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Abstract
This paper reports recent advances in the develop-

ment of a symbolic asymptotic modeling software package
MEMSALab which will be used for automatic generation
of asymptotic models for arrays of micro and nanosystems.
First, an asymptotic model for the stationary heat equation
in a Micro-Mirror Array developed for astrophysics is pre-
sented together with some key elements of its derivation.
This illustrates the mathematical operations that need to be
implemented in MEMSALab. The principle of operation
of this software is to construct models incrementally so that
model features can be included step by step. This idea con-
ceptualized under the name ”by extension-combination” is
presented for the first time after having recalled the general
functioning principles. A friendly user language recently
introduced is also shortly discussed.

Keywords. Homogenization, micro-mirror array, sym-
bolic computation, computer-aided derivation of asymp-
totic models

1. Introduction
Many systems encountered in micro or nano-

technologies are governed by differential or partial
differential equations (PDEs) that are too complex to be
directly simulated with general software. In a number of
cases, the complexity is due to a combination of several
factors as several space or time scales, large coefficient
heterogeneity or large aspect ratios. Many methods have
been developed to overcome these difficulties, and in
particular the asymptotic methods, also called perturbation
techniques, constitute an active field of research in all
fields of physics and mathematics for more than a century.
Their application is based on a case-by-case approach so
they are implemented only in specialized software. We
adopt an alternate approach by developing a software
package calledMEMSALab (for MEMS Array Lab) whose
aim is to derive families of asymptotic models that can
be directly exploited in simulation software. Potentially
it has a broad range of applications, however we focus on
modeling arrays of micro or nano-systems.

Our approach of the software development is two-fold.
On one hand we develop computer science concepts and

tools allowing the software implementation and on the
other hand we derive and implement asymptotic models to
anticipate the introduction of related modeling concepts in
the software library. This paper is written in this spirit, it
reports on an asymptotic model of a Micro-Mirror Array
(MMA) and reports our last advances in the development
of the kernel ofMEMSALab.

The MMA, see Figure 2, presented in [1], is dedicated
to applications in astrophysics. It is used for instance as a
field selector for multi-object spectroscopy (MOS) since it
allows individual selection of objects by preventing over-
lapping of spectra and remove spoiling sources and back-
ground emission. The full modeling of the MMA should
cover mechanical, electrical and thermal effects, however
this paper focuses on the heat diffusion only. Evidently, a
direct simulation of the heat equation in such MMA by a
Finite Element Method (FEM) turns out to be impractical,
since the MMA has a complex geometry and a large num-
ber in cells. So, we apply the multi-scale modeling method,
based on the framework of periodic homogenization as in
[2], that applies to model arrays of micro-systems with pos-
sibly large variations of temperature in a cell and between
neighboring cells. The resulting model is implemented in
COMSOL, that can be run in a reasonable time so that to
be used in other postprocessing tasks as a multi-objective
optimization procedure.

The technique of model derivation relies on an asymp-
totic method taking into account the small ratio between
the sizes of a cell and of the whole array. It is not detailed
since it is relatively long and technical, however we present
some key facts giving an idea of the features playing a role
in the derivation.

Unlike traditional software packages aimed at numer-
ical simulations by using pre-built models, the purpose
of MEMSALab is to derive asymptotic models for input
equations by taking into account their own features e.g.
the scalar valued or vector valued solution, different esti-
mates on the solutions and sources, thin structures, peri-
odic structures, multiple nested scales etc. The architecture
of MEMSALab is shown in Figure 1. Its expected func-
tioning can be schematized as follows. Firstly, theFEM



Fig. 1: TheMEMSALab software envisioned architecture.

software/MEMSALab interfacetranslates a system of PDEs
from a FEM software package to the grammar used in the
kernel of MEMSALab. Secondly, the multi-scale model
(MSM) is automatically derived and the result is saved. Fi-
nally, theMEMSALab/FEM Software interface, translates
back the resulting model to the format of the FEM software
package and its simulation is launched. The advances in the
development of this tool have been reported in [3, 4, 5]. Af-
ter recalling the main ideas behindMEMSALab, this paper
reports on a recent progress: the so called ”by extension-
composition” mechanism i.e. the MSM constructor de-
picted in the right-bottom of Figure 1. This method yields
an incremental model construction so that the wanted fea-
tures can be included step by step. We also comment the
recent introduction of a dedicated user language.

