

Chimera in Space-Time Representation of Nonlinear Delay Dynamics

Laurent Larger¹, Bogdan Penkovsky^{1,2} and Yuri Maistrenko^{1,3}

¹FEMTO-ST/ Optics, UMR 6174, Univ. of Franche-Comté, Besançon, France
 ²University of Kyiv-Mohyla Academy, Ukraine
 ³Institute of Mathematics and Centre for Medical and Biotechnical Research, Kiev, Ukraine

May 19, 2013 / Snowbird, Utah, USA SIAM Conference on Dynamical Systems

1. Intro: Delayed feedback loop and space-time plot

2. Selecting and designing the right DDE

3. Outro: chimera, the right suspect?

Intro: Delayed feedback loop and space-time plot

Selecting and designing the right DDE

Outro: chimera, the right suspect?

Closed loop oscillator architecture:

All-optical Ikeda ring cavity

Closed loop oscillator architecture:

- All-optical Ikeda ring cavity
- Generic bloc diagram setup

Closed loop oscillator architecture:

- All-optical Ikeda ring cavity
- Generic bloc diagram setup

Modeling, DDE

$$\tau \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -x(t) + F_{\mathsf{NL}}[x(t-\tau_D)]$$

Closed loop oscillator architecture:

- All-optical Ikeda ring cavity
- Generic bloc diagram setup

Modeling, DDE

$$\tau \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -x(t) + F_{\mathsf{NL}}[x(t-\tau_D)]$$

• Instantaneous part (linear filter)

$$au \frac{\mathrm{d}x}{\mathrm{d}t}(t) + x(t) = z(t) \quad \leftrightarrow \quad H(f) = \mathrm{FT}[h(t)] = \frac{X(f)}{Z(f)} = \frac{1}{1 + i2\pi f\tau}$$

Closed loop oscillator architecture:

- All-optical Ikeda ring cavity
- Generic bloc diagram setup

Modeling, DDE

$$\tau \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -x(t) + F_{\mathsf{NL}}[x(t-\tau_D)]$$

• Instantaneous part (linear filter)

$$au \frac{\mathrm{d}x}{\mathrm{d}t}(t) + x(t) = z(t) \quad \leftrightarrow \quad H(f) = \mathrm{FT}[h(t)] = \frac{X(f)}{Z(f)} = \frac{1}{1 + i2\pi f \tau}$$

<u>Nonlinear</u> delayed driving force

$$z(t) = F_{\mathsf{NL}}[x(t - \tau_D)] = \beta \cos^2[x(t - \tau_D) + \Phi]$$

Normalization wrt Delay τ_D : $s = t/\tau_D$, and $\varepsilon = \tau/\tau_D$

$$\varepsilon \dot{x}(s) = -x(s) + f_{\mathsf{NL}}[x(s-1)], \text{ where } \dot{x} = \frac{\mathsf{d}x}{\mathsf{d}s}.$$

Large delay case: $\varepsilon \ll 1$, potentially high dimensional attractor ∞ -dimensional phase space, initial condition: $x(s), s \in [-1, 0]$

Normalization wrt Delay τ_D : $s = t/\tau_D$, and $\varepsilon = \tau/\tau_D$

$$\varepsilon \dot{x}(s) = -x(s) + f_{\mathsf{NL}}[x(s-1)], \text{ where } \dot{x} = \frac{\mathsf{d}x}{\mathsf{d}s}$$

Large delay case: $\varepsilon \ll 1$, potentially high dimensional attractor ∞ -dimensional phase space, initial condition: $x(s), s \in [-1, 0]$

Space-time representation

Normalization wrt Delay τ_D : $s = t/\tau_D$, and $\varepsilon = \tau/\tau_D$

$$\varepsilon \dot{x}(s) = -x(s) + f_{\mathsf{NL}}[x(s-1)], \text{ where } \dot{x} = \frac{\mathsf{d}x}{\mathsf{d}s}$$

Large delay case: $\varepsilon \ll 1$, potentially high dimensional attractor ∞ -dimensional phase space, initial condition: $x(s), s \in [-1, 0]$

Space-time representation

Normalization wrt Delay τ_D : $s = t/\tau_D$, and $\varepsilon = \tau/\tau_D$

$$\varepsilon \dot{x}(s) = -x(s) + f_{\mathsf{NL}}[x(s-1)], \text{ where } \dot{x} = \frac{\mathsf{d}x}{\mathsf{d}s}$$

Large delay case: $\varepsilon \ll 1$, potentially high dimensional attractor ∞ -dimensional phase space, initial condition: $x(s), s \in [-1, 0]$

