
Rewriting Strategies for a Two-Scale Method:
Application to Combined

Thin and Periodic Structures
B. Yang∗, W. Belkhir†‡, R. N. Dhara∗, A. Giorgetti†‡ and M. Lenczner∗

FEMTO-ST
∗ Département Temps-Fréquence, 26 chemin de l’Epitaphe, 25030 Besançon, France

† Département Informatique des Systèmes Complexes, 16 route de Gray, 25030 Besançon, France
‡ INRIA Nancy Grand-Est, CASSIS project, 54600 Villers-lès-Nancy, France

{bin.yang,walid.belkhir,rajnarayan.dhara,alain.giorgetti}@femto-st.fr, michel.lenczner@utbm.fr

Abstract—Multiphysics models of large arrays of micro- and
nanosystems are too complex to be efficiently simulated by
existing simulation software. Fortunately, asymptotic methods
such as those based on two-scale convergence are applicable
to homogenization of thin or periodic (i.e. array) structures.
They generate simpler models tractable to simulation, but their
application is long and requires a mathematical expertise.

Our goal is to provide engineers with an implementation of this
mathematical tool inside a modeling software. We follow therefore
a multidisciplinary approach which combines a generalization
and formalization effort of mathematical asymptotic methods,
together with rewriting-based formal transformation techniques
from computer science. This paper describes this approach,
illustrates it with an example and presents the architecture of
the software under design.

Keywords-Partial differential equations, two-scale derivation,
symbolic computation.

I. INTRODUCTION

Fig. 1. An array of micro-levers for parallel AFM applications. A courtesy
of A. Meister from CSEM Switzerland.

The context of this work is the design of microsystem
array architectures, including microcantilevers, micromirrors,
droplet ejectors, micromembranes, microresistors, biochips, to
cite only a few. A typical example is an array of atomic force
microscopes (AFM), as the one shown in Figure 1. AFM

arrays have many applications, such as surface imaging in ma-
terials science, fundamental physics and biology, nano-object
manipulation, or nanolithography. The numerical simulation
of large microsystem arrays based on classical methods like
the Finite Element Method (FEM) is prohibitive for today’s
computers (at least in a time compatible with the time scale of
a designer). The calculation of a reasonably complex cell of a
three-dimensional microsystem requires about 1000 degrees of
freedoms which leads to about 10 000 000 degrees of freedoms
for a 100 × 100 array.

A solution consists in approximating the model by a multi-
scale method. An asymptotic model is derived from a system
of PDEs by taking into account that at least one parameter is
very small. For a periodic structure the parameter is the small
ratio of a cell size to the global size. It is thickness for a
thin structure. The resulting model is another system of PDEs,
obtained by taking the mathematical limits of the nominal
model, in some energy sense, when the small parameters are
going to zero. The resulting PDEs can be implemented in a
simulation software such as the finite element based simulator
COMSOL (Multiphysics Finite Element Analysis Software,
official site http://www.comsol.com). Their simulation turns
out to be dramatically faster while the approximation main-
tains a good level of precision. Since the method is rigorous
and systematic, it also offers the advantage of a high reliability.

The literature in this field is vast and a large number
of techniques have been developed for a large variety of
geometric features and physical phenomena. However, none
of them have been implemented in a systematical approach to
render it available to engineers as a design tool. In fact, each
published paper focus on a special case regarding geometry
or physics, and very few works are considering a general
picture. By contrast our aim is to treat the problem of
systematic application of asymptotic methods by to implement
them is a software constructing approximated models. This
approach will cover many situations from a small number of
bricks. It combines mathematical and computer science tools.
The mathematical tool is the two-scale transform originally
introduced in [1], [2], [3] to transform models combining
periodic and thin structures. It is also referred as the unfolding

http://www.comsol.com

method. We have extended its domain of application to cover
in the same time homogenization of periodic media, see for
instance [4], and asymptotic analysis for thin domains, see
[5]. The computer science tools include term rewriting [6],
[7], [8], λ-calculus and types [9], [10], [11]. Compared to
other techniques, ours requires more modular calculations and
avoids any non-constructive proof.

Our software will aid to design multiphysics systems with
high contrast in equation coefficients and complex geometries,
including thin structures, periodic structures, with possibly
many nested scales, and combinations of these. The produced
simulations should be light enough to be inserted into pa-
rameter identification and optimization loops. The software is
written in the symbolic computation language MapleTM.