2. Description of the Micro-Mirror Array
The structure of this MMA is detailed in [6]. Figure

3 shows the components of its elementary cell which is
divided into two parts: the mirror part and the electrode
part. The mirror part is composed of the mirror, two stopper
beams with two landing beams on their tips and a suspend-
ing beam. The electrode part is composed of an electrode,
two landing pads and two pillars.

Each cell can be addressable by applying different volt-
ages on its line and column and then tilted due to the gen-
eration of electrostatic force on its mirror’s surface, [1]and
[6]. At rest, when no voltage is applied, the micro-mirror
is held in a flat position by the suspended beams. When a
voltage difference is applied between the micro-mirror and
the electrode, an electrostatic force is generated, resulting
in the attraction of the micro-mirror toward the fixed elec-
trode, and leading to tilting and provides a restoring force
For voltages below the pull-in voltage, the micro-mirror is
operated in an analogue mode, allowing the angle to be set
to a few degrees as a function of the applied voltage. At the
pull-in voltage, the force increases and the micro-mirror
snaps toward the electrode. During this motion, the micro-

mirror touches its stopper beam and its landing pads. After
pull-in, the micro-mirror is fixed at a precise tilt angle, due
to contact with the stopper beam and landing pads. When
the voltage is reduced, the micro-mirror angle remains con-
stant until the mirror detaches from its stopper beam and
increased its tilt angle. Finally, when the spring force of
the suspended beams overcome the electrostatic force, the
landing beams detach from the landing pads and the mirror
returns to its rest position.

Fig. 2: A top-view of the Micro-Mirror Array micro-mirror
of size: 100 x 200 square micrometers)

Fig. 3: Architecture of a MMA’s cell

The actuation phenomena is based on an attraction
through an electrostatic force generated by a difference
of potential between the electrode and the mirror, and the
spring force of the suspended beams becoming active when
the voltage decreases.

A complete modeling should take into account the elec-
tric voltages between the micro-mirrors and the electrodes;
the thermo-elasticity problem in beams; the heat diffusion
in all parts, and the linear frictionless contact problem be-
tween stopper beam and landing pads. Here, we only con-
sider the heat transfer in the whole array. Regarding the
heat sources, one is coming from the environment such as
black bodies at the given temperature or mechanical parts
around the component gives a significance contribution to
warm up the MMA, while the other coming from the stars
and galaxies is very small and probably negligible. To dis-
sipate this heat, the MMA is attached to a heat sink.

3. Homogenized model of the heat equation for the
MMA

Starting from the mathematical statement of the heat
equation in the MMA, we describe the assumptions taken



into account in the asymptotic model derivation, the two-
scale transform which is the key mathematical tool, the a
priori estimates of the solution, the asymptotic model it-
self, and the simulation results. These are the operations
expected to be done byMEMSALab linked to a FEM soft-
ware package.

3.1 Mathematical model
We consider aN × 1 array of MMs as shown in Fig-

ure 4 which cell represented in Figure 5 is comprised of a
micro-mirror including two stopping beams, a part of the
frame, two pillars and an electrode made of silicon. Af-
ter rescaling the array size to a unit length, we denote by
ε the order of magnitude of the cell dimensions. This pa-
rameter decreases when the numberN of cells of the array
increases, and we determine, in a sense explained hereafter,
an approximation of the temperature field for small values
of ε. The regionΩε occupied by the device which is split
into Ωε

m, Ωε
f , Ω

ε
p ⊂ R

3 the subregions occupied by the
mirrors including the stopping beams, the frame and the
pillars respectively. The body heat sourcer is present in
the frame and the mirror, and the thermal conductivity may
be anisotropic with matricesaε, am,ε, af,ε andap,ε in Ωε,
Ωε

m, Ωε
f andΩε

p. The electrodes act as a sink with an im-
posed ambient temperature, so a Dirichlet boundary condi-
tion is imposed on the bottom surfacesΓ0,p of the pillars, cf
Figure 5. The fieldθ of the difference of temperature to the
ambient temperature is solution to the stationary equation