Space-time representation

- Virtual space variable σ,
 - $\sigma \in [0;1+\gamma] \text{ with } \gamma = O(\varepsilon).$
- Discrete time n

$$n \rightarrow (n+1)$$

 $s = n(1 + \gamma) + \sigma \quad \rightarrow \quad s = (n+1)(1 + \gamma) + \sigma$

F.T. Arecchi, et al. Phys. Rev. A, 1992

Normalization wrt Delay τ_D : $s = t/\tau_D$, and $\varepsilon = \tau/\tau_D$

$$\varepsilon \dot{x}(s) = -x(s) + f_{\mathsf{NL}}[x(s-1)], \text{ where } \dot{x} = \frac{\mathsf{d}x}{\mathsf{d}s}$$

Large delay case: $\varepsilon \ll 1$, potentially high dimensional attractor ∞ -dimensional phase space, initial condition: $x(s), s \in [-1, 0]$

Space-time representation

- Virtual space variable σ , $\sigma \in [0; 1 + \gamma]$ with $\gamma = O(\varepsilon)$.
- Discrete time n

$$n \rightarrow (n+1)$$

 $s = n(1+\gamma) + \sigma \quad \rightarrow \quad s = (n+1)(1+\gamma) + \sigma$

G. Giacomelli, et al. EPL, 2012

Intro: Delayed feedback loop and space-time plot

Selecting and designing the right DDE

Outro: chimera, the right suspect?

integro-differential delay dynamics

i DDE: the NL delay damped oscillator viewpoint

• 2^{nd} order bandpass filter, or strongly damped harmonic oscillator ($m \gg 1$, $\theta = \frac{2m}{\Omega_0}$, $\tau = \frac{1}{2m\Omega_0}$)

V.S. Udaltsov, et al. IEEE Trans. Circ. & Syst., 2002; Y.C. Kouomou et al., Phys. Rev. Lett. 2005;
M. Peil et al., Phys. Rev. E, 2009; T.E. Murphy et al., Phil. Trans. R. Soc. A, 2010; K. Callan et al. Phys. Rev. Lett., 2010;
L. Larger & J.M. Dudley, Nature, News & Views, 2010; L. Weicker et al. Phys. Rev. E, 2012.

integro-differential delay dynamics

i DDE: the NL delay damped oscillator viewpoint

- 2^{nd} order bandpass filter, or strongly damped harmonic oscillator ($m \gg 1$, $\theta = \frac{2m}{\Omega_0}$, $\tau = \frac{1}{2m\Omega_0}$)
- Higher orders sometimes relevant experimentally (2nd order usually qualitatively enough)

$$\frac{1}{\Omega_0^2} \frac{d^2 x}{dt^2}(t) + \frac{2m}{\Omega_0} \frac{dx}{dt}(t) + x(t) = \frac{2m}{\Omega_0} \frac{dz}{dt}(t) \quad \leftrightarrow \quad H(\omega = 2\pi f) = \frac{X(\omega)}{Z(\omega)} = \frac{i\frac{2m}{\Omega_0}\omega}{1 + i\frac{2m}{\Omega_0}\omega - \frac{\omega^2}{\Omega_0^2}}$$

or
$$\frac{1}{\theta} \int_{t_0}^t x(\xi) \, d\xi + x(t) + \tau \frac{dx}{dt}(t) = z(t) - z(t_0)$$

V.S. Udaltsov, et al. IEEE Trans. Circ. & Syst., 2002; Y.C. Kouomou et al., Phys. Rev. Lett. 2005;
M. Peil et al., Phys. Rev. E, 2009; T.E. Murphy et al., Phil. Trans. R. Soc. A, 2010; K. Callan et al. Phys. Rev. Lett., 2010;
L. Larger & J.M. Dudley, Nature, News & Views, 2010; L. Weicker et al. Phys. Rev. E, 2012.

integro-differential delay dynamics

i DDE: the NL delay damped oscillator viewpoint

- 2^{nd} order bandpass filter, or strongly damped harmonic oscillator ($m \gg 1$, $\theta = \frac{2m}{\Omega_0}$, $\tau = \frac{1}{2m\Omega_0}$)
- Higher orders sometimes relevant experimentally (2nd order usually qualitatively enough)

$$\frac{1}{\Omega_0^2} \frac{d^2 x}{dt^2}(t) + \frac{2m}{\Omega_0} \frac{dx}{dt}(t) + x(t) = \frac{2m}{\Omega_0} \frac{dz}{dt}(t) \quad \leftrightarrow \quad H(\omega = 2\pi f) = \frac{X(\omega)}{Z(\omega)} = \frac{i\frac{2m}{\Omega_0}\omega}{1 + i\frac{2m}{\Omega_0}\omega - \frac{\omega^2}{\Omega_0^2}}$$

or
$$\frac{1}{\theta} \int_{t_0}^t x(\xi) \, d\xi + x(t) + \tau \frac{dx}{dt}(t) = z(t) - z(t_0)$$

