper
reports on a recent progress: the so calley éxtension-
composition” mechanism i.e. the MSM constructor de-

Landing pad

picted in the right-bottom of Figure 1. This method yields SHoppes ben

an incremental model construction so that the wanted fea- Pillar

tures can be included step by step. We also comment the

recent introduction of a dedicated user language. Fig. 3: Architecture of a MMA's cell

2. Description of the Micro-Mirror Array The actuation phenomena is based on an attraction

The structure of this MMA is detailed in [6]. Figure through an electrostatic force generated by a difference
3 shows the components of its elementary cell which igf potential between the electrode and the mirror, and the
divided into two parts: the mirror part and the electrodgpring force of the suspended beams becoming active when
part. The mirror partis composed of the mirror, two stoppege voltage decreases.
beams with two landing beams on their tips and a suspend- A complete modeling should take into account the elec-
ing beam. The electrode part is composed of an electrodgc voltages between the micro-mirrors and the electrpdes
two landing pads and two pillars. o the thermo-elasticity problem in beams; the heat diffusion

Each cell can be addressable by applying different volip 5| parts, and the linear frictionless contact problem be
ages on its line and column and then tilted due to the geRyeen stopper beam and landing pads. Here, we only con-
eration of electrostatic force on its mirror's surface,dbfl  gjger the heat transfer in the whole array. Regarding the
[6]. At rest, when no voltage is applied, the micro-mirroteat sources, one is coming from the environment such as
is held in a flat position by the suspended beams. Whenggck hodies at the given temperature or mechanical parts
voltage difference is applied between the micro-mirror angyoynd the component gives a significance contribution to
the electrode, an electrostatic force is generated, regult \y5rm up the MMA, while the other coming from the stars
in the attraction of the micro-mirror toward the fixed elecqypg galaxies is very small and probably negligible. To dis-

trode, and leading to tilting and provides a restoring forcgjpate this heat, the MMA is attached to a heat sink.
For voltages below the pull-in voltage, the micro-mirror is

operated in an analogue mode, allowing the angle to be s&t Homogenized model of the heat equation for the

to a few degrees as a function of the applied voltage. Atthe MMA

pull-in voltage, the force increases and the micro-mirror Starting from the mathematical statement of the heat
shaps toward the electrode. During this motion, the micreequation in the MMA, we describe the assumptions taken



into account in the asymptotic model derivation, the two-
scale transform which is the key mathematical tool, the a
priori estimates of the solution, the asymptotic model it-
self, and the simulation results. These are the operations
expected to be done BWYEMSALab linked to a FEM soft-
ware package.

3.1 Mathematical model

We consider aVv x 1 array of MMs as shown in Fig-
ure 4 which cell represented in Figure 5 is comprised of a
micro-mirror including two stopping beams, a part of the
frame, two pillars and an electrode made of silicon. Af-
ter rescaling the array size to a unit length, we denote by
e the order of magnitude of the cell dimensions. This pa-
rameter decreases when the numbeof cells of the array Fig. 5: Zoom on a cell of the 10x1 MMA
increases, and we determine, in a sense explained hereafter
an approximation of the temperature field for small values o
of £. The region2® occupied by the device which is split 3-2 A priori estimates
into QF,, 05, Q5 C R® the subregions occupied by the Once the equations and the geometry of the problem
mirrors inclfuding the stopping beams, the frame and th@ave been set, as it is done in FEM software, an impor-
pillars respectively. The body heat soureés present in tant step for an asymptotic analysis is to specify the be-
the frame and the mirror, and the thermal conductivity mafavior of the sources with respectdo With this purpose,
be anisotropic with matrices®, a”<, a/>¢ anda”< in Q¢, ~Wwe denote by.%(Q) the set of square integrable functions
Qz,, Q5 andQs. The electrodes act as a sink with an im-£ over a domairf2, i.e. such thatf,, |F|* dz < occ. In
posed ambient temperature, so a Dirichlet boundary condhis problem, the volume heat source(y}, and 3 has
tion is imposed on the bottom surfadgs? of the pillars, cf o be large enough to heat the parts that is mathematically
Figure 5. The field of the difference of temperature to thewritten as3C > 0 so thatIIzerIiz(Q%) /1€%,] < C and
ambient temperature is solution to the stationary equatlor|1|r||2L2(Q§) /195] < C.