− div (aε∇θ) = r in Ωε

θ = 0 onΓ0,p

(aε∇θ) · n = 0 on∂Ωε − Γ0,p,

∂Ωε representing the boundary ofΩε. The corresponding
weak formulation is

∮

Ωε
m

a
m,ε∇θ∇v dx+Rf

m

∮

Ωε
f

a
f,ε∇θ∇v dx

+Rp
m

∮

Ωε
p

a
p,ε∇θ∇v dx =

∮

Ωε
m

rv dx

+Rf
m

∮

Ωε
f

rv dx,

(1)

using
∮

Ω F dΩ = 1
|Ω|

∫

Ω F dΩ the mean value of an inte-

gral and the volume ratiosRf
m =

∣

∣

∣Ωε
f

∣

∣

∣ / |Ωε
m| andRp

m =
∣

∣Ωε
p

∣

∣ / |Ωε
m|.

Fig. 4: A 10 x 1 MMA

Fig. 5: Zoom on a cell of the 10x1 MMA

3.2 A priori estimates
Once the equations and the geometry of the problem

have been set, as it is done in FEM software, an impor-
tant step for an asymptotic analysis is to specify the be-
havior of the sources with respect toε. With this purpose,
we denote byL2(Ω) the set of square integrable functions
F over a domainΩ, i.e. such that

∫

Ω |F |2 dx < ∞. In
this problem, the volume heat source inΩε

m andΩε
f has

to be large enough to heat the parts that is mathematically
written as∃C > 0 so that||εr||2L2(Ωε

m) /|Ω
ε
m| ≤ C and

||r||2L2(Ωε
f
) /|Ω

ε
f | ≤ C.

Then, a priori estimates satisfied by the temperature
field are derived by taking into account the specialfeatures
of the problem: ie the characteristics of the geometry and of
the coefficients with respect to the small parameterε. Here,
we do not report the mathematical derivation, but simply
express the physical assumptions and their mathematical
consequences in terms of estimates with their meaning.
The connections of the thin micromirrors to the frame are
through thin and narrow beams which effect is equivalent
to a connection by low conductivity components. It re-
sults in a possibly large temperature variation in the mir-
rors and suspending beams of the range ofε−1 expressed as
‖ε∇θ‖

2
L2(Ωε

m) /|Ω
ε
m| < C. In the frame which is a contin-

uous body, the simple estimates‖∇xθ‖
2
L2(Ωε

f
) /|Ω

ε
f | < C

holds. Regarding the pillars, their small section compared
to the surface of the mirrors and the electrodes yields a dif-
ference of temperature of the orderO(1) between their bot-
tom and top ends which requires a temperature variation in
the pillar direction to be in the range ofε−1. This is the
meaning of the estimate‖ε∇θ‖

2
L2(Ωε

p)
/|Ωε

p| < C.

3.3 Two-scale convergence
Following [2, 7, 8], the two-scale transform operator

T maps the physical periodic domainΩε = Ωε
m ∪ Ωε

f ∪

Ωε
p into a two-scale domainω × Ω1, see Figure 6. The

microscopic cellΩ1 = Ω1
m ∪ Ω1

f ∪ Ω1
p ⊂ R

3 is deduced
from any cellΩε

i of the array centered atxc
i by a translation

and a dilation:Ω1 = {x1 = (x − xc
i )/ε | x ∈ Ωε

i }. The
macroscopic domainω ⊂ R is a segment in the direction
x2 having the length of the array and passing through the
centersxc

i . It is used for refereing to the cells. Precisely,
the transformationT is applied to any functionw defined
onΩε by (Tw)(x0, x1) = w(xc

i + εx1) for anyx0 in a cell



Fig. 6: Two-scale transform ofΩε into ω × Ω1

ω ∩ Ωε
i and anyx1 ∈ Ω1. We also define the operatorB

mapping functions defined onω × Ω1 to functions defined
onΩε byBv(x) = v (x2, (x− xc

i )/ε) for anyx ∈ Ω.
We assume that there exists a main temperature fieldθ0

and its correctorθ1 such that,
∮

Ωε

θB(v) dx =

∮

ω×Ω1

(θ0 + εθ1)v dx0dx1 + εO(ε).