• $z(t) = \beta F_{NL}[x, t, t - \tau_D]$ NL delayed self-feedback driving force

V.S. Udaltsov, et al. IEEE Trans. Circ. & Syst., 2002; Y.C. Kouomou et al., Phys. Rev. Lett. 2005;
M. Peil et al., Phys. Rev. E, 2009; T.E. Murphy et al., Phil. Trans. R. Soc. A, 2010; K. Callan et al. Phys. Rev. Lett., 2010;
L. Larger & J.M. Dudley, Nature, News & Views, 2010; L. Weicker et al. Phys. Rev. E, 2012.

Standard Ikeda bifurcation: negative slope

Period doubling route to chaos

Standard Ikeda bifurcation: negative slope

- Period doubling route to chaos
- popular singular limit map, x_{n+1} = f_{NL}[x_n]; period 2ⁿτ_D limit cycle.

Standard Ikeda bifurcation: negative slope

- Period doubling route to chaos
- popular singular limit map, x_{n+1} = f_{NL}[x_n]; period 2ⁿτ_D limit cycle.

Positive slope operating point

 One-delay limit cycle: Unstable or metastable solution (Sharkovsky *et al.*, Kluwer, 1993)

Standard Ikeda bifurcation: negative slope

- Period doubling route to chaos
- popular singular limit map, x_{n+1} = f_{NL}[x_n]; period 2ⁿτ_D limit cycle.

Positive slope operating point

 One-delay limit cycle: Unstable or metastable solution (Sharkovsky *et al.*, Kluwer, 1993)

Standard Ikeda bifurcation: negative slope

- Period doubling route to chaos
- popular singular limit map, x_{n+1} = f_{NL}[x_n]; period 2ⁿτ_D limit cycle.

Positive slope operating point

- One-delay limit cycle: Unstable or metastable solution (Sharkovsky *et al.*, Kluwer, 1993)
- Recently reported as stable for *i* DDE, with a tunable duty cycle (Weicker *et al.*, Phys. Rev. E, 2012).

Standard Ikeda bifurcation: negative slope

- Period doubling route to chaos
- popular singular limit map, $x_{n+1} = f_{NL}[x_n]$; period $2^n \tau_D$ limit cycle.

Positive slope operating point

- One-delay limit cycle: Unstable or metastable solution (Sharkovsky et al., Kluwer, 1993)
- Recently reported as stable for *i* DDE, with a tunable duty cycle (Weicker *et al.*, Phys. Rev. E, 2012).
- Multiple exotic solutions found with *i* DDE and under positive slope operation (chaotic breathers, excitability, slow limit cycle,...)

$$\varepsilon \dot{x} = -\delta y - x + f_{\mathsf{NL}}[x(s-1)],$$

 $\dot{y} = x$

with $\delta = \tau_D/\theta$ (Ikeda or Mackey-Glass: $\delta \equiv 0$ since $\theta \to \infty$).

Standard Ikeda bifurcation: negative slope

- Period doubling route to chaos
- popular singular limit map, $x_{n+1} = f_{NL}[x_n]$; period $2^n \tau_D$ limit cycle.

Positive slope operating point

- One-delay limit cycle: Unstable or metastable solution (Sharkovsky *et al.*, Kluwer, 1993)
- Recently reported as stable for *i* DDE, with a tunable duty cycle (Weicker *et al.*, Phys. Rev. E, 2012).
- Multiple exotic solutions found with *i* DDE and under positive slope operation (chaotic breathers, excitability, slow limit cycle,...)

$$\varepsilon \dot{x} = -\delta y - x + f_{\mathsf{NL}}[x(s-1)],$$

$$\dot{y} = x$$

with $\delta = \tau_D/\theta$ (Ikeda or Mackey-Glass: $\delta \equiv 0$ since $\theta \to \infty$).

Symmetric $f_{NL}[x]$: Similar σ -"clusters" for x < 0 and x > 0

Asymmetric $f_{NL}[x]$: Distinct σ -clusters for x < 0 and x > 0

Design of an experiment

FM bandpass chaos

- Nonlinear delay oscillator, initially designed for chaotic secure FM radio communication.