In the paper we present each aspect of our method as
well as our first results. It is organized as follows. Section II
introduces the mathematical tools used in model derivation and
a running example. Section III details our design methodology,
the architecture of our software and its theoretical foundations.
Section IV presents a model derivation performed by the
software and its validation.

II. MATHEMATICAL TOOLS USED FOR MODEL DERIVATION

To date, the program covers only the elliptic second order
PDE,

−
d∑

i,j=1

∂

∂xi
(aij(x)

∂

∂xj
u(x)) = f(x),

posed in a region Ω in Rd consisting of arbitrary number of
subregions each of which may have a periodic structure, be
thin or combining these two features. The coefficients aij of
the equation may also be periodic. The boundary conditions
can be Dirichlet conditions u = g on a part Γ1 of the boundary
∂Ω for a given g, and Neumann conditions

d∑
i,j=1

njaij(x)
∂

∂xj
u = h

for a given h on the other part Γ2 of the boundary with out-
ward unit vector (n1, .., nd). This partial differential equation
appears in a number of physical models such as the stationary
diffusion equation, the equation of electrostatics or a model for
elastic beam in torsion. We assume that all small parameters
of the problem are expressed in terms of a single one denoted
by ε.

For the sake of illustration, the remainder of this presen-
tation is based on the example of thermal equilibrium of the
AFM array shown in Figure 1, connected to a thin bar and
placed in a vacuum. The complete structure is represented in
Figure 2(a). The bar thickness is in the same range as the cell
sizes. A heat source is placed in each cantilever to model the
presence of actuations by thermo-elastic coupling. The heat
flux at all boundaries is vanishing (h = 0), except at the bar
end and at the left and bottom sides of the cantilever array
where a temperature is imposed at g = 0◦C. Modeling is done

in two dimensions, so that the matrix a represents the two-
dimensional thermal conductivity and f the two-dimensional
density of thermal source.

Here, we do not detail the mathematical steps of construc-
tion of asymptotic model, but we just review the mathematical
objects that are manipulated in order to explain, in Section III,
how they are treated in terms of symbolic transformations.
Several proofs have been published [12], [2], [3], [13], [14].
Here we adapt the proofs of the paper [13] where an effort
has been made to formulate proofs in a modular form and to
avoid any non-computational steps. The steps in this formal
method are rigorously specified at a high level of generality,
that make them independent of the domain geometry and
applicable to other equations. The model derivation starts
from the weak formulation associated to the above classical
formulation boundary value problem. Find u ∈ V such that

d∑
i,j=1

∫
Ω

aij
∂u

∂xi

∂v

∂xj
dx =

∫
Ω

fvdx (1)

for all v ∈ V where V represents the set of admissible
functions V = {u | u = 0 on Γ1}. We observe that we have
dropped the question of function regularity that should be
taken into account in the set of admissible functions because
this has not yet been taken into account in the implementation.

The weak formulation (1) requires the definition of regions
as Ω and their boundaries as Γ1 and Γ2, of variables as x =
(x1, .., xd), of functions as u(x) and v(x), of set of functions
as V , and then of operations associated with them. Beyond
simple operations such as addition or multiplication between
functions, it is required to define formally the integral over a
region and the sum over a set of indices.

The usual operations on variational formulation require to
use the extension to multidimensional domains of the rule of
integration by parts. The so-called Green formula holds for
sufficiently regular functions u and v defined in a domain
Θ ⊂ Rd,∫

Θ

u
∂v

∂xi
dx =

∫
∂Θ

u v (nx)i ds(x)−
∫

Θ

v
∂u

∂xi
dx

for any i = 1, ..., d where nx represents the outward pointing
unit normal of the hyper-surface volume element ds(x) on the
boundary ∂Θ.

On the other hand, the model derivation relates to the two-
scale transform whose principle is shown in Figure 2(b). The
derivation starts with a phase of region splitting into several
subregions (Ω1 and Ω2 in the example) requiring different
treatments. The derivation continues with the unfolding step.
In that step, the physical region is partitioned into a family of
periodic cells, even if it does not undergo a simplification to
the periodicity, and is transformed (by a process not detailed
here) into the product of so-called macroscopic and micro-
scopic regions. The macroscopic (resp. microscopic) region
associated to a region Ωi is denoted hereby Ω̃i (resp. Yi). In
Figure 2(b) parts removed from the initial model are indicated
in gray or by doted lines.