—div(aVO) =7 inQ° Then, a priori estimates satisfied by the temperature
0—=0 onTO» field are derived by taking into account the spetgaltures
(a°V) -n =0 onoQE — 10» of the problem: ie the characteristics of the geometry and of

the coefficients with respect to the small parametétere,
00E representing the boundary Of. The Corresponding we do not repOI"[ the mathematical derivation, but Slmply

weak formulation is express the physical assumptions and their mathematical
consequences in terms of estimates with their meaning.
j{ amevOVy dr + RTJ;% al e VOV de The connections of the thin micromirrors to the frame are
Q:, Qs through thin and narrow beams which effect is equivalent
. e to a connection by low conductivity components. It re-
+h, 0 VOVude = o dz (1) sults in a possibly large temperature variation in the mir-
r " rors and suspending beams of the range dfexpressed as
+R], rv da, ||5V9|@2(Qs ) /1925, < €. Inthe frame which is a contin-

o)
! uous body, the simple estimat#?ﬁ”izm?) /195 < C
using ¢, F dQ = ‘(—1“ Jo F d€ the mean value of an inte- holds. Regarding the pillars, their small section compared
/105, and R?, — to the surface of the mirrors and the electrodes yie_lds a dif-

m m ference of temperature of the orde(1) between their bot-
Q5] /19, |- tom and top ends which requires a temperature variation in
the pillar direction to be in the range ef 1. This is the
meaning of the estimaﬂ&V@Hiz(Q;) /1] < C.

gral and the volume ratioR;, = ‘Qjc

3.3 Two-scale convergence

Following [2, 7, 8], the two-scale transform operator
T maps the physical periodic domaitf = Qf, U Q3 U
), into a two-scale domaiw x (!, see Figure 6. The
microscopic cell2' = Q; UQ} U Q, C R?is deduced
from any cell2; of the array centered af by a translation
and a dilation:Q! = {z! = (z — 2¢)/e | x € Q5}. The
macroscopic domaiw C R is a segment in the direction
xo having the length of the array and passing through the
centerses. It is used for refereing to the cells. Precisely,
the transformatiofl” is applied to any functiom defined
on Qe by (Tw)(2°, 21) = w(x¢ +ext) for anyz? in a cell

Fig. 4: A10x 1 MMA



Fig. 6: Two-scale transform @¢#° into w x Q!

w N Qf and anyz! € Q. We also define the operat
mapping functions defined an x Q! to functions defined
on Q€ by Bu(z) = v (2, (z — z§)/e) for anyx € Q.

in the frame solves
—axo (afazoao) = ’I“f"o,
—Rf, §00 (@Y 00) 0 dat
=0 " P
—RP 0 fa% aPd,10,, dz' inw,

8’ = 0ondw,

(4)

with the effective thermal coefficient’ = Z?ﬂjzl(éig +

Lai; (652 + Lf), d;,; the Kronecker delta symbol, and

the vectorL’ = V_1u. The auxiliary functionu is solu-
tion to — div,1 (aV,1u) = — div(eza) andQ}-periodicity

We assume that there exists a main temperaturedfeld conditions where, = (0, 1,0).

and its correctoé! such that,

7{ 60B(v) dz = % (0° + e6")v dz®dat + 0(e).
Qs wx Q!

From a priori estimates we prove the approximations an

equalities: T (¢0,,0) = 0,10° + Ou(e), T(0x,0) =
9,10" + Ou(e), 9,26° = 0in w x QL, T(9,,0) =
0,10" + Ow(€), T(95,0) = 0,96° + 0,10" + Oule),
T(y,0) 9,10" + Owl(e), Vprt® = 0, 6" is Q}-
periodic inz} inw x O} andT'(9,,0) = 0,160" + Oy (e),
T(£0,,0) = 0,10+ O (), 9,10° = 0,16° = 0inwx O,
anda € {1,2}. The notatiorO,,(¢) refers to any weakly
vanishing function in thé.2-norm.