From a priori estimates we prove the approximations and
equalities: T (ε∂xα

θ) = ∂x1
α
θ0 + Ow(ε), T (∂x3

θ) =

∂x1

3

θ1 + Ow(ε), ∂x1

3

θ0 = 0 in ω × Ω1
m, T (∂x1

θ) =

∂x1

1

θ1 + Ow(ε), T (∂x2
θ) = ∂x0

2

θ0 + ∂x1

2

θ1 + Ow(ε),

T (∂x3
θ) = ∂x1

3

θ1 + Ow(ε), ∇x1θ0 = 0, θ1 is Ω1
f -

periodic inx1
2 in ω × Ω1

f andT (∂xα
θ) = ∂x1

α
θ1 +Ow(ε),

T (ε∂x3
θ) = ∂x1

3

θ+Ow(ε), ∂x1

1

θ0 = ∂x1

2

θ0 = 0 in ω×Ω1
p,

andα ∈ {1, 2}. The notationOw(ε) refers to any weakly
vanishing function in theL2-norm.

3.4 The Homogenized model
The previous approximations and equalities are

plugged in the weak formulation (1) which yields, after
some steps, the two-scale model of the MMA. Since the
matrix of diffusion isΩε-periodic it has the formaε =
T (a) wherea(x1) is the matrix of diffusion defined in the

reference cellΩ1. The temperature in the frameθ
0
(x0) =

θ0 in ω×Ω1
f is extended to the whole arrayω×Ω1. The dif-

ferencesθ0m = θ0−θ
0

in ω×Ω1
m andθ0p = θ0−θ

0
in ω×Ω1

p

satisfy the boundary conditionsθ0m = 0 on∂Ω1
m∩∂Ω1

f and

θ0p = 0 on∂Ω1
p∩∂Ω1

f . The other equations satisfied byθ0m
in each mirror are discoupled from the other parts,

{

−divx1(am∇x1θ0m) = rm,0 in ω × Ω1
m,

(am∇x1θ0m)Tn = 0 on∂Ω1
m/∂Ω1

f ,
(2)

where x1 = (x1
1, x

1
2), n = (n1, n2), amαβ = aαβ −

a3βaα3/a33 is the effective thermal conductivity of the mir-
ror andrm,0 is the effective internal heat source. In the pil-

lars,θ0p = θ
0
θ′p where the auxiliary functionθ′p is solution

to the one-dimensional boundary value problem,






−∂x1

3

(ap∂x1

3

θ′p) = 0 in Ω1
p,

θ′p = 0 on∂Ω1
p ∩ ∂Ω1

f ,

θ′p = −1 onΓ0,p,
(3)

where ap =
∑3

i,j=1 L
p
i aijL

p
j and the vectorLp =

−





a11 a21 0
a12 a22 0
0 0 1





−1 



a31
a32
1



. The temperatureθ
0

in the frame solves






















−∂x0(af∂x0θ
0
) = rf,0,

−Rf
m

∮

∂Ω1
m
(am∇x1θ0m)Tn dx1,

−Rp
mθ

0 ∮

∂Ω1
p
ap∂x1

3

θ′p dx
1 in ω,

θ
0
= 0 on∂ω,

(4)

with the effective thermal coefficientaf =
∑3

i,j=1(δi,2 +

Lf
i )aij(δj,2 + Lf

j ), δi,j the Kronecker delta symbol, and
the vectorLf = ∇x1u. The auxiliary functionu is solu-
tion to− divx1(a∇x1u) = − div(e2a) andΩ1

f -periodicity
conditions wheree2 = (0, 1, 0).

Fig. 7: Result of the two-scale model of heat transfer in a
1x10 MMA simulated in COMSOL.