- Experiment also used for demonstration of sub-critical Hopf bifurcation in nonlinear DDE.

L. Larger et al., Electron. Lett. 2000, and Phys. Rev. E 2004

Design of an experiment

FM bandpass chaos

- Nonlinear delay oscillator, initially designed for chaotic secure FM radio communication.

- Experiment also used for demonstration of sub-critical Hopf bifurcation in nonlinear DDE.

*f*_{NL}[*x*]: Amplitude filtering profile in the VCO tuning range

Two RLC resonant filters (tuned central frequencies and relative weights)

$$f[\nu] = \beta \left| \frac{g_{12} i \frac{\nu}{\nu_1}}{1 - \left(\frac{\nu}{\nu_1}\right)^2 + \frac{i}{\varrho_1} \frac{\nu}{\nu_1}} + \frac{i \frac{\nu}{\nu_2}}{1 - \left(\frac{\nu}{\nu_2}\right)^2 + \frac{i}{\varrho_2} \frac{\nu}{\nu_2}} \right| \qquad \begin{array}{c} 2 & f[\nu] \\ (arb. unit) & (kHz) \\ 400 & -2 \end{array} \right|$$

L. Larger et al., Electron. Lett. 2000, and Phys. Rev. E 2004

• •

Virtual Chimera in (σ, n) -space

Numerics:

- $\beta = 0.6, \nu_0 = 1, \varepsilon = 5.10^{-3}, \delta = 1.6 \times 10^{-2} (m = 56)$
- Initial conditions: small amplitude white noise (repeated several times with different noise realizations)
- Calculated durations: Thousands of n

•

Virtual Chimera in (σ, n) -space

Numerics:

- $\beta = 0.6, \nu_0 = 1, \varepsilon = 5.10^{-3}, \delta = 1.6 \times 10^{-2} (m = 56)$
- Initial conditions: small amplitude white noise (repeated several times with different noise realizations)
- Calculated durations: Thousands of n

Experiment

- Very close amplitude and time parmeters, $\tau_D = 2.54$ ms, $\theta = 0.16$ s, $\tau = 12.7 \mu$ s
- Initial condition forced by background noise
- Recording of up to 16×10^6 points, allowing for a few thousands

L. Larger, B. Penkovsky, Y. Maistrenko, Submitted, 2013

Intro: Delayed feedback loop and space-time plot

Selecting and designing the right DDE

Outro: chimera, the right suspect?

Is chimera the right suspect?

High dimension is here

- As in PDE, or network of long range coupled oscillators;
- Strong dynamical diversity is observed, with multiple headed "virtual chimera";
- Bistability with coexisting solutions (e.g. chaotic breathers)

Is chimera the right suspect?

High dimension is here

- As in PDE, or network of long range coupled oscillators;
- Strong dynamical diversity is observed, with multiple headed "virtual chimera";
- Bistability with coexisting solutions (e.g. chaotic breathers)

Domain of existence in parameter space

- Limited feedback gain (around β = 0.6), quiescent steady state, or period-1 cycles for lower β, and turbulent or even chaotic global state for larger β
- Chimera also loses stability when δ is decreased

Is chimera the right suspect?

High dimension is here

- As in PDE, or network of long range coupled oscillators;
- Strong dynamical diversity is observed, with multiple headed "virtual chimera";
- Bistability with coexisting solutions (e.g. chaotic breathers)

Domain of existence in parameter space

- Limited feedback gain (around $\beta = 0.6$), quiescent steady state, or period-1 cycles for lower β , and turbulent or even chaotic global state for larger β
- Chimera also loses stability when δ is decreased

Wandering feature

- Clusters frontiers are wandering
- Nullcline plots also reveals it

Analogy with spatio-temporal dynamics showing chimera

Instead of the delay differential writing of the DDE, re-write globally over the virtual space σ (convolution product with impulse response $h(t) = FT^{-1}[H(f)]$: linear filter)

$$x_n(s) = \int_0^s h(\xi) f_{\mathsf{NL}}[x_{n-1}(s-\xi)] \,\mathsf{d}\xi$$

- Discrete time dynamics: $x_{n-1} \rightarrow x_n$
- Distant coupling coefficient between positions s and s ξ: h(ξ)
- Extension of this non-local coupling: width of the impulse response h(t)

Three headed virtual chimera...

Three headed virtual chimera...

Kerberos

FEMTO-ST institute 15 / 15

Three headed virtual chimera...

Thank you for attention!