3.4 The Homogenized model

The previous approximations and equalities are
plugged in the weak formulation (1) which yields, after
some steps, the two-scale model of the MMA. Since thi

matrix of diffusion is¢-periodic it has the forma®
T (a) wherea(z') is the matrix of diffusion defined in the

reference celf)!. The temperature in the fran@g(xo) =
0° inwx Q} is extended to the whole array< Q'. The dif-
ference®® = 6°—9" inwx Q! andg) = 0°-9"in wxQ}
satisfy the boundary conditiod§, = 0 on 9Q;,n90} and

0) = 00n9NL NN, The other equations satisfied &
in each mirror are c{iscoupled from the other parts,

v (V) = < 0L,
(@™ Vz6%,)77 = 0 on 90k, /0L,
wherez' = (z},23), m = (n1,m2), ally = aap —
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Fig. 7: Result of the two-scale model of heat transfer in a
1x10 MMA simulated in COMSOL.

In the implementation, the temperatéfe andf’, in the
mirror and in the pillars are computed by solving Equations
(2) and (3). Then, the heat fluxes' V.6, anda?d,, 0,

are used as sources in Equation (4) of the temperﬁ?u’re

the frame. With this method, the microscopic problems are
solved cell by cell which reduces dramatically the memory
requirement. Further reduction are possible e.g. by solv-
ing cell problems for a small family of source terms and

aspaqs/ass is the effective thermal conductivity of the mir- operate by interpolation to deduce all the other solutions.

ror andr™? is the effective internal heat source. In the pil-

—0 o . . .
Iars,Hg = 0 0,, where the auxiliary functioft), is solution
to the one-dimensional boundary value problem,

—8z§ (apc’)lée;)) =0in Qzlj,

0, = 0 on oy, N ONY, (3)
0, =—1onT%?,
where a? = Y.  L?a;L? and the vectorl? =
1
a;; az 0 asy o
— | a2 axx O as2 The temperaturd

0 0 1 1

The homogenized model has been implemented for a
1 x 10 mirror array with an heat source oscillating along
thex,-direction as a sine function. The distribution of tem-
perature is reported in Figures 7 and 8. In terms of perfor-
mances, the estimate of the gain is not yet precise, but it is
more than 20 twenty times for this case and increases fast
when the array size increases.

4. MEMSALab

MEMBALab design methodology consists of three as-
pects. The first one is to establish a general mathematical
theoretical framework for the multi-scale model derivato
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pressions for mathematical operators such as the integra-
tion operator [, the derivative operatof, the summa-
tion operator) _, the multi-scale operatofE, B, etc. Be-
sides, a mathematical expression can contain mathematical
variables athVar), regions Reg) and discrete variables
(Ind).

For the sake of readability, instead of writing the full ex-
pression that follows the MEMSALab grammar above, we
shall sometimes omit some of its subexpressions and use
shortcut-like expressions. For instance, we shall simply
write z; instead ofMathVar(x, [Ind(i, [n])],Reg(€2,...))
and omit the domainReg(f2,...) and the dimen-
sion n. We shall also write 9,v(x) instead of
Oper(Partial,Fun(v,...),...). Besides, these expres-
sions can contairewriting variables A rewriting variable,
denoted byr_, y_, etc, is a particular term that can match
any expression. For instance, the shortcut expres3ion

Fig. 8: Zoom on the result of the two-scale model of heat/hich abbreviates the expressiBag((2-, . ..), stands for
transfer in a 1x10 MMA simulated in COMSOL. The con-any domain. However, it is worth mentioning that the no-

tinuity of the temperature from the frame to the mirror igion of mathematical variable (e.g:) should not be con-
through the suspending beams. fused with the one of rewriting variable (e.gr_). We

shall sometimes write and depict lists in the prefix nota-
tion using the constructarist andnil (empty list). For
so that to be able to implement the derivation of two-scal@stance, ife; ande; are two expressions, we shall write
models as the model above. In this unified framework, theist(e, list(ez,nil)) instead offe;;ez]. The symbol
derivations — in a setting of different physical featured anNil in the grammar above represents an "empty expres-
geometries — could be different in details, but gkeleton sion”.
of the derivations remains "the same”. The second aspegty The user specification language

is the design and the implementation of a symbolic trans- \ye designed a specification language in which the user
formation tool to implement the multi-scale model derivasqomyjates the proofs including the proof blocks, the lem-
tions. The designer formulates the mathematical profertig, 55 and the mathematical expressions. The following ex-

as well the elementary derivations (i.e. the skeleton ®of, 516 shows a formula and its related specification in the
with this tool. Since only the elementary derivations of e, language.