In the implementation, the temperatureθ0m andθ′p in the
mirror and in the pillars are computed by solving Equations
(2) and (3). Then, the heat fluxesam∇x1θ0m andap∂x1

3

θ′p

are used as sources in Equation (4) of the temperatureθ
0

in
the frame. With this method, the microscopic problems are
solved cell by cell which reduces dramatically the memory
requirement. Further reduction are possible e.g. by solv-
ing cell problems for a small family of source terms and
operate by interpolation to deduce all the other solutions.

The homogenized model has been implemented for a
1 × 10 mirror array with an heat source oscillating along
thex2-direction as a sine function. The distribution of tem-
perature is reported in Figures 7 and 8. In terms of perfor-
mances, the estimate of the gain is not yet precise, but it is
more than 20 twenty times for this case and increases fast
when the array size increases.

4. MEMSALab
MEMSALab design methodology consists of three as-

pects. The first one is to establish a general mathematical
theoretical framework for the multi-scale model derivations



Fig. 8: Zoom on the result of the two-scale model of heat
transfer in a 1x10 MMA simulated in COMSOL. The con-
tinuity of the temperature from the frame to the mirror is
through the suspending beams.

so that to be able to implement the derivation of two-scale
models as the model above. In this unified framework, the
derivations – in a setting of different physical features and
geometries – could be different in details, but theskeleton
of the derivations remains ”the same”. The second aspect
is the design and the implementation of a symbolic trans-
formation tool to implement the multi-scale model deriva-
tions. The designer formulates the mathematical properties
as well the elementary derivations (i.e. the skeleton proofs)
with this tool. Since only the elementary derivations of
the general framework are implemented inMEMSALab, the
third aspect of our design methodology consists in develop-
ing anextension mechanismallowing the combination of
the already implemented derivations. This is a systematic
way to build complex models by reusing and combining
already existing proofs.

4.1 Grammar of MEMSALab
In this section we describe the format in which the

problem is written in MEMSALab, as well as the trans-
lation between the conventional mathematical format and
the MEMSALab format. The format of a mathematical ex-
pression in MEMSALab is given by means of the formal
grammar,

E ::= Plus(E, E) | Mult(E, E) |

Minus(E) | Inverse(E) | Power(E,E) | F

F ::= Fun(f, [I; . . . ; I], [V; . . . ;V], [(R,E); . . . ; (R,E)], K) |

Oper(A, [I; . . . ; I], [E; . . . ;E], [V; . . . ;V], [V; . . . ;V],

[d; . . . ; d]) |

V | MathCst(d) | Nil,

V ::= MathVar(x, [I; . . . ; I],R),

R ::= Reg(Ω, [I; . . . ; I], [d, . . . , d], [R; . . . ;R],R,E) | Nil,

I ::= Ind(i, [d, . . . , d])

It describes mathematical expressions built up by the arith-
metic operations ”+” (Plus), ” ·” (Prod), etc as well as
the mathematical function constructorFun and the opera-
tor constructorOper. The latter allows one to build ex-

pressions for mathematical operators such as the integra-
tion operator

∫

, the derivative operator∂, the summa-
tion operator

∑

, the multi-scale operatorsT,B, etc. Be-
sides, a mathematical expression can contain mathematical
variables (MathVar), regions (Reg) and discrete variables
(Ind).

For the sake of readability, instead of writing the full ex-
pression that follows the MEMSALab grammar above, we
shall sometimes omit some of its subexpressions and use
shortcut-like expressions. For instance, we shall simply
write xi instead ofMathVar(x, [Ind(i, [n])], Reg(Ω, . . .))
and omit the domainReg(Ω, . . .) and the dimen-
sion n. We shall also write ∂xv(x) instead of
Oper(Partial, Fun(v, . . .), . . .). Besides, these expres-
sions can containrewriting variables. A rewriting variable,
denoted byx , y , etc, is a particular term that can match
any expression. For instance, the shortcut expressionΩ ,
which abbreviates the expressionReg(Ω , . . .), stands for
any domain. However, it is worth mentioning that the no-
tion of mathematical variable (e.g.x) should not be con-
fused with the one of rewriting variable (e.g.x ). We
shall sometimes write and depict lists in the prefix nota-
tion using the constructorlist andnil (empty list). For
instance, ife1 ande2 are two expressions, we shall write
list(e1, list(e2, nil)) instead of[e1; e2]. The symbol
Nil in the grammar above represents an ”empty expres-
sion”.