(a) Geometry and boundary conditions for an array of cantilevers
connected to a beam

(b) Flowchart representing the two-scale transformation of the region Ω

Fig. 2. Running example

The microscopic region contains all the information on the
microstructure of the subregion while the macroscopic one is
only used to locate the position of the cells; in the case of a
thin structure its dimension is that of the neutral axis or plane.
Figure 2(b) illustrates this construction process on the example
where Ω1 is a periodic region and Ω2 a thin region. Their
image pairs are denoted by (Ω̃1, Y1) and (Ω̃2, Y2) respectively.
By composition with the above operation, a function defined
on a subregion is transformed into a function defined on
the product of its macroscopic and microscopic regions. This
defines the linear operator T named the two-scale transform.
For demonstration purposes, we also define the adjoint T ∗ of
T . Since T is a linear operator which transforms a function
defined on a subdomain Ω1 into a product Ω̃1×Y1, conversely
its adjoint for the L2-inner product is defined from Ω̃1×Y1 to
Ω1, by the equality∫

Ω1

T ∗w v dx =

∫
Ω̃1×Y1

w Tv dxdy

for w and v respectively defined in Ω̃1 × Y1 and Ω1.
To derive the approximate model, we require the concept

of approximation of a function v by another function w in
the sense of the small parameter ε, that we denote by v =
w +O(ε), together with the algebraic rules on O(ε). Finally,
the linearity of some operators has to be used repeatedly.

III. SOFTWARE ARCHITECTURE

This section presents our software design methodology and
its theoretical foundations. It will be named MEMSALab,
for “MEMS Arrays Laboratory”. The software will transform
a nominal multiphysic model, composed of a geometry and
PDEs, into a multiscale (MS) asymptotic model approximating
the initial one. This transformation depends on specifications
about periodic and thin parts of the model, which are formu-
lated by the designer.

The software will implement the sequence of modelling
steps depicted in Figure 3. The software will be composed
of modules. The Data Structure Constructor is in charge of

importing the nominal model from a finite element analysis
and simulation software package of physics and engineer-
ing applications, e.g. COMSOL. Conversely, a Geometry &
Equation Generator will export the derivated multiscale model
towards COMSOL after being adapted so that the simulation
with COMSOL can be done effectively. Finally the results of
this simulation will be brought back to the physical domain
by means of a Inverse MS Transform.

The modelling step named Multiscale Data Structure Con-
structor is essentially devoted to the extension of the internal
data structure with additional multiscale data. Its input is a
symbolic representation of the geometry produced by the Data
Structure Constructor from the numerical data from COMSOL.
Data structures are detailed in Section III-A. The multiscale
data structures are designed and implemented to be complete,
flexible and able to describe complex geometries, but without
redundancies. They describe the mathematical objects (e.g.
functions, variables . . .) and their properties, the geometri-
cal regions and their boundaries, the admissible functional
spaces, and the algebraic properties of the two-scale operators.
The purpose of the modelling step named Multiscale (MS)
Model Constructor is to automatically construct the asymptotic
multiscale model from the multiscale data structures. Yet
this purpose is not completely fulfilled since it requires a
unification of multiscale methods. However two parts of this
modelling step are already built and tested, namely a symbolic
transformation package and a type-checker. Sections III-B
and III-C respectively detail these two basic blocks and their
theoretical foundations.

A. Data structures

Four kinds of data structures with increasing complexity
have been defined.

The simplest ones are formal expressions in the host lan-
guage Maple. These formal expressions are composed of sym-
bols representing mathematical operations (such as sum, prod-
uct, . . .) or operators (such as partial derivation or integration)
that are applied in a hierarchical way on similar expressions