the general framework are implemented/EVSALab, the

third aspect of our design methodology consists in develogxample 1 We give an example of the Green rule

ing anextension mechanisallowing the combination of

the already implemented derivations. This is a systematic / dv- d _>/ b (ul) tr (v_) n_ds (2.)

way to build complex models by reusing and combining a Y-z - r PAU IO ds (-
du-

already existing proofs.
- / vo—dx-
Q. dIL'_

4.1 Grammar of MEMSALab
In this section we describe the format in which the

problem is written in MEMSALab, as well as the trans-written in the specification language as,

lation between the conventional mathematical format and

Va3

(5)

the MEMSALab format. The format of a mathematical ex-
pression in MEMSALab is given by means of the formal
grammarg

& :=Plus(¢, &) | Mult(&, &) |
Minus(€) | Inverse(€) | Power(&,&) | F
Fu=Fun(f, [J;.. 5T, [V; VLR, €)5 5 (R, €)], K |
Oper(A,[J;.. 59, [& .. €L V5. V], V.. 5V,

Model "Green fornula for one-di mensi onal donain
and scal ar functions" :

Vari abl e

x_: [] [Omega]

Function

u_: [] [xx [] Ko
vt [T [xx_] [1 K.
n: (1 [XG] [] K.
Oper at or
Trace
Rul e
"Green" : [v_edu_/ dx_ dx_

— [Trace(u_) eTrace(v_) en dXG_

[
[
]

S0 [Run] [X1] [XG] []

[d;...;d]) |
V | MathCst(d) | Nil,
V ::= MathVar(z, [J;...;J],R),
R :=Reg([J;...;7],[d,...,d],[R;...; R, R, &) | Nil,
J = Ind(s,[d,...,d])

- fu_ov_1 ox_ dx_

This specification contains four declaration blocks for the
declaration of variables, functions, operators and trans-
forming rules, where * — -” denotes a transformation
rule, "[]" represents the empty parameter, Trace is the
It describes mathematical expressions built up by the-aritirace operator that restricts a function to the boundary of
metic operations+” (Plus), "-" (Prod), etc as well as its domain andn is the normal vector. The lineu’: [ ]

the mathematical function constructun and the opera- [ xx_] [] K. is a declaration of a mathematical func-
tor constructoOper. The latter allows one to build ex- tion of arbitrary name, and whose first and third argument



are empty lists while its second and fourth argument are Firstly, we introduceeference modehlso calledskele-
arbitrary. Notice also that the derivative operatdris al- ton model together with its derivation. This derivation is
ready predefined, and the user does not need to declare italled thereference proqfit is depicted on the top of Fig. 9.
o o ) The reference model is the periodic homogenization model
4.3 Principle of model derivation by extension- ot 5 scalar second-order elliptic equation posed in a one-
combination in MEMSALab. dimensional domain with Dirichlet boundary conditions.
In order to carry on a systematic approach for thgs derivation is based on the derivation approach of [11].
derivation of multi-scale models that allows to cover a vaa|though the reference model covers a very simple case, its
riety of physical features and geometries, we develop tH&qof is expressed in a sufficiently general way. A number
by extension-combination method. Figure 9 illustrates thgf hasic algebraipropertiesare formulated asansforma-
idea behind it through an example. tion rules they are considered as the building blocks of the
_ Before that, and in order to understand the transformgyoofs. The full derivation of the model is formulated as a
tions that operate on the proofs, itis helpful to see the matQequence of applications of these rules. The proof of some
ematical objects (proofs, blocks, lemmas, mathematical eXyoperties is also performed by a sequence of applications

pressions, etc) asees of mathematical rules when the others are admitted e.g. the
Green rule.
A Then, arelementary extensids obtained by an appli-
_______ cation of an elementary transformation, called als@an
tension operatarto the reference proof. Each extension

e operator covers a particular feature. In Fig. 9 the extensio

@ @ operators arél; andIl,. They respectively cover the ex-
R ——" N tension to the3-D setting and the thinness setting. More
1;351 \ /
o,