4.2 The user specification language
We designed a specification language in which the user

formulates the proofs including the proof blocks, the lem-
mas and the mathematical expressions. The following ex-
ample shows a formula and its related specification in the
user language.

Example 1 We give an example of the Green rule
∫

Ω

u
dv

dx
dx →

∫

Γ

tr (u ) tr (v )n ds (x )

−

∫

Ω

v
du

dx
dx (5)

written in the specification language as,

Model "Green formula for one-dimensional domain
and scalar functions" :
Variable
x_ : [] [Omega_]

Function
u_ : [] [xx_] [] K_
v_ : [] [xx_] [] K_
n : [] [XG_] [] K_

Operator
Trace : [] [Fun_] [X_] [XG_] []

Rule
"Green" :

∫
v_•∂u_/∂x_ dx_

→
∫
Trace(u_)•Trace(v_)•n dXG_

-
∫
u_∂v_/∂x_ dx_

This specification contains four declaration blocks for the
declaration of variables, functions, operators and trans-
forming rules, where ”· → ·” denotes a transformation
rule, ” [ ]” represents the empty parameter, Trace is the
trace operator that restricts a function to the boundary of
its domain andn is the normal vector. The line ”u :[]
[xx ] [] K ” is a declaration of a mathematical func-
tion of arbitrary name, and whose first and third argument



are empty lists while its second and fourth argument are
arbitrary. Notice also that the derivative operator∂ is al-
ready predefined, and the user does not need to declare it.

4.3 Principle of model derivation by extension-
combination in MEMSALab.

In order to carry on a systematic approach for the
derivation of multi-scale models that allows to cover a va-
riety of physical features and geometries, we develop the
by extension-combination method. Figure 9 illustrates the
idea behind it through an example.

Before that, and in order to understand the transforma-
tions that operate on the proofs, it is helpful to see the math-
ematical objects (proofs, blocks, lemmas, mathematical ex-
pressions, etc) astrees.

Fig. 9: By-extension-combination principle illustrated on a
reference proof: an extension of the reference proof (top)
to the3-dimensional setting (left) and to the thinness set-
ting (right). The combination of these two extensions is
depicted on the bottom.

∫

Ω u ∂v
∂x

dx

∫

Ω u ∂v
∂xj

dx
∫

Ω ui
∂vi
∂x

dx

∫

Ω ui
∂vi
∂xj

dx

Π1+Π2

Π1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

Π2

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄

��

Fig. 10: An example of the by-extension-combination
method applied to the mathematical expression

∫

Ω u ∂v
∂x

dx
that corresponds to the left hand side of Green formula 5,
whereΠ1 stands for the extension operator of themulti-
dimension setting, Π2 stands for the extension operator to
thevector-valued setting, andΠ1 +Π2 stands for the com-
bination ofΠ1 andΠ2.

The by extension-combination relies on three key prin-
ciples.

Firstly, we introducereference model, also calledskele-
ton model, together with its derivation. This derivation is
called thereference proof, it is depicted on the top of Fig. 9.
The reference model is the periodic homogenization model
of a scalar second-order elliptic equation posed in a one-
dimensional domain with Dirichlet boundary conditions.
Its derivation is based on the derivation approach of [11].
Although the reference model covers a very simple case, its
proof is expressed in a sufficiently general way. A number
of basic algebraicpropertiesare formulated astransforma-
tion rules, they are considered as the building blocks of the
proofs. The full derivation of the model is formulated as a
sequence of applications of these rules. The proof of some
properties is also performed by a sequence of applications
of mathematical rules when the others are admitted e.g. the
Green rule.

Then, anelementary extensionis obtained by an appli-
cation of an elementary transformation, called also anex-
tension operator, to the reference proof. Each extension
operator covers a particular feature. In Fig. 9 the extension
operators areΠ1 andΠ2. They respectively cover the ex-
tension to the3-D setting and the thinness setting. More
generally, many extension operators can be applied simul-
taneously to the reference proof, where each operator cov-
ers a distinct feature. We notice that, in practice, when a
single feature is taken into account, only a small change
occurs in a relatively long proof. In other words, while
considering an elementary extension, most of the existing
rules could be reused by operating a small change on them,
and, on the other hand, only a small number of new rules
has to be manually introduced. From this empirical obser-
vation, it follows that the extension of the existing proofsto
cover a new feature can be generated almost automatically.