COMSOL
Nominal model

‐‐‐‐‐‐‐‐‐‐‐
• Geometry
• Equations

Data
Structure

Constructor

Data
Structure

Constructor

MEMSALab
Nominal model

‐‐‐‐‐‐‐‐‐‐‐‐
• Abstract geometry
• Equations
• Functional space

Multiscale
Data Structure
Constructor

Multiscale
Data Structure
Constructor

MS Model
Constructor
MS Model
Constructor

Asymptotic
MS model
‐‐‐‐‐‐‐‐‐‐‐‐

• Abstract geometry
• Equations
• Functional space

Multiscale (MS) data
structure

Geometry
& Equation
Generator

Geometry
& Equation
Generator

COMSOL
MS model
‐‐‐‐‐‐‐‐‐‐‐‐

• Geometry
• Equations

FEM
Simulation
MS model

FEM
Simulation
MS model

COMSOL
MS model
‐‐‐‐‐‐‐‐‐‐‐‐

• FEM Results

Inverse MS
Transform
Inverse MS
Transform

COMSOL
Nominal geometry

‐‐‐‐‐‐‐‐‐‐‐‐
•MS model result visualization

Fig. 3. Flowchart of the modelling steps

and on atomic symbols, such as region and (mathematical)
variable names. For instance, the above weak formulation
is represented by a single Maple expression with = as top
symbol. Most of these symbols are usefully predefined in
Maple, but we adapt some of them and define new symbols
(e.g. the two-scale operators). For instance, the Maple-defined
symbol int for integration is not general enough to be used.
We introduce a distinct integration symbol Integral for
integration over a region and encode its semantics by equalities
(data structures of the fourth kind, see below for details).

The second kind of data structures describes geometrical
regions and their boundaries, mathematical functions and
admissible functional spaces. They are stored in Maple arrays.
Functional spaces are also formalized in the multiscale data
structures and can be used and modified by the Multiscale
Model Constructor.

Data structures of the third level are formal equalities (pairs
of Maple expressions) encoding equational assertions such
as boundary hypotheses. The fourth level of data structures
represents the algebraic properties of the new operators (two-

scale operators, integration over a region, etc) as systems of
oriented equalities, a.k.a. rewriting strategies, as detailed in
Section III-B.

B. Symbolic transformation package

Compared to other techniques, our multiscale method re-
quires more modular calculations, avoids any non-constructive
proof and intensively relies on equational reasoning. The
classical way to automate equational reasoning is to consider
mathematical equalities as rewrite rules. The rewrite rule
t → u orients the equality t = u from left to right and
states that every occurrence of an instance of t can be replaced
with the corresponding instance of u. Consequently symbolic
computation with equalities is reduced to a series of term
rewritings.

Term rewriting provides a theoretical and computational
framework which is very useful to express, study and analyze a
wide range of complex dynamic systems [15], [16]. It is char-
acterized by the repeated transformation of a data object such
as a word, term or graph. Transformations are combinations
of rules specifying how to transform an object into another

one when it follows a specific pattern. Rule application can
be restricted by additional conditions. Rules can be combined
by specifying strategies controlling the order and the way
rules are repeatedly applied. Term rewriting is used in formal
semantics to describe the meaning of programming languages
and more generally in computer science to describe program
transformations and to perform automated reasoning. It is
central in systems where the notion of rule is explicit such
as expert systems, algebraic specifications, etc.

The computer algebra system MapleTM is widely used in
the mathematical community and we have retained it for
a prototypal implementation of the algorithmic aspects of
multiscale methods. The Maple language is appropriate to
combine function-based and rule-based symbolic transforma-
tions. Unfortunately, its rewriting function does not provide the
user with control on how and where rules must be applied.

Algebraic computation and term rewriting are two research
domains with strong similarities. Both are separately well-
studied but there are only few works about the combina-
tion of algebraic computation and term rewriting [7], [17],
[18], [19]. We have implemented a Maple package, named
symbtrans, extending Maple with rule-based programming,
where rules, strategies and usual Maple functions can be freely
combined [19]. The transformation language provided by the
symbtrans package is deliberately an adaptation for Maple
of popular strategy languages such as ρ-log [8] or TOM [20].

The language of symbtrans offers the most common
strategy constructors, as detailed in the following subsections.
The combination of those strategies offers a simple and com-
pact way for expressing sequences of symbolic derivations.

1) Rewriting at the top: In symbtrans the MapleTM

statement ruleName:=[l,r] declares the rewrite rule l→ r
as a pair of terms and assigns it the name ruleName.
The term l is called the pattern of the rule. The function
Transform turns the pair ruleName into the partial func-
tion Transform(ruleName). Given a term t, the rewrite
rule l→ r is applied on t at the top by the function application
Transform(ruleName)(t). If the rule cannot be applied
i.e. if t does not match its pattern l, then the exception
"Fail" is raised. This is the standard rewriting at the top
or top rewriting strategy.