[ I—]
@%%ggg‘{%’ i generally, many extension operators can be applied simul-
g.@'-@g@-@-@/ plate taneously to the reference proof, where each operator cov-
@

— ers a distinct feature. We notice that, in practice, when a
single feature is taken into account, only a small change
occurs in a relatively long proof. In other words, while

|_]|+:z

o7 [T T ; ioti
eelE) | D VAT considering an elementary extension, most of the existing

o M A W les could b db i Il ch h
T r r ratin m nge on them
T, [ i) ules could be reused by operating a small change on them,

and, on the other hand, only a small number of new rules
has to be manually introduced. From this empirical obser-
Fig. 9: By-extension-combination principle illustrated® vation, it follows that the extension of the existing protafs
reference proof: an extension of the reference proof (togpver a new feature can be generated almost automatically.
to the 3-dimensional setting (left) and to the thinness set- Finally, we make possible the combination of two ex-
ting (right). The combination of these two extensions isension operators to produce a new extension operator that
depicted on the bottom. takes into account the features covered by each initial ex-
tension operator. In the example of Fig. 9, the combination
of the extension operatof$; andIl, is the extension op-

o0 eratorll; + Il,.
Jougzde By iterating this process, many extension operators can
be combined together giving rise to complex extensions
th 2 that cover many features. Fig. 10 shows how the extension
. t T 1L (¢
Jo ué?_;,dx Jo i da rel)
I +112 0 list o
v T 1 g v T
Ov;
Jo i de N\ JAYERE
z nil il z nil  list
Fig. 10: An example of the by-extension-combination /\
method applied to the mathematical expressﬁ&m%dw nil j

that corresponds to the left hand side of Green formula 5,
wherell; stands for the extension operator of tmelti-  Fig. 11: Application of the extension operafdr , (with
dimension settingll, stands for the extension operator tothe extension constructe) to the termt = 9,.v(z) at the
thevector-valued settingandll; + I, stands for the com- positionp, yielding the ternd,, v(z).
bination ofII; andIl,.
operators and their combination operate on the mathemat-

The by extension-combination relies on three key prinical expression/,, u%dw, which is the left hand side of

ciples. Green formula 5.



Technically speaking, the by-extension-combinationre-  IL; ,(¢) I 4(2) (IIrp + 1L ) (2)
lies on three ideas:

Firstly, an extension is built up on elementary construc- 9 9 9
tors calledextension constructordAn extension construc-
tor describes the extra term that one wants to add to a given U/ \x U/ \x v / \ .
term at a given position. For instance, the extension con- . »
structorr = list(L,7) depicted in Fig. 11 captures the /\nil 1‘]; / }q . n‘il / }q . 1‘1
idea that our extension would add a discrete variable to ar’ v B voas e
expression. / \ / \ / \ / \

nil j nil 4 nil ¢« nil j

Fig. 14: The extension operatli, , + I, , which is the
t 7! I 4(t) combination of the two extension operatbis, andIl, ,,
and its application to the term

0 list )

/ \ / \ / \ We emphasize that the structure of an extension opera-
v T 1 v z tor is more complex, _it may use both .positio.ns and n_ested

searchingpatternswhich are expressions with rewriting

/ \e |r / \¢ E ) _
. : ) i variables. A pattern allows one to locate the subexpression

¢ ol ni e list nil on which the extension constructor is applied.
/ \ Even if we do not define precisely our concept of exten-

nil ¢ sions and combination, the following statement provides an

idea of the main result.
Fig. 12: Application of the extension operaildy. , (with
the extension constructef) to the termt = 9,v(x) atthe Proposition 2 The class of extension operators are closed
positiong, yielding the termo,v;(z). under the combination operatiof, that is, ifIT; and I,

are extension operators, then their combinatibyp+-I1s is

an extension operator too.