Finally, we make possible the combination of two ex-
tension operators to produce a new extension operator that
takes into account the features covered by each initial ex-
tension operator. In the example of Fig. 9, the combination
of the extension operatorsΠ1 andΠ2 is the extension op-
eratorΠ1 +Π2.

By iterating this process, many extension operators can
be combined together giving rise to complex extensions
that cover many features. Fig. 10 shows how the extension
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Fig. 11: Application of the extension operatorΠτ,p (with
the extension constructorτ ) to the termt = ∂xv(x) at the
positionp, yielding the term∂xj

v(x).

operators and their combination operate on the mathemat-
ical expression

∫

Ω
u ∂v
∂x

dx, which is the left hand side of
Green formula 5.



Technically speaking, the by-extension-combinationre-
lies on three ideas:

Firstly, an extension is built up on elementary construc-
tors calledextension constructors. An extension construc-
tor describes the extra term that one wants to add to a given
term at a given position. For instance, the extension con-
structorτ = list(⊥, j) depicted in Fig. 11 captures the
idea that our extension would add a discrete variable to an
expression.
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Fig. 12: Application of the extension operatorΠτ ′,q (with
the extension constructorτ ′) to the termt = ∂xv(x) at the
positionq, yielding the term∂xvi(x).

The related extension operator isΠτ,p, its application to
the termt = ∂xv(x) at the variablex (the parameter of the
derivative operator∂) yields the termΠτ,p(t) = ∂xj

v(x).
Similarly, Fig. 12 illustrates the extension operatorΠτ ′,q

and its application to the termt = ∂xv(x) at the functionv
which yields the termΠτ ′,q(t) = ∂xvi(x)

The general schema of the application of an extension
is depicted in Fig. 13.
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Fig. 13: Schematic diagram of the application of an exten-
sion operatorΠτ,p (with an extension constructorτ ) to a
termt at the positonp.

Secondly, the extension operators can be combined.
Fig. 14 shows the combination of the two extension con-
structorsΠτ,p andΠτ ′,q.

Πτ,p(t)

∂

v

x nil

x

list

nil j

q p

Πτ ′,q(t)

∂

v

x list

nil i

x

nil

q p

(Πτ,p +Πτ ′,q)(t)

∂

v

x list

nil i

x

list

nil j

q p

Fig. 14: The extension operatorΠτ,q + Πτ ′,q which is the
combination of the two extension operatorsΠτ,p andΠτ ′,q,
and its application to the termt.

We emphasize that the structure of an extension opera-
tor is more complex, it may use both positions and nested
searchingpatternswhich are expressions with rewriting
variables. A pattern allows one to locate the subexpression
on which the extension constructor is applied.

Even if we do not define precisely our concept of exten-
sions and combination, the following statement provides an
idea of the main result.

Proposition 2 The class of extension operators are closed
under the combination operation+, that is, ifΠ1 andΠ2

are extension operators, then their combinationΠ1+Π2 is
an extension operator too.

The use of the mechanism of the combination of sev-
eral existing elementary extensions instead of the devel-
opment of new extension transformations has the advan-
tage of reducing the development effort by avoiding do-
ing complex changes manually. Thus, the by extension-
combination method is a reasonable one since it facilitates
the implementation of the two-scale methods. Besides, the
by extension-combination method goes beyond the limita-
tions of the methods of combination of extensions by se-
quential composition of [4]. More precisely, the combina-
tion of two extension operatorsΠ1 andΠ2 by the sequen-
tial composition of [4] consists of the application ofΠ1 fol-
lowed by the application ofΠ2 which does not work if there
are conflictsbetweenΠ1 andΠ2. Such conflicts can be
avoided by the new method of by extension-combination.
More precisely, if the extension operatorΠ2 uses a search-
ing patternU2, then the application ofΠ1 to an input ex-
pression may change it so that the application ofΠ2 to the
resulting expression is no longer possible since the search-
ing patternU2 was intended to be applied to the input ex-
pression and not to the resulting one. That is why we
avoid the sequential composition method and employ the
by-extension-combination method which morally tries to
consider the combination of two extension operators simul-
taneously and to solve the possible conflicts.