Example 1. Consider the property
∫
v + w dx =

∫
v dx +∫

w dx of linearity of the integral. The rewrite rule corre-
sponding to its application from left to right can be defined
with symbtrans as the pair

IntegralLinearity := [
Integral(A_ + B_, C_),
Integral(A, C) + Integral(B, C)];

A convention in the package is that variable names in rule
patterns end with ” ” in order to distinguish them from
constants. In order to apply the IntegralLinearity rule
at the top to the term

t := Integral(v(x)+w(x),x);

we write Transform(IntegralLinearity)(t). The
resulting term is

Integral(v(x),x) + Integral(w(x),x)

2) Traversal strategies: A subterm of t that can be trans-
formed by a strategy s is called a redex of t for s. The strategy
Outermost(s) applies the strategy s once to all the redexes
of t for s that are the closest ones to the root of t, i.e. to the
largest subterms of t on which s succeeds. In other words the
strategy Outermost traverses the term t down from its root
and tries to apply s to each traversed subterm. If the strategy
s succeeds on some subterm t′ of t, then it is not applied to
the proper subterms of t′. In particular, Outermost(s) fails
iff s fails on all the subterms of t.

Example 2. Let

t = 2 +

∫
v(x) dx+ 3(

∫
w(x) + g(x) dx︸ ︷︷ ︸

r1

) dx

︸ ︷︷ ︸
r0

be a term with two redexes r0 and r1 for the rule of integral
linearity. Then Outermost(IntegralLinearity)(t)
gives the expression

2 +

∫
v(x) dx+

∫
3(

∫
w(x) + g(x) dx) dx,

since the rule IntegralLinearity is only applied to the
outermost redex r0 of t.

The strategy Innermost(s) works similarly, but in the
opposite direction, i.e. it traverses a term t up from its smallest
subterms and tries to apply the strategy s once to the smallest
redexes of t for s.

Example 3. For the term t of example 2, the expression
Innermost(IntegralLinearity)(t) gives the expres-
sion

2 +

∫
v(x) dx+ 3(

∫
w(x) dx+

∫
g(x) dx) dx,

since the rule IntegralLinearity has been applied to
the innermost redex r1 of t.

3) Fixed-point computation: Applying a strategy repeatedly
to a term, until it is no more applicable, is called a fixed-point
computation. It is a strong and useful strategy, but presents a
risk of non termination. The symbtrans package provides
the strategy combinator STNormalizer for this strategy. Its
functionality is illustrated by the following example.

Example 4. The theory of convergence corresponds to the

following rewrite rules:

O(ε) +O(ε)→ O(ε), (2)
n∑

i=1

O(ε)→ O(ε), (3)∫
ω

O(ε) ds→ O(ε), and (4)

z ×O(ε)→ O(ε) (5)

for a term z bounded with respect to ε. A choice between
two or more strategies, where the next strategy is applied
only if the current one fails, can be constructed by the
strategy combinator LeftChoice. The strategy combinators
STNormalizer and LeftChoice can be combined as
follows

ConvergenceStrategy :=
STNormalizer(

LeftChoice([
Outermost(OEpsilonSum),
Outermost(OEpsilonSUM),
Outermost(OEpsilonIntegral),
Outermost(OEpsilonConst)

])
);

where OEpsilonSum, OEpsilonSUM, OEpsilon-
Integral and OEpsilonConst are symbtrans rules
which respectively encode the rewriting rules (2), (3), (4)
and (5). The result ConvergenceStrategy is a powerful
strategy that reduces O(ε) terms as much as possible. In the
present case it can be shown that it always terminates and
thus can be systematically applied after each tranformation
step.

4) Procedural programming: It is possible to combine
rewrite rules and procedural programming in symbtrans.
That is, the right-hand side of a rewrite rule may contain calls
of Maple predefined functions or of functions defined by the
user. This feature is not available in pure rewriting languages,
e.g. in Maude [21]. But it is available in rewriting languages
built upon a host language, e.g. ρ-log [8] which is built on
Mathematica and Tom [20] which is built on Java.