The related extension operatotls ,, its application to
the termt = 9, v(z) at the variable: (the parameter of the
derivative operatod) yields the termil, ,(t) = 0.,v(x).
Similarly, Fig. 12 illustrates the extension operalby ,
and its application to the term= d,v(z) at the functiorv
which yields the termilL, ,(t) = 9v;(x)

The general schema of the application of an extensi
is depicted in Fig. 13.

The use of the mechanism of the combination of sev-
eral existing elementary extensions instead of the devel-
opment of new extension transformations has the advan-
tage of reducing the development effort by avoiding do-
ing complex changes manually. Thus, the by extension-
combination method is a reasonable one since it facilitates
He implementation of the two-scale methods. Besides, the
by extension-combination method goes beyond the limita-
tions of the methods of combination of extensions by se-
quential composition of [4]. More precisely, the combina-
¢ T I, (1) tion of two extension operatoi$; andIl; by the sequen-
tial composition of [4] consists of the applicationléf fol-
lowed by the application dfl, which does not work if there
are conflictsbetweenll; andIl,. Such conflicts can be
» » avoided by the new method of by extension-combination.
+ More precisely, if the extension operaids uses a search-
ing patternll,, then the application dfff; to an input ex-
pression may change it so that the applicatioflgfto the
resulting expression is no longer possible since the search
ing patternl, was intended to be applied to the input ex-
pression and not to the resulting one. That is why we
avoid the sequential composition method and employ the
by-extension-combination method which morally tries to
consider the combination of two extension operators simul-

Fig. 13: Schematic diagram of the application of an exterfaneously and to solve the possible conflicts.
sion operatotl, , (with an extension constructoei) to a 4.4

] Implementation
termt¢ at the positom.

Unlike [4] where the implementation of the extensions
as sequential compositions was done in Maple, now the
implementation of the extensions and their combination is

Secondly, the extension operators can be combinedione in Ocaml. In fact, the advantages of Ocaml are many:
Fig. 14 shows the combination of the two extension corit is a free open source language, it allows fast prototyping
structorsll, , andIL, ,. it supports high order functions, and it is equipped with an



advanced type system which reduce dramatically the prodles transform only expressions. Besides, we make a dis-
gramming errors. As an elementary example, we discu$isict notation for first-order variables (e.g.) and second-
the extension of the Green rule in Eq. (5) to both the multierder variables (e.ge_).

dimensional setting (6) and to the multi-valued setting (7) Conclusions This paper presents recent advances in
and the combination of these two extensions that yields (&he development oVEMSALab including: the key points
Precisely, the formula (5) is trivially extended for any do-of the construction and implementation of an asymptotic

main) ¢ R™ with m € N*,

. .
/Qu%jdx = /Ftr(u)tr(v)njds (6)

foranyj € {1,...,m}. Another trivial extension is for any
vector valued functiona = (u1,...,u,), v = (v1, ..., V)
defined o2 with n € N,

8’Ui o . . ‘
/Quz% dx = /Ftr(uz)tr(vz)nj ds (7)

_ / 0, 2% 4y
Q 8CC

for any: € {1,..,n}. The combination of these two
extensions states fd2 ¢ R™ with m € N* andu =
(U1, ..o, up), v = (v1,...,v,) defined o with n € N

U; Ovi dx = /tr (u;) tr (v;) mj ds (8)
O 8xj T
- V; an dx
Q 8xj

foranyi € {1,...,n} andj € {1,...,m}. The definition

model of the stationary heat equation in a micro-mirror ar-
ray, the extension-combination method and a user language
for the specification of proofs, extension operators and the
combination. The next stages of development are through
the integration of these three aspects and the extension of
the modelling to take into account electrostatics and me-
chanical strains. The major expected advance is in the de-
velopment of a library of extensions and combinations for
generating a family of asymptotic models of MOEMS ar-
rays for astrophysics. They will be validated with existing
devices and afterwards used to optimize their designs. It
remains also to implement an interpreter that automayicall
generates the extension operators, written as OCaml types,
out of user extension specifications.
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