4.4 Implementation
Unlike [4] where the implementation of the extensions

as sequential compositions was done in Maple, now the
implementation of the extensions and their combination is
done in Ocaml. In fact, the advantages of Ocaml are many:
it is a free open source language, it allows fast prototyping,
it supports high order functions, and it is equipped with an



advanced type system which reduce dramatically the pro-
gramming errors. As an elementary example, we discuss
the extension of the Green rule in Eq. (5) to both the multi-
dimensional setting (6) and to the multi-valued setting (7)
and the combination of these two extensions that yields (8).
Precisely, the formula (5) is trivially extended for any do-
mainΩ ⊂ R

m with m ∈ N
∗,

∫

Ω

u
∂v

∂xj

dx =

∫

Γ

tr (u) tr (v)nj ds (6)

−

∫

Ω

v
∂u

∂xj

dx

for anyj ∈ {1, ...,m}. Another trivial extension is for any
vector valued functionsu = (u1, ..., un) , v = (v1, ..., vn)
defined onΩ with n ∈ N,

∫

Ω

ui

∂vi
∂x

dx =

∫

Γ

tr (ui) tr (vi)nj ds (7)

−

∫

Ω

vi
∂ui

∂x
dx

for any i ∈ {1, ..., n}. The combination of these two
extensions states forΩ ⊂ R

m with m ∈ N
∗ andu =

(u1, ..., un) , v = (v1, ..., vn) defined onΩ with n ∈ N

∫

Ω

ui

∂vi
∂xj

dx =

∫

Γ

tr (ui) tr (vi)nj ds (8)

−

∫

Ω

vi
∂ui

∂xj

dx

for any i ∈ {1, ..., n} andj ∈ {1, ...,m}. The definition
of the extensions in Ocaml follows those expressed in the
above mathematical formulae. To extend Equation (5) into
Equation (6), we change the dimension of the domain from
1 intom and then we add indexj to Equation (5)’s variable.
Similarly, we add indexi to the functions of Equation (6)
to get Equation (7). The two operators of extensions can be
expressed in the user language,

Extension "multi-dimensional domains" :
Index
j : [1,JD_] ∀

Statement
"S1": ∂u__/∂{Var x__ [] []} ⇒ ∂u__/∂{x__ [j] []}
"S2": {Fun n [] [] []} ⇒ {Fun n [j] [] []}

and

Extension "vector valued functions" :
Index
i : [1,ID_] ∀

Statement
"S1": {Fun : u__ [][][]}∂{Fun : v__ [][][]}/∂x__ ⇒

{u__ [i] [] []}∂{v__ [i] [] []}/∂x__

The first extension specification introduces the discrete
indexj and adds it to any variablex which is the derivative
variable of the operator∂. The second extension specifica-
tion introduces the discrete indexi and adds it to the set of
the discrete variables of the functionv. This is expressed by
the second-order rewriting rulesS1 andS2, where second-
order rules are morally like first-order ones except that they
transform first-order rules and expressions while first-order

rules transform only expressions. Besides, we make a dis-
tinct notation for first-order variables (e.g.x ) and second-
order variables (e.g.x ).

Conclusions This paper presents recent advances in
the development ofMEMSALab including: the key points
of the construction and implementation of an asymptotic
model of the stationary heat equation in a micro-mirror ar-
ray, the extension-combination method and a user language
for the specification of proofs, extension operators and their
combination. The next stages of development are through
the integration of these three aspects and the extension of
the modelling to take into account electrostatics and me-
chanical strains. The major expected advance is in the de-
velopment of a library of extensions and combinations for
generating a family of asymptotic models of MOEMS ar-
rays for astrophysics. They will be validated with existing
devices and afterwards used to optimize their designs. It
remains also to implement an interpreter that automatically
generates the extension operators, written as OCaml types,
out of user extension specifications.
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