Example 5. The code

e := [L_, DelayEval -> nops(L)];

is a rule declaration whose right-hand side contains a call of
the MapleTM function nops(L) that returns the number of
arguments of L. In particular, it returns the size of L when L
is a list. DelayEval is a reserved keyword in symbtrans,
whose presence is necessary when the right-hand side of the
rewrite rule contains function calls.

5) Conditional rewriting: Rewrite rules can be conditional.
A conditional rule is a rewrite rule l → r and a condition
c on the variables in l. In symbtrans a conditional rule is
declared as a list [l,r,c] of three elements, where the third

element is the condition. Again the DelayEval mechanism
is required in the condition when it contains function calls.

Example 6. The conditional rewrite rule

[L(A_*X_),A*L(X),DelayEval->IsScalar(A)]

corresponds to the linearity of the operator L. It replaces
L(Ax) with AL(x) if A is a scalar.

C. Type-checker

This section shows the interest of a typing discipline
for the formalization of multiscale methods. In computer
science type systems complete grammatical descriptions of
programming languages with additional contextual conditions
of well-formedness. For example, the fact that a mathematical
expression under an integration sign has to be integrable
is a contextual information that is better detected by well-
formedness rules than by grammatical rules. The set of rules
that relate the type of a mathematical expression with the one
of its sub-expressions is called a type system. The reader is
invited to see [11], [10] for more information on type theory.
We propose a first type system in which region names (Ω,
Ω1, Ω2, Ω̃1, Ω̃2, Y1 and Y2 in the example) are considered as
type constants, i.e. atomic type names. Another type constant
is R for real numbers. The notation e : A asserts that e is an
expression of type A. The type A → B denotes the set of
functions whose domain is A and co-domain is B. Moreover,
any Cartesian product of region names also forms a type. For
instance, the functions w defined on Ω̃1 × Y1 in Section II
are expressions of type Ω̃1 × Y1 → R. It is denoted by
w : Ω̃1 × Y1 → R.

For any region Ω, any variable x such that x : Ω and any
expression e such that e : A or e : A → B, where A is a
Cartesian product composed of other regions than Ω, the ex-
pression

∫
Ω
e u dx (where u is any expression) can be rewritten

as
∫

Ω
u dx and the expression ∂e/∂x as 0. Such simplification

rules of major importance are made possible thanks to the
typing information. The type checking process requires that the
user declares the type of all the mathematical objects used in
the proof. These objects are the constants, variables, functions,
O(ε) terms, etc. Their type is stored in the data structures
described in Section III-A. For all the possible software inputs
the types of the standard mathematical operators such as
derivation and integration are predefined in the type system.
For each region Ω we can define the type of the two-scale
transform TΩ of functions defined on Ω as (Ω → R) →
(((ν(Ω)× µ(Ω))→ R) where ν(Ω) (resp. µ(Ω)) denotes the
macroscopic (resp. microscopic) region of Ω. But it is more
generic and compact to consider a single polymorphic two-
scale transform T : Πα.(α → R) → (((ν(α) × µ(α)) → R),
where Πα is the universal quantification over the type variable
α [10]. In the present case, this variable can only be replaced
by a region name and this replacement produces an instance
of this polymorphic operator. This replacement is called the
universal application (or extraction), that is, if t is a term
of type Πα.U , and β is a type, then t(β) is a term of type

(a) Nominal model (b) Two-scale model

Fig. 4. Results for u0 by FEM simulations

U [α := β], where U [α := β] is the substitution of α by β
in U . The polymorphic adjoint of the polymorphic two-scale
transform T is T ∗ : Πα.(((ν(α)× µ(α))→ R)→ (α→ R).

For multiscale methods, regularity conditions could addi-
tionnally be checked by a richer type system. Regularity
conditions for a mathematical function (i.e. derivability and
integrability) are usually described by its membership to an
adequate functional space.

IV. VALIDATION

When applying our software to Eq. (1), we specify that the
two-scale transforms to be used are T 1 and T 2 corresponding
to Fig. 2(b). The two-scale model provided by the software
includes the microscopic equation posed in the Y1 cell with
the coefficient a1 = T 1a, the function space W 1 = {v defined
in Y1 v is Y1-periodic} and the variational formulation:

Find w1
i ∈W 1 such that

2∑
k,`=1

∫
Y1

a1
k`

∂w1
i

∂yk

∂v

∂y`
dy = −

2∑
k,`=1

∫
Y1

a1
k`δik

∂v

∂y`
dy

for all v ∈ W 1. It also includes a problem posed in the
microscopic cell of the thin part Y2 even if the latter has not
the periodicity feature. This problem is written in a similar
manner not detailed here and leads to the definition of a2 and
w2

i . It follows the definition of homogenized thermal diffusion
coefficient and density of heat source per unit area in the first
macroscopic part Ω̃1

aHij =

2∑
k,`=1

1

|Y1|

∫
Y1

a1
k`(δik +

∂w1
i

∂yk
)(δj` +

∂w1
j

∂y`
)dy

and fH = 1
|Y1|

∫
Y1
T 1fdy. Similar formula yields aH and

fH in Ω̃2 the second macroscopic part. The two-scale model
also includes the macroscopic problem posed on Ω̃1 ∪ Ω̃2 the
macroscopic region with V 0 = {v defined in Ω̃1 ∪ Ω̃2 | v = 0
on Γ1∩(Ω̃1∪Ω̃2)} the macroscopic admissible function space
and the variational formulation: Find u0 ∈ V 0 such that

2∑
i,j=1

∫
Ω̃1

aHij
∂u0

∂x̃1
i

∂u0

∂x̃1
j

dx̃1 +

∫
Ω̃2

aH11

∂u0

∂x̃2
1

∂u0

∂x̃2
1

dx̃2
1

=

∫
Ω̃1

fHv0dx̃1 +

∫
Ω̃2

fHv0dx̃2
1

for all v ∈ V 0. The final approximation in the physical region
Ω is

u ≈ B1(u0 + ε

2∑
i=1

(yi + w1
i)
∂u0

∂x̃1
i

) in Ω1,

where

w1
i = w1

i −
1

|Y1|

∫
Y1

w1
i dy

and B1 is the approximate inverse two-scale transform defined
for any Y1-periodic function v(x̃1, y) by

(B1v)(x) = v(x̃1,
x− ε/2

ε
).

A similar approximation is built in Ω2. Now we compare the
results obtained with the nominal model and the simplified
model, see Fig. 4. To obtain sufficient accuracy of calculations
with the software COMSOL we used meshes with 459,840
elements to model the complete problem, of 7664 elements
for both microscopic problems and with 305 elements for the
macroscopic problem. The relative quadratic error(∫

Ω

|u− u0|2dx
)1/2

/

(∫
Ω

|u|2dx
)1/2

between u, the model nominal solution, and u0, this of the
homogenized model, is 6.85%. The computing time on a
laptop for the three problems are respectively 3.734s, 0.046s
and 0.015s, giving a ratio of computation time of the nominal
model and simplified model of 0.029.

V. CONCLUSION

We presented the mathematical tools involved in the two-
scale approximation of models combining thin and periodic
structures, the basic principles of a new software dedicated
to the generation of multiscale models, and their illustration
on an example of MEMS array. Each mathematical tool
of the method, namely the integral and PDE calculus, the
algebraic rules on O(ε), and the algebraic properties of the
two-scale operators are expressed in the software by means
of the notion of strategy. Thanks to the notion of strategy
the formal derivation of an approximated model is close
to the mathematical one in terms of size and nature of
steps. Among other advantages the symbolic transformation
language smoothly integrates with standard Maple functions.
Consequently, the Maple programmer learns it quickly and is
free to mix procedural- and rule-based programming styles.
Moreover all the features of her development environment
(such as refactoring, code completion, dependency analyses,
etc) are preserved for free.

The symbolic transformation package and the type-checker
have been successfully applied together to a couple of models.
In particular, the asymptotic model from the running example
has been produced from Eq. (1) with the assistance of these
tools.

To conclude, we underline that there are a number of in-
terests with our approach. Clearly, the final model is “correct-
by-construction”, human errors are avoided, and the model

derivation effort is dramatically reduced. In the point of view
of a MEMS designer, this software will generate simplified
analytical and numerical models corresponding to a design
and to a set of requested simplifications. Since the computation
will be fast enough, a variety of simplifications can be tested
and the one satisfying the best tradeoff between simulation
time and precision can be retained.

REFERENCES

[1] M. Lenczner, “Homogénéisation d’un circuit électrique,” C. R. Acad.
Sci. Paris Sér. II b, vol. 324, no. 9, pp. 537–542, 1997.

[2] J. Casado-Dı́az, “Two-scale convergence for nonlinear Dirichlet prob-
lems in perforated domains,” Proc. Roy. Soc. Edinburgh Sect. A, vol.
130, no. 2, pp. 249–276, 2000.

[3] D. Cioranescu, A. Damlamian, and G. Griso, “Periodic unfolding and
homogenization,” C. R. Math. Acad. Sci. Paris, vol. 335, no. 1, pp. 99–
104, 2002.

[4] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis
for periodic structures, ser. Stud. in Math. and its Appl. Amsterdam:
North-Holland Publishing Co., 1978, vol. 5.

[5] P. G. Ciarlet, Mathematical elasticity. Vol. I, ser. Studies in Mathematics
and its Applications. Amsterdam: North-Holland Publishing Co., 1988,
vol. 20.

[6] Terese, Term Rewriting Systems, ser. Cambridge Tracts in Theor. Comp.
Sci. Cambridge Univ. Press, 2003, vol. 55.

[7] H. Cirstea and C. Kirchner, “The rewriting calculus — Part I and II,”
Logic Journal of the Interest Group in Pure and Applied Logics, vol. 9,
no. 3, pp. 427–498, May 2001.

[8] M. Marin and F. Piroi, “Rule-based programming with Mathematica,”
in In Sixth Mathematica Symposium (IMS 2004), 2004, pp. 1–6.

[9] J.-L. Krivine, λ-calculus, types and models. Ellis Horwood, 1993.
[10] J.-Y. Girard, P. Taylor, and Y. Lafont, Proofs and types. New York,

NY, USA: Cambridge University Press, 1989.

[11] H. Geuvers, “Introduction to type theory,” in Language Engineering and
Rigorous Software Development, ser. LNCS. Springer, 2009, vol. 5520,
pp. 1–56.

[12] M. Lenczner and G. Senouci-Bereksi, “Homogenization of electrical net-
works including voltage-to-voltage amplifiers,” Math. Models Methods
Appl. Sci., vol. 9, no. 6, pp. 899–932, 1999.

[13] M. Lenczner and R. C. Smith, “A two-scale model for an array of AFM’s
cantilever in the static case,” Mathematical and Computer Modelling,
vol. 46, no. 5-6, pp. 776–805, 2007.

[14] D. Cioranescu, A. Damlamian, and G. Griso, “The periodic unfolding
method in homogenization,” SIAM Journal on Mathematical Analysis,
vol. 40, no. 4, pp. 1585–1620, 2008.

[15] P. Baldan, C. Bertolissi, H. Cirstea, and C. Kirchner, “A rewriting
calculus for cyclic higher-order term graphs,” Mathematical Structures
in Computer Science, 2006.

[16] H. Cirstea, G. Faure, and C. Kirchner, “A rho-calculus of explicit
constraint application,” The journal of Higher-Order and Symbolic
Computation, 2005.

[17] S. Fèvre and D. Wang, “Combining algebraic computing and term-
rewriting for geometry theorem proving,” in Proceedings of the Interna-
tional Conference on Artificial Intelligence and Symbolic Computation.
London, UK: Springer-Verlag, 1998, pp. 145–156.

[18] R. Bündgen, “Combining computer algebra and rule based reasoning,” in
Integrating Symbolic Mathematical Computation and Arti Intelligence.
Proceedings of AISMC-2, volume 958 of LNCS. Springer, 1995, pp.
209–223.

[19] W. Belkhir, A. Giorgetti, and M. Lenczner, “A Symbolic Transformation
Language and its Application to a Multiscale Method,” submitted for
publication.

[20] E. Balland, P. Brauner, R. Kopetz, P. Moreau, and A. Reilles, “Tom:
Piggybacking Rewriting on Java,” in RTA, 2007, pp. 36–47.

[21] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, ser. LNCS, vol. 4350. Springer, 2007.

	Introduction
	Mathematical tools used for model derivation
	Software architecture
	Data structures
	Symbolic transformation package
	Rewriting at the top
	Traversal strategies
	Fixed-point computation
	Procedural programming
	Conditional rewriting

	Type-checker

	Validation
	Conclusion
	References

